A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey

. 2021 May 11 ; 14 (10) : . [epub] 20210511

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34064636

Grantová podpora
AF-IGA-2020-TP006 Mendelova Univerzita v Brně

Heather honey is a valuable and rheologically special type of honey. Its above-average selling price may motivate its intentional violation with a mixture of honey from another botanical origin, the price of which is lower on the market. This work deals with the rheological properties of such devalued heather honey in order to determine the changes in the individual rheological parameters depending on the degree of dilution of the heather honey. For this purpose, a differently diluted heather honey sample series was created and the following rheological parameters were determined: hysteresis area, n-value, yield stress (τ0), parameter B (Weltman model), parameter ϕ, or parameter C (model describing the logarithmic dependence of the complex viscosity on the angular frequency). Part of the work was research into whether the set parameters can be used as comparative parameters. It was found that the hysteresis area does not appear to be a suitable relative comparison parameter due to the high variability. The parameters that appear to be suitable are the relative parameters n-value and the parameter ϕ, which showed the greatest stability. The change in the determined rheological parameters is, depending on the degree of dilution, non-linear with a step change between the samples containing 40% (w/w) and 60% (w/w) of a heather honey.

Zobrazit více v PubMed

Witczak M., Juszczak L., Gałkowska D. Non-Newtonian behaviour of heather honey. J. Food Eng. 2011;104:532–537. doi: 10.1016/j.jfoodeng.2011.01.013. DOI

Dezmirean D.S., Mărghitaș L.A., Fiț N., Chirilă F., Gherman B., Mărgăoan R., Bobiș O. Antibacterial Effect of Heather Honey (Calluna vulgaris) against Different Microorganisms of Clinical Importance. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Anim. Sci. Biotechnol. 2015;72:72–77. doi: 10.15835/buasvmcn-asb:10562. DOI

Lehébel-Péron A., Sidawy P., Dounias E., Schatz B. Attuning local and scientific knowledge in the context of global change: The case of heather honey production in southern France. J. Rural Stud. 2016;44:132–142. doi: 10.1016/j.jrurstud.2016.01.005. DOI

Rodríguez-Flores M.S., Escuredo O., Seijo-Rodríguez A., Seijo M.C. Characterization of the honey produced in heather communities (NW Spain) J. Apic. Res. 2019;58:84–91. doi: 10.1080/00218839.2018.1495417. DOI

Frydman G.H., Olaleye D., Annamalai D., Layne K., Yang I., Kaafarani H.M.A., Fox J.G. Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection. Sci. Rep. 2020;10:13229. doi: 10.1038/s41598-020-70186-9. PubMed DOI PMC

Le Conte Y., Navajas M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2008;27:499–510. PubMed

Zábrodská B., Vorlová L. Adulteration of honey and available methods for detection—A review. Acta Vet. Brno. 2014;83:S85–S102. doi: 10.2754/avb201483S10S85. DOI

Persano Oddo L., Piro R. Main European unifloral honeys: Descriptive sheets. Apidologie. 2004;35:S38–S81. doi: 10.1051/apido:2004049. DOI

Bogdanov S., Martin P., Lüllman C. Harmonised methods of the European Honey Commission. Apidologie. 1997;28:1–59.

Louveaux J. Essai de caractérisation des miels de Callune (Calluna vulgaris Salisb.) Annales de L’Abeille. 1966;9:351–358.

Osés S.M., Ruiz M.O., Pascual-Maté A., Bocos A., Fernández-Muiño M.A., Sancho M.T. Ling heather honey authentication by thixotropic parameters. Food Bioprocess Technol. 2017;10:973–979. doi: 10.1007/s11947-017-1875-6. DOI

Munro J.A. The viscosity and thixotropy of honey. J. Entomol. 1943;36:769–777. doi: 10.1093/jee/36.5.769. DOI

Waś E., Rybak-Chmielewska H., Szczęsna T., Kachaniuk K., Teper D. Characteristic of polish unifloral honey. III. Heather honey (Calluna vulgaris L.) J. Apic. Sci. 2011;55:129–136.

Aliaño-González M.J., Ferreiro-González M., Espada-Bellido E., Palma M., Barbero G.F. A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey. Talanta. 2019;203:235–241. doi: 10.1016/j.talanta.2019.05.067. PubMed DOI

Song Y.Q., Milne R.I., Zhou H.X., Ma X.L., Fang J.Y., Zha H.G. Floral nectar chitinase is a potential marker for monofloral honey botanical origin authentication: A case study from loquat (Eriobotrya japonica Lindl.) Food Chem. 2019;282:76–83. doi: 10.1016/j.foodchem.2018.12.107. PubMed DOI

Wang Q., Zhao H., Zhu M., Zhang J., Cheng N., Cao W. Method for identifying acacia honey adulterated by resin absorption: HPLC-ECD coupled with chemometrics. LWT Food Sci. Technol. 2020;118:108863. doi: 10.1016/j.lwt.2019.108863. DOI

Geana E.I., Ciucure C.T. Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chem. 2020;306:125595. doi: 10.1016/j.foodchem.2019.125595. PubMed DOI

Yilmaz M.T., Tatlisu N.B., Toker O.S., Karaman S., Dertli E., Sagdic O., Arici M. Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. Food Res. Int. 2014;64:634–646. doi: 10.1016/j.foodres.2014.07.009. PubMed DOI

