Chocolate Ganaches: Formulation, Processing and Stability in View of the New Production Trends
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
IGA/FT/2024/005
Tomas Bata University in Zlín
IGA PrF-2024-001
Palacký University Olomouc
PubMed
39200471
PubMed Central
PMC11353510
DOI
10.3390/foods13162543
PII: foods13162543
Knihovny.cz E-resources
- Keywords
- chocolate, emulsion, ganache, ganache processing, hydrocolloids, oleogels, pralines, recipe formulation,
- Publication type
- Journal Article MeSH
- Review MeSH
This review aims at the current trends in chocolate ganache production and recipe formulation. Ganache is a blend of chocolate, sugars, dairy, and other ingredients commonly used to fill pralines, pastries, etc. In spite of ganache's popularity in the food industry, a comprehensive review focused on the application of functional substances and ganache processing has not been discussed in the scientific literature. This review addresses the new ways of applying special ingredients, such as vegetable fats and seeds, flavor infusions, oleogels, hemp products, etc., which can be added to the ganache matrix to achieve desirable properties. In particular, the application of sterols and sterol esters as functional substances of oleogels seems to be a very promising method, enhancing the ganache fat profile. The elevated caloric content that is characteristic of ganache can be substantially attenuated through the application of hydrocolloids and/or fruit-based components, thereby offering the potential for caloric reduction without compromising on taste. The various alterations to ganache formulations by the application of natural substances offer a large base for the development of novel ganache variants and relevant food products.
See more in PubMed
Izzreen I., Fisal A., Siti Norizah M.N. Effect of Hydrocolloids at Different Concentrations on the Physicochemical Properties and Particle Size Distribution of White Chocolate Ganache. Malays. Cocoa J. 2022;14:173–183.
McGill J., Hartel R.W. Investigation into the Microstructure, Texture and Rheological Properties of Chocolate Ganache. J. Food Sci. 2018;83:689–699. doi: 10.1111/1750-3841.14053. PubMed DOI
Hermé P. In: Macarons. 2nd ed. Martiniere B.L., editor. Coderbugle, CAR; Manila, Philippines: 2018. pp. 1–264.
Palczak J., Giboreau A., Rogeaux M., Delarue J. How do Pastry and Culinary Chefs Design Sensory Complexity? Int. J. Gastron. Food Sci. 2020;19:100182. doi: 10.1016/j.ijgfs.2019.100182. DOI
Rigg A. Macarons: Chic and Delicious French Treats. 2nd ed. Ryland Peters & Small; London, UK: 2014. pp. 1–64.
McGill J., Hartel R., Hofberger R. The Art and Science of Ganache. Manuf. Confect. 2018;138:11–21.
Neuwirth V., Lapčíková B., Lapčík L., Valenta T., Míšková Z. Effect of Technological Processing and Recipe Formulation on the Physico-Chemical Properties of Ganaches and Chocolate Pralines. J. Food Eng. 2024;378:112124. doi: 10.1016/j.jfoodeng.2024.112124. DOI
Merachli F., Devienne J., Delmas R., Plawinski L., Leal-Calderon F., Delample M. Impact of Cocoa Fibers on the Stability and Rheological Properties of Chocolate Ganaches. LWT. 2021;139:110505. doi: 10.1016/j.lwt.2020.110505. DOI
Goralchuk A., Gubsky S., Omel’chenko S., Riabets O., Grinchenko O., Fedak N., Kotlyar O., Cheremska T., Skrynnik V. Impact of Added Food Ingredients on Foaming and Texture of the Whipped Toppings: A Chemometric Analysis. Eur. Food Res. Technol. 2020;246:1955–1970. doi: 10.1007/s00217-020-03547-3. DOI
Park M.A., Lee K.J., Kim S.J., Kim M.R. Quality Characteristics and Antioxidant Activities of Ganache Added with Porphyra Tenera Powder. Korean J. Food Preserv. 2020;27:333–345. doi: 10.11002/kjfp.2020.27.3.333. DOI
Cubides Y.T.P. Developing Milk Protein Based Structure for New Dairy Products. 1st ed. North Carolina State University; Raleigh, NC, USA: 2014. pp. 1–169.
