Rheological and Pipe Flow Properties of Chocolate Masses at Different Temperatures

. 2021 Oct 20 ; 10 (11) : . [epub] 20211020

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34828800

Grantová podpora
AF-IGA-2020-TP006 Mendel University in Brno

Chocolate masses are one of the basic raw materials for the production of confectionery. Knowledge of their rheological and flow behaviour at different temperatures is absolutely necessary for the selection of a suitable technological process in their production and subsequent processing. In this article, the rheological properties (the effect of the shear strain rate on the shear stress or viscosity) of five different chocolate masses were determined-extra dark chocolate (EDC), dark chocolate (DC), milk chocolate (MC), white chocolate (WC), and ruby chocolate (RC). These chocolate masses showed thixotropic and plastic behaviour in the selected range of shear rates from 1 to 500 s-1 and at the specified temperatures of 36, 38, 40, 42, and 44 °C. The degree of thixotropic behaviour was evaluated by the size of the hysteresis area, and flow curves were constructed using the Bingham, Herschel-Bulkley and Casson models with respect to the plastic behaviour of the chocolate masses. According to the values of the coefficients of determination R2 and the sum of the squared estimate of errors (SSE), the models were chosen appropriately. The most suitable models are the Herschel-Bulkley and Casson models, which also model the shear thinning property of the liquids (pseudoplastic with a yield stress value). Using the coefficients of the rheological models and modified equations for the flow velocity of technical and biological fluids in standard piping, the 2D and 3D velocity profiles of the chocolate masses were further successfully modelled. The obtained values of coefficients and models can be used in conventional technical practice in the design of technological equipment structures and in current trends in the food industry, such as 3D food printing.

Zobrazit více v PubMed

Selvasekaran P., Chidambaram R. Advances in formulation for the production of low-fat, fat-free, low-sugar, and sugar-free chocolates: An overview of the past decade. Trends Food Sci. Technol. 2021;113:315–334. doi: 10.1016/j.tifs.2021.05.008. DOI

Directive (EC) No 36/2000 of the European parliament and of the council of 23 June 2000 relating to cocoa and chocolate products intended for human consumption. OJ L 197. 2000;3:19.

Afoakwa E.O. Chocolate Science and Technology. 1st ed. Willey Blackwell; York, UK: 2010. 275p

Glicerina V., Balestra F., Dalla Rosa M., Romani S. Microstructural and rheological characteristics of dark, milk and white chocolate. J. Food Eng. 2016;169:165–171. doi: 10.1016/j.jfoodeng.2015.08.011. DOI

Martinez-Inchausti A. Legal aspects of chocolate manufacture. In: Beckett S.T., editor. Industrial Chocolate Manufacture and Use. 4th ed. Wiley Online Library; Hoboken, NJ, USA: 2009. pp. 576–594. DOI

Dumarche A., Troplin P., Bernaert H., Lechevalier P., Beerens H., Landuyt A. Process for Producing Cocoa-Derived Material. EP2237677B1. European Patent. 2012 June 13;

Tuenter E., Sakavitsi M.E., Rivera-Mondragon A., Hermans N., Foubert K., Halabalaki M., Pieters L. Ruby chocolate: A study of its phytochemical composition and quantitative comparison with dark, milk and white chocolate. Food Chem. 2021;343:1–12. doi: 10.1016/j.foodchem.2020.128446. PubMed DOI

Montoya C.C., Valencia W.G., Sierra J.A., Penagos L. Enhanced pink-red hues in processed powders from unfermented cacao beans. LWT. 2021;138:110671. doi: 10.1016/j.lwt.2020.110671. DOI

Lillah A., Asghar I., Pasha G., Murtaza M.A. Improving heat stability along with quality of compound dark chocolate by adding optimized cocoa butter substitute (hydrogenated palm kernel stearin) emulsion. LWT-Food Sci. Technol. 2017;80:531–536. doi: 10.1016/j.lwt.2017.02.042. DOI

Żyżelewicz D., Budryn G., Oracz J., Antolak H., Kręgiel D., Kaczmarska M. The effect on bioactive components and characteristics of chocolate by functionalization with raw cocoa beans. Food Res. Int. 2018;113:234–244. doi: 10.1016/j.foodres.2018.07.017. PubMed DOI

Juszczak L., Witczak M., Fortuna T., Banys A. Rheological properties of commercial mustards. J. Food Eng. 2004;63:209–271. doi: 10.1016/j.jfoodeng.2003.07.002. DOI

