Effect of Loading Rate on Tensile Strength and Fracture Stress of Chocolate

. 2025 Mar ; 56 (2) : e70021.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40256897

Grantová podpora
GF22-00863K Grantová Agentura České Republiky
AF-IGA-2020-TP006 Mendelova Univerzita v Brně

The fracture properties of five types of chocolate (dark, extra dark, milk, white, and ruby) were investigated using an indirect tensile test known as the Brazilian test. Two different loading rates of 0.0017 m/s and around 12 m/s were used through the universal testing machine TIRATEST and split Hopkinson pressure bar (SHPB) technique. Results show that the tensile fracture stress increases with the loading rate. The sensitivity of the fracture stress at low-loading rates is lower than that at the high-loading rates. The obtained results can be used in industry for the correct processing of chocolate products and their transport. The presented methods can be also used to detect defects in chocolate products.

Zobrazit více v PubMed

Afoakwa, E. O. 2010. Chocolate Science and Technology. Willey‐Blackwell.

Afoakwa, E. O. , Paterson A., Fowler M., and Vieira J.. 2009. “Microstructure and Mechanical Properties Related to Particle Size Distribution and Composition in Dark Chocolate.” International Journal of Food Science & Technology 44, no. 1: 111–119. 10.1111/j.1365-2621.2007.01677.x. DOI

Beckett, S. T. 2008. The Science of Chocolate. 2nd ed, 240. Royal Society of Chemistry. 10.1039/9781847558053. DOI

Bikos, D. , Samaras G., Cann P., et al. 2021. “Effect of Micro‐Aeration on the Mechanical Behaviour of Chocolates and Implications for Oral Processing.” Food & Function 12, no. 11: 4864–4886. 10.1039/d1fo00045d. PubMed DOI

Bikos, D. , Samaras G., Cann P., et al. 2023. “Destructive and Non‐Destructive Mechanical Characterisation of Chocolate With Different Levels of Porosity Under Various Modes of Deformation.” Polymers and Biopolymers 58: 5104–5127. 10.1007/s10853-023-08324-7. DOI

Chen, J. 2009. “Food Oral Processing—A Review.” Food Hydrocolloids 23: 1–25. 10.1016/j.foodhyd.2007.11.013. DOI

Chen, W. , and Song B.. 2011. Split Hopkinson (Kolsky) Bar. Mechanical Engineering Series. Springer. 10.1007/978-1-4419-7982-7. DOI

Chen, Y. Y. , Zhou X. Y., Qian S. H., and Yu J. H.. 2022. “Effect of Sugar and Milk Powder Addition on the Mechanical Properties and Texture of Chocolate.” Journal of Oleo Science 71, no. 11: 1577–1589. 10.5650/jos.ess22148. PubMed DOI

Dai, F. , Huang S., Xia K., and Tan Z.. 2010. “Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar.” Rock Mechanics and Rock Engineering 43, no. 6: 657–666. 10.1007/s00603-010-0091-8. DOI

Kim, E. H. J. , Corrigan V. K., Wilson A. J., Waters I. R., Hedderley D. I., and Morgenstern M. P.. 2012. “Fundamental Fracture Properties Associated With Sensory Hardness of Brittle Solid Foods.” Journal of Texture Studies 43, no. 1: 49–62. 10.1111/j.1745-4603.2011.00316.x. DOI

Kumbár, V. , Kouřilová V., Dufková R., Votava J., and Hřivna L.. 2021. “Rheological and Pipe Flow Properties of Chocolate Masses at Different Temperatures.” Food 10, no. 11: 2519. 10.3390/foods10112519. PubMed DOI PMC

Kumbár, V. , Trnka J., Kouřilová V., et al. 2024. “Stress Wave Attenuation in Chocolate.” Journal of Food Engineering 347: 112037. 10.1016/j.jfoodeng.2024.112037. DOI

Kumbár, V. , Trnka J., Kouřilová V., et al. 2023. “High Strain Rate Behaviour of Different Types of Chocolate.” Journal of Food Engineering 346: 111438. 10.1016/j.jfoodeng.2023.111438. DOI

Lapčíková, B. , Lapčík L., Salek R., Valenta T., and Lorencová E.. 2022. “Physical Characterization of the Milk Chocolate Using Whey Powder.” LWT—Food Science and Technology 154: 112669. 10.1016/j.lwt.2021.112669. DOI

Li, D. , and Wong L. N. Y.. 2013. “The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights.” Rock Mechanics and Rock Engineering 46, no. 2: 269–287. 10.1007/s00603-012-0257-7. DOI

Liang, B. , and Hartel R. W.. 2004. “Effects of Milk Powders in Milk Chocolate.” Journal of Dairy Science 87, no. 1: 20–31. 10.3168/jds.S0022-0302(04)73137-9. PubMed DOI

Nedomová, Š. , Trnka J., and Buchar J.. 2013. “Tensile Strength of the Dark Chocolate.” Acta Technologica Agriculturae 16, no. 3: 71–73. 10.2478/ata-2013-0018. DOI

Nedomová, Š. , Trnka J., Kouřilová V., et al. 2023. “Acoustic Properties and Low Strain Rate Behavior of Different Types of Chocolate.” International Journal of Food Properties 26, no. 1: 842–854. 10.1080/10942912.2023.2189087. DOI

Rahner, C. , Al‐Qureshi H. A., Stainer D., Hotza D., and Fredel M. C.. 2014. “Numerical Evaluation of a Light‐Gas Gun Facility for Impact Test.” Modelling and Simulation in Engineering 2014: 501434. 10.1155/2014/501434. DOI

Sheikh, M. Z. , Wang Z., Du B., et al. 2019. “Static and Dynamic Brazilian Disk Tests for Mechanical Characterization of Annealed and Chemically Strengthened Glass.” Ceramics International 45, no. 6: 7931–7944. 10.1016/j.ceramint.2019.01.106. DOI

Tremeac, B. , Hayert M., and Le‐Bail A.. 2008. “Mechanical Properties of Tylose Gel and Chocolate in the Freezing Range.” International Journal of Refrigeration 31, no. 5: 867–873. 10.1016/j.ijrefrig.2007.10.005. DOI

Wang, J. , and Tao J.. 2022. “Determination of Tensile Strength at Crack Initiation in Dynamic Brazilian Disc Test for Concrete‐Like Materials.” Buildings 12, no. 6: 797. 10.3390/buildings12060797. DOI

Yu, R. C. , Ruiz G., and Pandolfi A.. 2004. “Numerical Investigation of the Dynamic Behaviour of Advanced Ceramics.” Engineering Fracture Mechanics 71, no. 4–6: 897–911. 10.1016/S0013-7944(03)00016-X. DOI

Zhao, H. , Li B., and James B. J.. 2018. “Structure‐Fracture Relationships in Chocolate Systems.” LWT—Food Science and Technology 96: 281–287. 10.1016/j.lwt.2018.05.045. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...