Kamboj U., Mishra S. Prediction of Adulteration in Honey Using Rheological Parameters. Int. J. Food Prop. 2015;18:2056–2063. doi: 10.1080/10942912.2014.962656. DOI

Oroian M., Ropciuc S., Paduret S., Todosi E. Rheological analysis of honeydew honey adulterated with glucose, fructose, inverted sugar, hydrolysed inulin syrup and malt wort. LWT Food Sci. Technol. 2018;95:1–8. doi: 10.1016/j.lwt.2018.04.064. DOI

Anidiobu V.O., Nwalor J.U., Babalola F.U. Comparative Study of Rheological Characterization and Classification of Honeys with Their Physicochemical Properties. Int. J. Food Eng. 2019;5:268–275. doi: 10.18178/ijfe.5.4.268-275. DOI

Nayik G.A., Dar B.N., Nanda V. Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab. J. Chem. 2019;12:3151–3162. doi: 10.1016/j.arabjc.2015.08.017. DOI

Kurt A., Palabiyik I., Gunes R., Konar K., Toker O.S. Determining Honey Adulteration by Seeding Method: An Initial Study with Sunflower Honey. Food Anal. Methods. 2020;13:952–961. doi: 10.1007/s12161-020-01711-9. DOI

Szczęsna T., Rybak-Chmielewska H. The temperature correction factor for electrical conductivity of honey. J. Apic. Sci. 2004;48:97–102.

Ohe W., Persano Oddo L., Piana M.L., Morlot M., Martin P. Harmonized methods of melissopalynology. Apidologie. 2004;35:S18–S25. doi: 10.1051/apido:2004050. DOI

Maurizio A., Louveaux J. Union des Groupements Apicoles Français. 1st ed. Pollens de Plantes Melliféres d’Europe; Paris, France: 1965. p. 148.

Sawyer R. Honey Identification. 1st ed. Cardiff Academic Press; Cardiff, UK: 1988. p. 115.

Ohe K., Ohe W. LAVES—Institut für Bienenkunde. 3rd ed. Celle’s Melissopalynological Collection; Celle, Germany: 2007. p. 236.

Dapčević T., Dokić P., Hadnađev M., Krstonošić V. An approach in numerical evaluation of thixotropy. Food Process. Qual. Saf. 2008;35:33–39.

Tovar C., Rodríguez-Flores M.S., Escuredo O., Del Carmen Seijo M. Rheology of Honey-Advances in Rheology Research. 1st ed. Nova Science Publisher; New York, NY, USA: 2017. pp. 175–191.

Karasu S., Toker O.S., Yilmaz M.T., Karaman S., Dertli E. Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization. J. Food Eng. 2015;150:90–98. doi: 10.1016/j.jfoodeng.2014.10.004. DOI

Kumbár V., Strnková J., Nedomová Š., Buchar J. Fluid dynamics of liquid egg products. J. Biol. Phys. 2015;41:303–311. doi: 10.1007/s10867-015-9380-5. PubMed DOI PMC

Kumbár V., Nedomová Š., Trnka J., Buchar J., Pytel R. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes. Poult. Sci. 2016;95:1693–1701. doi: 10.3382/ps/pew094. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: [(accessed on 23 March 2020)]. Available online: http://www.R-project.org/

Barnes H.A. Thixotropy—A review. J. Non Newton. Fluid Mech. 1997;70:1–33. doi: 10.1016/S0377-0257(97)00004-9. DOI

Mewis J., Wagner N.J. Thixotropy. Adv. Colloid Interface Sci. 2009;147–148:214–227. doi: 10.1016/j.cis.2008.09.005. PubMed DOI

Adamczyk G., Krystyjan M., Dobosz A., Sikora M. Thixotropic properties of starch. Food Sci. Technol. Qual. 2013;20:16–31. doi: 10.15193/zntj/2013/91/016-031. DOI

Razavi S.M.A., Behrouzian F., Alghooneh A. Temperature dependency of the interaction between xanthan gum and sage seed gum: An interpretation of dynamic rheology and thixotropy based on creep test. J. Texture Stud. 2017;48:470–484. doi: 10.1111/jtxs.12257. PubMed DOI

Stelmakienė A., Ramanauskiene K., Briedis V., Leskauskaite D. Examination of rheological and physicochemical characteristics in Lithuanian honey. Afr. J. Biotechnol. 2012;11:12406–12414. doi: 10.5897/AJB12.829. DOI

Samanalieva J., Senge B. Analytical and rheological investigations into selected unifloral German honey. Eur. Food Res. Technol. 2009;229:107–113. doi: 10.1007/s00217-009-1031-2. DOI

Afonso M.J., Magalhães M., Fernandes L., Castro M., Ramalhosa E.C.D. Temperature Effect on Rheological Behavior of Portuguese Honeys. Pol. J. Food Nutr. Sci. 2018;68:217–222. doi: 10.1515/pjfns-2017-0030. DOI

Nedomova S., Kumbar V., Pytel R., Buchar J. Mechanical properties of sugar beet root during storage. Int. Agrophys. 2017;31:507–513. doi: 10.1515/intag-2016-0081. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...