Yilmaz İ., Doğan G. Product Development and Sensory Evaluation of Dark Chocolate Filled with Chestnut Honey. Black Sea J. Agric. 2023;6:452–458. doi: 10.47115/bsagriculture.1293710. DOI
Popov-Raljić J.V., Laličić-Petronijević J.G., Georgijev A.S., Popov V.S., Mladenović M.A. Sensory Evaluation of Pralines Containing Different Honey Products. Sensors. 2010;10:7913–7933. doi: 10.3390/s100907913. PubMed DOI PMC
Clark C. Chocolate. In: Miller J.P., Van Buiten C., editors. Superfoods. Cultural and Scientific Perspectives. Springer International Publishing; Cham, Switzerland: 2022. pp. 37–50. DOI
Norton J.E., Fryer P.J. Investigation of Changes in Formulation and Processing Parameters on the Physical Properties of Cocoa Butter Emulsions. J. Food Eng. 2012;113:329–336. doi: 10.1016/j.jfoodeng.2012.05.025. DOI
Norton J.E., Fryer P.J., Parkinson J., Cox P.W. Development and Characterisation of Tempered Cocoa Butter Emulsions Containing Up to 60% Water. J. Food Eng. 2009;95:172–178. doi: 10.1016/j.jfoodeng.2009.04.026. DOI
Greweling P.P. Chocolates and Confections: Formula, Theory, and Technique for the Artisan Confectioner. 2nd ed. Wiley, The Culinary Institute of America (CIA); Hyde Park, NY, USA: 2012. pp. 1–544.
Saglio A., Bourgeay J., Socrate R., Canette A., Cuvelier G. Understanding the Structure of Ganache: Link between Composition and Texture. Int. J. Gastron. Food Sci. 2018;13:29–37. doi: 10.1016/j.ijgfs.2018.05.003. DOI
Kim S.M., Woo J.H., Kim H.W., Park H.J. Formulation and Evaluation of Cold-Extruded Chocolate Ganache for Three-Dimensional Food Printing. J. Food Eng. 2022;314:110785. doi: 10.1016/j.jfoodeng.2021.110785. DOI
Herrero D., Etienne G. Pâtisserie, Les Clés De La Réussite—Coffret En 2 Volumes. 1st ed. Délicéo; Bordeaux, France: 2009. pp. 1–1052.
Leal-Calderon F., Thivilliers F., Schmitt V. Structured Emulsions. Curr. Opin. Colloid Interface Sci. 2007;12:206–212. doi: 10.1016/j.cocis.2007.07.003. DOI
Wybauw J. Fine Chocolates, Great Experience 3: Extending Shelf Life. 3rd ed. Lannoo Publishers; Bucharest, Romania: 2010.
Greweling P. The Crystallization of Ganache. Manuf. Confect. 2007;87:53–56.
Peyronel F., Pink D.A. Using USAXS to Predict the Under-Tempered Chocolate Microstructure. Food Res. Int. 2021;143:110224. doi: 10.1016/j.foodres.2021.110224. PubMed DOI
Dias J., Alvarenga N., Sousa I. Effect of Hydrocolloids on Low-Fat Chocolate Fillings. J. Food Sci. Technol. 2015;52:7209–7217. doi: 10.1007/s13197-015-1841-0. DOI
Dias J., Alvarenga N., Sousa I. Shelf-Life of Reduced-Fat White Chocolate Fillings using Iota-Carrageenan. Emir. J. Food Agric. 2017;29:893–898. doi: 10.9755/ejfa.2017.v29.i11.1498. DOI
Indiarto R., Situmorang A.K.N., Harunaningtyas A., Arifin H.R., Subroto E., Herawati E.R.N., Djali M., Mahani, Muhammad D.R.A. Reformulation of White Chocolate with Soy- and Coconut-Based Vegetable Ingredients Incorporating Encapsulated Cinnamon Extract: Investigation of Physicochemical, Antioxidant, and Sensory Properties. Int. J. Food Prop. 2024;27:704–728. doi: 10.1080/10942912.2024.2355904. DOI
Kim Y.J., Kang S., Kim D.H., Kim Y.J., Kim W.R., Kim Y.M., Park S. Calorie Reduction of Chocolate Ganache through Substitution of Whipped Cream. J. Ethn. Foods. 2017;4:51–57. doi: 10.1016/j.jef.2017.02.002. DOI
Gonçalves E.V., Caetano Da S., Lannes S. Chocolate Rheology. Ciênc. Tecnol. Aliment. 2010;30:845–851. doi: 10.1590/S0101-20612010000400002. DOI
Glicerina V., Balestra F., Rosa M.D., Romani S. Microstructural and Rheological Properties of White Chocolate during Processing. Food Bioprocess Technol. 2014;8:770. doi: 10.1007/s11947-014-1443-2. DOI
Kumbár V., Kouřilová V., Dufková R., Votava J., Hřivna L. Rheological and Pipe Flow Properties of Chocolate Masses at Different Temperatures. Foods. 2021;10:2519. doi: 10.3390/foods10112519. PubMed DOI PMC
Cavella S., Miele N.A., Fidaleo M., Borriello A., Masi P. Evolution of Particle Size Distribution, Flow Behaviour and Stability during Mill Ball Refining of a White Chocolate Flavouring Paste. LWT. 2020;132:109910. doi: 10.1016/j.lwt.2020.109910. DOI
Neuwirth V. Master’s Thesis. Tomas Bata University in Zlin; Zlin, Czech Republic: 2023. Effect of the Processing and Composition of Chocolate Pralines’ Fillings on their Final Quality.