Beckett S.T. The Science of Chocolate. 1st ed. Royal Society of Chemistry Paperbacks; London, UK: 2000. 175p

Balmforth N.J., Frigaard I.A., Ovarlez G. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics. Annu. Rev. Fluid Mech. 2014;46:121–146. doi: 10.1146/annurev-fluid-010313-141424. DOI

Tran P.D., Van Durme J., Van de Walle D., de Winne A., Delbaere C., de Clercq N., Dewettinck K. Quality attributes of dark chocolate produced from vietnamese cocoa liquors. J. Food Qual. 2016;39:311–322. doi: 10.1111/jfq.12200. DOI

Hinneh M., Van de Walle D., Haeck J., Abotsi E.E., De Winne A., Saputro A.D., Dewettinck K. Applicability of the melanger for chocolate refining and stephan mixer for conching as small-scale alternative chocolate production techniques. J. Food Eng. 2019;253:59–71. doi: 10.1016/j.jfoodeng.2019.02.016. DOI

Přidal A., Trávníček P., Kudělka J., Nedomová Š., Ondrušíková S., Trost D., Kumbár V. A rheological analysis of biomaterial behaviour as a tool to detect the dilution of heather honey. Materials. 2021;14:2472. doi: 10.3390/ma14102472. PubMed DOI PMC

Bergemann N., Heil M., Smith B., Juel A. From elastic deformation to flow in tempered chocolate. J. Rheol. 2018;62:1187–1195. doi: 10.1122/1.5038253. DOI

Kumbár V., Nedomová Š., Trnka J., Buchar J., Pytel R. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes. Poult. Sci. 2016;95:1693–1701. doi: 10.3382/ps/pew094. PubMed DOI

Lannes S.C.S., Medeiros M.L., Gioielli L.A. Rheological properties of cupuassu and cocoa fats. Grasas Y Aceites. 2004;55:115–121. doi: 10.3989/gya.2004.v55.i2.154. DOI

Fernandes V.A., Müller A.J., Sandoval A.J. Thermal, structural and rheological characteristics of dark chocolate with different compositions. J. Food Eng. 2013;116:97–108. doi: 10.1016/j.jfoodeng.2012.12.002. DOI

Hřivna L., Machálková L., Burešová I., Nedomová Š., Gregor T. Texture, color, and sensory changes occurring in chocolate bars with filling during storage. Food Sci. Nutr. 2021;9:4863–4873. doi: 10.1002/fsn3.2434. PubMed DOI PMC

de Jesus Silva G., Gonçalves B.R.F., de Jesus J.C., Vidigal M.C.T.R., Minim L.A., Ferreira S.O., Ferrão S.P.B. Study of the structural properties of goat′s milk chocolates with different concentrations of cocoa mass. J. Texture Stud. 2019;50:547–555. doi: 10.1111/jtxs.12463. PubMed DOI

Eduardo M.F., Correa De Mello K.G.P., Polakiewicz B., Da Silva Lannes S.C. Evaluation of chocolate milk beverage formulated with modified chitosan. J. Agric. Sci. Technol. 2014;16:1301–1312.

Sikora M., Adamczyk G., Krystyjan M. Thixotropy as a measure of liquid food producs. Food Sci. Technol. Qual. 2011;18:5–14. doi: 10.15193/zntj/2011/74/005-014. DOI

Servais C., Ranc H., Roberts I.D. Determination of chocolate viscosity. J. Texture Stud. 2003;34:467–497. doi: 10.1111/j.1745-4603.2003.tb01077.x. DOI

Vlaev S.D., Staykov P., Popov R. Pressure distribution at impeller blades of some radial flow impellers in saccharose and xanthan gum solutions: A CFD visualization approach. Food Bioprod. Process. 2004;82:13–20. doi: 10.1205/096030804322985272. DOI

Žitný R., Landfeld A., Skočilas J., Štancl J., Flegl V., Zachariášová M., Houška M. Hydraulic characteristic of collagen. Czech J. Food Sci. 2015;33:479–485. doi: 10.17221/62/2015-CJFS. DOI

Kumbár V., Strnková J., Nedomová Š., Buchar J. Fluid dynamics of liquid egg products. J. Biol. Phys. 2015;41:303–311. doi: 10.1007/s10867-015-9380-5. PubMed DOI PMC

Kumbár V., Polcar A., Votava J. Physical and mechanical properties of bioethanol and gasoline blends. Listy Cukrov. A Reparske. 2015;131:112–115.

