A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AF-IGA-2020-TP006
Mendelova Univerzita v Brně
PubMed
34064636
PubMed Central
PMC8150820
DOI
10.3390/ma14102472
PII: ma14102472
Knihovny.cz E-zdroje
- Klíčová slova
- comparison rheological parameter, dilution, heather honey, mathematical modelling, rheology, time-dependent behaviour,
- Publikační typ
- časopisecké články MeSH
Heather honey is a valuable and rheologically special type of honey. Its above-average selling price may motivate its intentional violation with a mixture of honey from another botanical origin, the price of which is lower on the market. This work deals with the rheological properties of such devalued heather honey in order to determine the changes in the individual rheological parameters depending on the degree of dilution of the heather honey. For this purpose, a differently diluted heather honey sample series was created and the following rheological parameters were determined: hysteresis area, n-value, yield stress (τ0), parameter B (Weltman model), parameter ϕ, or parameter C (model describing the logarithmic dependence of the complex viscosity on the angular frequency). Part of the work was research into whether the set parameters can be used as comparative parameters. It was found that the hysteresis area does not appear to be a suitable relative comparison parameter due to the high variability. The parameters that appear to be suitable are the relative parameters n-value and the parameter ϕ, which showed the greatest stability. The change in the determined rheological parameters is, depending on the degree of dilution, non-linear with a step change between the samples containing 40% (w/w) and 60% (w/w) of a heather honey.
Zobrazit více v PubMed
Witczak M., Juszczak L., Gałkowska D. Non-Newtonian behaviour of heather honey. J. Food Eng. 2011;104:532–537. doi: 10.1016/j.jfoodeng.2011.01.013. DOI
Dezmirean D.S., Mărghitaș L.A., Fiț N., Chirilă F., Gherman B., Mărgăoan R., Bobiș O. Antibacterial Effect of Heather Honey (Calluna vulgaris) against Different Microorganisms of Clinical Importance. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Anim. Sci. Biotechnol. 2015;72:72–77. doi: 10.15835/buasvmcn-asb:10562. DOI
Lehébel-Péron A., Sidawy P., Dounias E., Schatz B. Attuning local and scientific knowledge in the context of global change: The case of heather honey production in southern France. J. Rural Stud. 2016;44:132–142. doi: 10.1016/j.jrurstud.2016.01.005. DOI
Rodríguez-Flores M.S., Escuredo O., Seijo-Rodríguez A., Seijo M.C. Characterization of the honey produced in heather communities (NW Spain) J. Apic. Res. 2019;58:84–91. doi: 10.1080/00218839.2018.1495417. DOI
Frydman G.H., Olaleye D., Annamalai D., Layne K., Yang I., Kaafarani H.M.A., Fox J.G. Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection. Sci. Rep. 2020;10:13229. doi: 10.1038/s41598-020-70186-9. PubMed DOI PMC
Le Conte Y., Navajas M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2008;27:499–510. PubMed
Zábrodská B., Vorlová L. Adulteration of honey and available methods for detection—A review. Acta Vet. Brno. 2014;83:S85–S102. doi: 10.2754/avb201483S10S85. DOI
Persano Oddo L., Piro R. Main European unifloral honeys: Descriptive sheets. Apidologie. 2004;35:S38–S81. doi: 10.1051/apido:2004049. DOI
Bogdanov S., Martin P., Lüllman C. Harmonised methods of the European Honey Commission. Apidologie. 1997;28:1–59.
Louveaux J. Essai de caractérisation des miels de Callune (Calluna vulgaris Salisb.) Annales de L’Abeille. 1966;9:351–358.
Osés S.M., Ruiz M.O., Pascual-Maté A., Bocos A., Fernández-Muiño M.A., Sancho M.T. Ling heather honey authentication by thixotropic parameters. Food Bioprocess Technol. 2017;10:973–979. doi: 10.1007/s11947-017-1875-6. DOI
Munro J.A. The viscosity and thixotropy of honey. J. Entomol. 1943;36:769–777. doi: 10.1093/jee/36.5.769. DOI
Waś E., Rybak-Chmielewska H., Szczęsna T., Kachaniuk K., Teper D. Characteristic of polish unifloral honey. III. Heather honey (Calluna vulgaris L.) J. Apic. Sci. 2011;55:129–136.