Costa C., Medronho B., Filipe A., Mira I., Lindman B., Edlund H., Norgren M. Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers. 2019;11:1570. doi: 10.3390/polym11101570. PubMed DOI PMC
Galanakis C.M. Food Structure and Functionality. 1st ed. Academic Press; Cambridge, MA, USA: 2021. DOI
Bai L., Liu F., Xu X., Huan S., Gu J., McClements D.J. Impact of Polysaccharide Molecular Characteristics on Viscosity Enhancement and Depletion Flocculation. J. Food Eng. 2017;207:35–45. doi: 10.1016/j.jfoodeng.2017.03.021. DOI
Dias J., Coelho P., Alvarenga N.B., Duarte R.V., Saraiva J.A. Evaluation of the Impact of High Pressure on the Storage of Filled Traditional Chocolates. Innov. Food Sci. Emerg. Technol. 2018;45:36–41. doi: 10.1016/j.ifset.2017.08.019. DOI
Seçuk B., Seçím Y. Development of Chili Pepper Ganache Filled Chocolate in Artisan Chocolate Production, Determination of Sensory and Physicochemical Characteristics. Food Sci. Technol. 2022;42:e01721. doi: 10.1590/fst.01721. DOI
Izzreen I., Ly S.K., Khaironi J., Fisal A., Seng N.S.S., Ghani M.A. Physicochemical, Total Phenolic Content, Antioxidant Activity, and Sensory Acceptability of Milk and Dark Chocolates Filled with Sacha Inchi Ganache. Malays. Cocoa J. 2023;15:36.
Beal K. Considerations in the Addition of Cannabis to Chocolate. Curr. Opin. Food Sci. 2019;28:14–17. doi: 10.1016/j.cofs.2019.02.007. DOI
Rupasinghe H.P.V., Davis A., Kumar S.K., Murray B., Zheljazkov V.D. Industrial Hemp (Cannabis sativa Subsp. Sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules. 2020;25:4078. doi: 10.3390/molecules25184078. PubMed DOI PMC
Steinbach W. Hemp. No. DE19746830. Pralines. Patent. 1999 August 12;
Bartončíková M., Lapčíková B., Lapčík L., Valenta T. Hemp-Derived CBD used in Food and Food Supplements. Molecules. 2023;28:8047. doi: 10.3390/molecules28248047. PubMed DOI PMC
Scharfe M., Flöter E. Oleogelation: From Scientific Feasibility to Applicability in Food Products. Eur. J. Lipid Sci. Technol. 2020;122:2000213. doi: 10.1002/ejlt.202000213. DOI
Bot A., Flöter E. Chapter 2—Edible Oil Oleogels Based on Self-assembled β-Sitosterol+γ-Oryzanol Tubules. In: Marangoni A.G., Garti N., editors. Edible Oleogels. 2nd ed. AOCS Press; Champaign, IL, USA: 2018. pp. 31–63. DOI
Sun P., Xia B., Ni Z., Wang Y., Elam E., Thakur K., Ma Y., Wei Z. Characterization of Functional Chocolate Formulated using Oleogels Derived from Β-Sitosterol with Γ-Oryzanol/Lecithin/Stearic Acid. Food Chem. 2021;360:130017. doi: 10.1016/j.foodchem.2021.130017. PubMed DOI
Matheson A.B., Koutsos V., Dalkas G., Euston S., Clegg P. Microstructure of Β-Sitosterol:Γ-Oryzanol Edible Organogels. Langmuir. 2017;33:4537–4542. doi: 10.1021/acs.langmuir.7b00040. PubMed DOI
Pinto T.C., Martins A.J., Pastrana L., Pereira M.C., Cerqueira M.A. Water-in-Oleogel Emulsion Based on Γ-Oryzanol and Phytosterol Mixtures: Challenges and its Potential use for the Delivery of Bioactives. J. Am. Oil Chem. Soc. 2022;99:1045–1053. doi: 10.1002/aocs.12636. DOI
Wendt A., Abraham K., Wernecke C., Pfeiffer J., Flöter E. Application of Β-Sitosterol + Γ-Oryzanol-Structured Organogel as Migration Barrier in Filled Chocolate Products. J. Am. Oil Chem. Soc. 2017;94:1131–1140. doi: 10.1007/s11746-017-3024-9. DOI
Fernandes Almeida R., Aguiar Borges L., Torres da Silva T., Serafim Timóteo dos Santos N., Gianasi F., Augusto Caldas Batista E., Efraim P. Chocolates, Compounds and Spreads: A Review on the use of Oleogels, Hydrogels and Hybrid Gels to Reduce Saturated Fat Content. Food Res. Int. 2024;178:113986. doi: 10.1016/j.foodres.2024.113986. PubMed DOI
Balasubramaniam V.M., Farkas D., Turek E.J. Preserving Foods through High-Pressure Processing. Food Technol. Mag. 2008;62:33–38.