Devakar M., Raje A. Modelling and analysis of the unsteady flow and heat transfer of immiscible micropolar and newtonian fluids through a pipe of circular cross section. J. Braz. Soc. Mech. Sci. Eng. 2018;40:1–18. doi: 10.1007/s40430-018-1233-2. DOI

Arosemena A.A., Andersson H.I., Solsvik J. Turbulent channel flow of generalized newtonian fluids at a low reynolds number. J. Fluid Mech. 2021;908:A43. doi: 10.1017/jfm.2020.903. DOI

Nedomová Š., Kumbár V., Pytel R., Buchar J. Mechanical properties of sugar beet root during storage. Int. Agrophys. 2017;31:507–513. doi: 10.1515/intag-2016-0081. DOI

Mehta D., Radhakrishnan A.K.T., van Lier J., Clemens F. A wall boundary condition for the simulation of a turbulent non-newtonian domestic slurry in pipes. Water. 2018;10:124. doi: 10.3390/w10020124. DOI

Baranovskii E.S. A novel 3D model for non-newtonian fluid flows in a pipe network. Math. Methods Appl. Sci. 2021;44:3827–3839. doi: 10.1002/mma.6989. DOI

Clauss J. Taming turbulent piping-system flow. HPAC Heat. Pip. AirCond. Eng. 2009;81:36–43.

Xue H., Fung Y.C. Persistence of asymmetry in nonaxisymmetric entry flow in a circular cylindrical tube and its relevance to arterial pulse wave diagnosis. J. Biomech. Eng. 1989;111:37–41. doi: 10.1115/1.3168337. PubMed DOI

Jirkovsky L., Boot L.M. Numerical tests of a new molecule-dependent momentum transport equation. Phys. A Stat. Mech. Appl. 2008;387:5012–5016. doi: 10.1016/j.physa.2008.05.006. DOI

Edomwonyi-Otu L.C. Distortion of velocity profiles of water flow with heavy molecular weight polymers. Defect Diffus. Forum. 2019;392:228–238. doi: 10.4028/www.scientific.net/DDF.392.228. DOI

Simpson M.M., Janna W.S. Newtonian and non-newtonian fluids: Velocity profiles, viscosity data, and laminar flow friction factor equations for flow in a circular duct; Proceedings of the ASME International Mechanical Engineering Congress and Exposition; Lake Buena Vista, FL, USA. 13–19 November 2009; pp. 173–180. DOI

Wiklund J., Stading M., Trägårdh C. Monitoring liquid displacement of model and industrial fluids in pipes by in-line ultrasonic rheometry. J. Food Eng. 2010;99:330–337. doi: 10.1016/j.jfoodeng.2010.03.011. DOI

Das B., Bishop J.J., Kim S., Meiselman H.J., Johnson P.C., Popel A.S. Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the casson model. Clin. Hemorheol. Microcirc. 2007;36:217–233. PubMed

Ardakani H.A., Mitsoulis E., Hatzikiriakos S.G. Capillary flow of milk chocolate. J. Non-Newton. Fluid Mech. 2014;210:56–65. doi: 10.1016/j.jnnfm.2014.06.001. DOI

Pegoraro P.R., Marangoni M., Gut J.A.W. Residence time distribution models derived from non-ideal laminar velocity profiles in tubes. Chem. Eng. Technol. 2012;35:1593–1603. doi: 10.1002/ceat.201200057. DOI

Song K., Al-Salaymeh A., Jovanovic J., Rauh C., Delgado A. Experimental in situ investigations of turbulence under high pressure. Ann. N. Y. Acad. Sci. 2010;1189:24–33. doi: 10.1111/j.1749-6632.2009.05183.x. PubMed DOI

Zelený P., Růžička V. The design of the 3D printer for use in gastronomy. Mod. Mach.(MM) Sci. J. 2017:1744–1747. doi: 10.17973/MMSJ.2017_02_2016187. DOI

Rando P., Ramaioli M. Food 3D printing: Effect of heat transfer on print stability of chocolate. J. Food Eng. 2021;294:110415. doi: 10.1016/j.jfoodeng.2020.110415. DOI

Walker J.H. Bulk chocolate handling. In: Beckett S.T., editor. Industrial Chocolate Manufacture and Use. 4th ed. Wiley Online Library; Hoboken, NJ, USA: 2009. pp. 247–260. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...