Effect of Loading Rate on Tensile Strength and Fracture Stress of Chocolate
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
GF22-00863K
Grantová Agentura České Republiky
AF-IGA-2020-TP006
Mendelova Univerzita v Brně
PubMed
40256897
PubMed Central
PMC12010318
DOI
10.1111/jtxs.70021
Knihovny.cz E-zdroje
- Klíčová slova
- Brazilian test, chocolate, fracture properties, loading rate, split Hopkinson pressure bar, tensile strength,
- MeSH
- čokoláda * analýza MeSH
- kakaovník * MeSH
- manipulace s potravinami metody MeSH
- mechanický stres * MeSH
- pevnost v tahu * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
The fracture properties of five types of chocolate (dark, extra dark, milk, white, and ruby) were investigated using an indirect tensile test known as the Brazilian test. Two different loading rates of 0.0017 m/s and around 12 m/s were used through the universal testing machine TIRATEST and split Hopkinson pressure bar (SHPB) technique. Results show that the tensile fracture stress increases with the loading rate. The sensitivity of the fracture stress at low-loading rates is lower than that at the high-loading rates. The obtained results can be used in industry for the correct processing of chocolate products and their transport. The presented methods can be also used to detect defects in chocolate products.
Department of Food Technology Mendel University in Brno Brno Czech Republic
Department of Technology and Automobile Transport Mendel University in Brno Brno Czech Republic
Institute of Thermomechanics Czech Academy of Science Prague Czech Republic
Zobrazit více v PubMed
Afoakwa, E. O. 2010. Chocolate Science and Technology. Willey‐Blackwell.
Afoakwa, E. O. , Paterson A., Fowler M., and Vieira J.. 2009. “Microstructure and Mechanical Properties Related to Particle Size Distribution and Composition in Dark Chocolate.” International Journal of Food Science & Technology 44, no. 1: 111–119. 10.1111/j.1365-2621.2007.01677.x. DOI
Beckett, S. T. 2008. The Science of Chocolate. 2nd ed, 240. Royal Society of Chemistry. 10.1039/9781847558053. DOI
Bikos, D. , Samaras G., Cann P., et al. 2021. “Effect of Micro‐Aeration on the Mechanical Behaviour of Chocolates and Implications for Oral Processing.” Food & Function 12, no. 11: 4864–4886. 10.1039/d1fo00045d. PubMed DOI
Bikos, D. , Samaras G., Cann P., et al. 2023. “Destructive and Non‐Destructive Mechanical Characterisation of Chocolate With Different Levels of Porosity Under Various Modes of Deformation.” Polymers and Biopolymers 58: 5104–5127. 10.1007/s10853-023-08324-7. DOI
Chen, J. 2009. “Food Oral Processing—A Review.” Food Hydrocolloids 23: 1–25. 10.1016/j.foodhyd.2007.11.013. DOI
Chen, W. , and Song B.. 2011. Split Hopkinson (Kolsky) Bar. Mechanical Engineering Series. Springer. 10.1007/978-1-4419-7982-7. DOI
Chen, Y. Y. , Zhou X. Y., Qian S. H., and Yu J. H.. 2022. “Effect of Sugar and Milk Powder Addition on the Mechanical Properties and Texture of Chocolate.” Journal of Oleo Science 71, no. 11: 1577–1589. 10.5650/jos.ess22148. PubMed DOI
Dai, F. , Huang S., Xia K., and Tan Z.. 2010. “Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar.” Rock Mechanics and Rock Engineering 43, no. 6: 657–666. 10.1007/s00603-010-0091-8. DOI
Kim, E. H. J. , Corrigan V. K., Wilson A. J., Waters I. R., Hedderley D. I., and Morgenstern M. P.. 2012. “Fundamental Fracture Properties Associated With Sensory Hardness of Brittle Solid Foods.” Journal of Texture Studies 43, no. 1: 49–62. 10.1111/j.1745-4603.2011.00316.x. DOI
Kumbár, V. , Kouřilová V., Dufková R., Votava J., and Hřivna L.. 2021. “Rheological and Pipe Flow Properties of Chocolate Masses at Different Temperatures.” Food 10, no. 11: 2519. 10.3390/foods10112519. PubMed DOI PMC
Kumbár, V. , Trnka J., Kouřilová V., et al. 2024. “Stress Wave Attenuation in Chocolate.” Journal of Food Engineering 347: 112037. 10.1016/j.jfoodeng.2024.112037. DOI
Kumbár, V. , Trnka J., Kouřilová V., et al. 2023. “High Strain Rate Behaviour of Different Types of Chocolate.” Journal of Food Engineering 346: 111438. 10.1016/j.jfoodeng.2023.111438. DOI
Lapčíková, B. , Lapčík L., Salek R., Valenta T., and Lorencová E.. 2022. “Physical Characterization of the Milk Chocolate Using Whey Powder.” LWT—Food Science and Technology 154: 112669. 10.1016/j.lwt.2021.112669. DOI
Li, D. , and Wong L. N. Y.. 2013. “The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights.” Rock Mechanics and Rock Engineering 46, no. 2: 269–287. 10.1007/s00603-012-0257-7. DOI
Liang, B. , and Hartel R. W.. 2004. “Effects of Milk Powders in Milk Chocolate.” Journal of Dairy Science 87, no. 1: 20–31. 10.3168/jds.S0022-0302(04)73137-9. PubMed DOI
Nedomová, Š. , Trnka J., and Buchar J.. 2013. “Tensile Strength of the Dark Chocolate.” Acta Technologica Agriculturae 16, no. 3: 71–73. 10.2478/ata-2013-0018. DOI
Nedomová, Š. , Trnka J., Kouřilová V., et al. 2023. “Acoustic Properties and Low Strain Rate Behavior of Different Types of Chocolate.” International Journal of Food Properties 26, no. 1: 842–854. 10.1080/10942912.2023.2189087. DOI
Rahner, C. , Al‐Qureshi H. A., Stainer D., Hotza D., and Fredel M. C.. 2014. “Numerical Evaluation of a Light‐Gas Gun Facility for Impact Test.” Modelling and Simulation in Engineering 2014: 501434. 10.1155/2014/501434. DOI
Sheikh, M. Z. , Wang Z., Du B., et al. 2019. “Static and Dynamic Brazilian Disk Tests for Mechanical Characterization of Annealed and Chemically Strengthened Glass.” Ceramics International 45, no. 6: 7931–7944. 10.1016/j.ceramint.2019.01.106. DOI
Tremeac, B. , Hayert M., and Le‐Bail A.. 2008. “Mechanical Properties of Tylose Gel and Chocolate in the Freezing Range.” International Journal of Refrigeration 31, no. 5: 867–873. 10.1016/j.ijrefrig.2007.10.005. DOI
Wang, J. , and Tao J.. 2022. “Determination of Tensile Strength at Crack Initiation in Dynamic Brazilian Disc Test for Concrete‐Like Materials.” Buildings 12, no. 6: 797. 10.3390/buildings12060797. DOI
Yu, R. C. , Ruiz G., and Pandolfi A.. 2004. “Numerical Investigation of the Dynamic Behaviour of Advanced Ceramics.” Engineering Fracture Mechanics 71, no. 4–6: 897–911. 10.1016/S0013-7944(03)00016-X. DOI
Zhao, H. , Li B., and James B. J.. 2018. “Structure‐Fracture Relationships in Chocolate Systems.” LWT—Food Science and Technology 96: 281–287. 10.1016/j.lwt.2018.05.045. DOI