Panda A., Coelho P., Alvarenga N.B., Silva J.L., Lampreia C., Santos M.T., Pinto C.A., Amaral R.A., Saraiva J.A., Dias J. Effect of High Pressure on the Properties of Chocolate Fillings during Long-Term Storage. Foods. 2022;11:970. doi: 10.3390/foods11070970. PubMed DOI PMC
Nopens I., Foubert I., De Graef V., Van Laere D., Dewettinck K., Vanrolleghem P. Automated Image Analysis Tool for Migration Fat Bloom Evaluation of Chocolate Coated Food Products. LWT. 2008;41:1884–1891. doi: 10.1016/j.lwt.2008.01.008. DOI
Briones V., Aguilera J.M., Brown C. Effect of Surface Topography on Color and Gloss of Chocolate Samples. J. Food Eng. 2006;77:776–783. doi: 10.1016/j.jfoodeng.2005.08.004. DOI
Subramaniam P.J. Shelf-life prediction and testing. In: Talbot G., editor. Science and Technology of Enrobed and Filled Chocolate, Confectionery and Bakery Products. Woodhead Publishing Ltd.; Cambridge, UK: 2009. pp. 233–254.
Tan T.Y.C., Lim X.Y., Yeo J.H.H., Lee S.W.H., Lai N.M. The Health Effects of Chocolate and Cocoa: A Systematic Review. Nutrients. 2021;13:2909. doi: 10.3390/nu13092909. PubMed DOI PMC
Dahlenborg H., Millqvist-Fureby A., Bergenståhl B. Effect of Shell Microstructure on Oil Migration and Fat Bloom Development in Model Pralines. Food Struct. 2015;5:51–65. doi: 10.1016/j.foostr.2015.06.002. DOI
Svanberg L., Ahrné L., Lorén N., Windhab E. Effect of Pre-Crystallization Process and Solid Particle Addition on Cocoa Butter Crystallization and Resulting Microstructure in Chocolate Model Systems. Procedia Food Sci. 2011;1:1910–1917. doi: 10.1016/j.profoo.2011.09.281. DOI
Yu D., Xue Z., Mu T. Eutectics: Formation, Properties, and Applications. Chem. Soc. Rev. 2021;50:8596–8638. doi: 10.1039/D1CS00404B. PubMed DOI
Svanberg L., Lorén N., Ahrné L. Chocolate Swelling during Storage Caused by Fat or Moisture Migration. J. Food Sci. 2012;77:E328–E334. doi: 10.1111/j.1750-3841.2012.02945.x. PubMed DOI
Popov-Raljić J.V., Laličić-Petronijević J.G. Sensory Properties and Color Measurements of Dietary Chocolates with Different Compositions during Storage for Up to 360 Days. Sensors. 2009;9:1996–2016. doi: 10.3390/s90301996. PubMed DOI PMC
Marvig C.L., Kristiansen R.M., Madsen M.G., Nielsen D.S. Identification and Characterisation of Organisms Associated with Chocolate Pralines and Sugar Syrups used for their Production. Int. J. Food Microbiol. 2014;185:167–176. doi: 10.1016/j.ijfoodmicro.2014.05.017. PubMed DOI
Slettengren K. Master’s Thesis. Chalmers University of Technology; Göteborg, Sweden: 2010. Crack Formation in Chocolate Pralines.