Aliaño-González M.J., Ferreiro-González M., Espada-Bellido E., Palma M., Barbero G.F. A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey. Talanta. 2019;203:235–241. doi: 10.1016/j.talanta.2019.05.067. PubMed DOI
Song Y.Q., Milne R.I., Zhou H.X., Ma X.L., Fang J.Y., Zha H.G. Floral nectar chitinase is a potential marker for monofloral honey botanical origin authentication: A case study from loquat (Eriobotrya japonica Lindl.) Food Chem. 2019;282:76–83. doi: 10.1016/j.foodchem.2018.12.107. PubMed DOI
Wang Q., Zhao H., Zhu M., Zhang J., Cheng N., Cao W. Method for identifying acacia honey adulterated by resin absorption: HPLC-ECD coupled with chemometrics. LWT Food Sci. Technol. 2020;118:108863. doi: 10.1016/j.lwt.2019.108863. DOI
Geana E.I., Ciucure C.T. Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chem. 2020;306:125595. doi: 10.1016/j.foodchem.2019.125595. PubMed DOI
Yilmaz M.T., Tatlisu N.B., Toker O.S., Karaman S., Dertli E., Sagdic O., Arici M. Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. Food Res. Int. 2014;64:634–646. doi: 10.1016/j.foodres.2014.07.009. PubMed DOI
Kamboj U., Mishra S. Prediction of Adulteration in Honey Using Rheological Parameters. Int. J. Food Prop. 2015;18:2056–2063. doi: 10.1080/10942912.2014.962656. DOI
Oroian M., Ropciuc S., Paduret S., Todosi E. Rheological analysis of honeydew honey adulterated with glucose, fructose, inverted sugar, hydrolysed inulin syrup and malt wort. LWT Food Sci. Technol. 2018;95:1–8. doi: 10.1016/j.lwt.2018.04.064. DOI
Anidiobu V.O., Nwalor J.U., Babalola F.U. Comparative Study of Rheological Characterization and Classification of Honeys with Their Physicochemical Properties. Int. J. Food Eng. 2019;5:268–275. doi: 10.18178/ijfe.5.4.268-275. DOI
Nayik G.A., Dar B.N., Nanda V. Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab. J. Chem. 2019;12:3151–3162. doi: 10.1016/j.arabjc.2015.08.017. DOI
Kurt A., Palabiyik I., Gunes R., Konar K., Toker O.S. Determining Honey Adulteration by Seeding Method: An Initial Study with Sunflower Honey. Food Anal. Methods. 2020;13:952–961. doi: 10.1007/s12161-020-01711-9. DOI
Szczęsna T., Rybak-Chmielewska H. The temperature correction factor for electrical conductivity of honey. J. Apic. Sci. 2004;48:97–102.
Ohe W., Persano Oddo L., Piana M.L., Morlot M., Martin P. Harmonized methods of melissopalynology. Apidologie. 2004;35:S18–S25. doi: 10.1051/apido:2004050. DOI
Maurizio A., Louveaux J. Union des Groupements Apicoles Français. 1st ed. Pollens de Plantes Melliféres d’Europe; Paris, France: 1965. p. 148.
Sawyer R. Honey Identification. 1st ed. Cardiff Academic Press; Cardiff, UK: 1988. p. 115.
Ohe K., Ohe W. LAVES—Institut für Bienenkunde. 3rd ed. Celle’s Melissopalynological Collection; Celle, Germany: 2007. p. 236.
Dapčević T., Dokić P., Hadnađev M., Krstonošić V. An approach in numerical evaluation of thixotropy. Food Process. Qual. Saf. 2008;35:33–39.
Tovar C., Rodríguez-Flores M.S., Escuredo O., Del Carmen Seijo M. Rheology of Honey-Advances in Rheology Research. 1st ed. Nova Science Publisher; New York, NY, USA: 2017. pp. 175–191.
Karasu S., Toker O.S., Yilmaz M.T., Karaman S., Dertli E. Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization. J. Food Eng. 2015;150:90–98. doi: 10.1016/j.jfoodeng.2014.10.004. DOI
Kumbár V., Strnková J., Nedomová Š., Buchar J. Fluid dynamics of liquid egg products. J. Biol. Phys. 2015;41:303–311. doi: 10.1007/s10867-015-9380-5. PubMed DOI PMC
Kumbár V., Nedomová Š., Trnka J., Buchar J., Pytel R. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes. Poult. Sci. 2016;95:1693–1701. doi: 10.3382/ps/pew094. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: [(accessed on 23 March 2020)]. Available online: http://www.R-project.org/
Barnes H.A. Thixotropy—A review. J. Non Newton. Fluid Mech. 1997;70:1–33. doi: 10.1016/S0377-0257(97)00004-9. DOI
Mewis J., Wagner N.J. Thixotropy. Adv. Colloid Interface Sci. 2009;147–148:214–227. doi: 10.1016/j.cis.2008.09.005. PubMed DOI
Adamczyk G., Krystyjan M., Dobosz A., Sikora M. Thixotropic properties of starch. Food Sci. Technol. Qual. 2013;20:16–31. doi: 10.15193/zntj/2013/91/016-031. DOI
Razavi S.M.A., Behrouzian F., Alghooneh A. Temperature dependency of the interaction between xanthan gum and sage seed gum: An interpretation of dynamic rheology and thixotropy based on creep test. J. Texture Stud. 2017;48:470–484. doi: 10.1111/jtxs.12257. PubMed DOI
Stelmakienė A., Ramanauskiene K., Briedis V., Leskauskaite D. Examination of rheological and physicochemical characteristics in Lithuanian honey. Afr. J. Biotechnol. 2012;11:12406–12414. doi: 10.5897/AJB12.829. DOI
Samanalieva J., Senge B. Analytical and rheological investigations into selected unifloral German honey. Eur. Food Res. Technol. 2009;229:107–113. doi: 10.1007/s00217-009-1031-2. DOI
Afonso M.J., Magalhães M., Fernandes L., Castro M., Ramalhosa E.C.D. Temperature Effect on Rheological Behavior of Portuguese Honeys. Pol. J. Food Nutr. Sci. 2018;68:217–222. doi: 10.1515/pjfns-2017-0030. DOI
Nedomova S., Kumbar V., Pytel R., Buchar J. Mechanical properties of sugar beet root during storage. Int. Agrophys. 2017;31:507–513. doi: 10.1515/intag-2016-0081. DOI