Smith K.W., Cain F.W., Talbot G. Effect of Nut Oil Migration on Polymorphic Transformation in a Model System. Food Chem. 2007;102:656–663. doi: 10.1016/j.foodchem.2006.05.045. DOI
Clercq N.D., Depypere F., Delbaere C., Nopens I., Bernaert H., Dewettinck K. Influence of Cocoa Butter Diacylglycerols on Migration Induced Fat Bloom in Filled Chocolates. Eur. J. Lipid Sci. Technol. 2014;116:1388–1399. doi: 10.1002/ejlt.201300476. DOI
Kinta Y., Hatta T. Composition and Structure of Fat Bloom in Untempered Chocolate. J. Food Sci. 2005;70:450–452. doi: 10.1111/j.1365-2621.2005.tb11491.x. DOI
Kinta Y., Hatta T. Composition, Structure, and Color of Fat Bloom due to the Partial Liquefaction of Fat in Dark Chocolate. J. Am. Oil Chem. Soc. 2007;84:107–115. doi: 10.1007/s11746-006-1013-5. DOI
Timms R.E. Oil and Fat Interactions. Manuf. Confect. 2002;82:50–64.
Ziegler G.R., Shetty A., Anantheswaran R.C. Nut Oil Migration through Chocolate. Manuf. Confect. 2004;84:118–126.
Depypere F., De Clercq N., Segers M., Lewille B., Dewettinck K. Triacylglycerol Migration and Bloom in Filled Chocolates: Effects of Low-Temperature Storage. Eur. J. Lipid Sci. Technol. 2009;111:280–289. doi: 10.1002/ejlt.200800179. DOI
Tietz R.A., Hartel R.W. Effects of Minor Lipids on Crystallization of Milk Fat-Cocoa Butter Blends and Bloom Formation in Chocolate. J. Am. Oil Chem. Soc. 2000;77:763–771. doi: 10.1007/s11746-000-0122-5. DOI
Palomino Camargo C.E. Chapter II. Microbiological and Physicochemical Factors that Affect the Safety and Quality of Chocolate. In: Sira E.E.P., editor. Chocolate: Cocoa Byproducts Technology, Rheology, Styling, and Nutrition. 1st ed. Nova Science Publishers; Hauppauge, NY, USA: 2015. pp. 49–75.
De Clercq N., Van Coillie E., Van Pamel E., De Meulenaer B., Devlieghere F., Vlaemynck G. Detection and Identification of Xerophilic Fungi in Belgian Chocolate Confectionery Factories. Food Microbiol. 2015;46:322–328. doi: 10.1016/j.fm.2014.08.012. PubMed DOI
do Nascimento M.d.S., Brum D.M., Pena P.O., Berto M.I., Efraim P. Inactivation of Salmonella during Cocoa Roasting and Chocolate Conching. Int. J. Food Microbiol. 2012;159:225–229. doi: 10.1016/j.ijfoodmicro.2012.08.017. PubMed DOI
Miquelim J.N., Alcântara M.R., Lannes S.C.d.S. Stability of Fruit Bases and Chocolate Fillings. Food Sci. Technol. 2011;31:270–276. doi: 10.1590/S0101-20612011000100041. DOI
Van der Veken E. Balancing Technological Sugars in Ganaches: Introduction to the Use of Technological Sugars in Ganaches. Arcane Chocolates; Dublin, Ireland: 2019.
Callebaut Chocolate Academy; Wieze, Belgium: 2024. [(accessed on 18 July 2024)]. Milk Chocolate Ganache for Moulded Pralines. Available online: https://www.callebaut.com/en/chocolate-recipe/1421/milk-chocolate-ganache-moulded-pralines.
Alessandro Del Nobile M., Conte A. Secondary Shelf Life of Foods: State of the Art and Future Perspective. Food Eng. Rev. 2023;15:748–762. doi: 10.1007/s12393-023-09360-4. DOI
Is Ganache Shelf Stable? The Importance of Chocolate Shelf Life. Hill Country Chocolate; Fredericksburg, TX, USA: 2024.
Nabi B.G., Mukhtar K., Arshad R.N., Radicetti E., Tedeschi P., Shahbaz M.U., Walayat N., Nawaz A., Inam-Ur-Raheem M., Aadil R.M. High-Pressure Processing for Sustainable Food Supply. Sustainability. 2021;13:13908. doi: 10.3390/su132413908. DOI
Sehrawat R., Kaur B.P., Nema P.K., Tewari S., Kumar L. Microbial Inactivation by High Pressure Processing: Principle, Mechanism and Factors Responsible. Food Sci. Biotechnol. 2021;30:19–35. doi: 10.1007/s10068-020-00831-6. PubMed DOI PMC