Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-00121S and 20-00058S
Czech Science Foundation
1160120
Charles University
RVO:67985823
Czech Academy of Sciences
PubMed
34948191
PubMed Central
PMC8705584
DOI
10.3390/ijms222413395
PII: ijms222413395
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3, ASK1, MAP kinase, kinase, phosphorylation, protein–protein interaction,
- MeSH
- apoptóza fyziologie MeSH
- fosforylace MeSH
- JNK mitogenem aktivované proteinkinasy metabolismus MeSH
- lidé MeSH
- MAP kinasa-kinasa-kinasa 5 genetika metabolismus fyziologie ultrastruktura MeSH
- MAP kinasový signální systém MeSH
- MAP kinasy kinas (kinas) genetika metabolismus MeSH
- mapy interakcí proteinů genetika fyziologie MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- proteiny 14-3-3 metabolismus MeSH
- proteiny regulující apoptózu metabolismus MeSH
- signální transdukce účinky léků MeSH
- stres endoplazmatického retikula MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- JNK mitogenem aktivované proteinkinasy MeSH
- MAP kinasa-kinasa-kinasa 5 MeSH
- MAP kinasy kinas (kinas) MeSH
- MAP3K5 protein, human MeSH Prohlížeč
- mitogenem aktivované proteinkinasy p38 MeSH
- proteiny 14-3-3 MeSH
- proteiny regulující apoptózu MeSH
Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer's, Parkinson's and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.
Zobrazit více v PubMed
Ichijo H., Nishida E., Irie K., ten Dijke P., Saitoh M., Moriguchi T., Takagi M., Matsumoto K., Miyazono K., Gotoh Y. Induction of Apoptosis by ASK1, a Mammalian MAPKKK That Activates SAPK/JNK and p38 Signaling Pathways. Science. 1997;275:90–94. doi: 10.1126/science.275.5296.90. PubMed DOI
Shiizaki S., Naguro I., Ichijo H. Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling. Adv. Biol. Regul. 2012;53:135–144. doi: 10.1016/j.jbior.2012.09.006. PubMed DOI
Nishida T., Hattori K., Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv. Biol. Regul. 2017;66:2–22. doi: 10.1016/j.jbior.2017.05.004. PubMed DOI
Sakauchi C., Wakatsuki H., Ichijo H., Hattori K. Pleiotropic properties of ASK1. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2016;1861:3030–3038. doi: 10.1016/j.bbagen.2016.09.028. PubMed DOI
Wang X.S., Diener K., Tan T.-H., Yao Z. MAPKKK6, a Novel Mitogen-Activated Protein Kinase Kinase Kinase, That Associates with MAPKKK5. Biochem. Biophys. Res. Commun. 1998;253:33–37. doi: 10.1006/bbrc.1998.9749. PubMed DOI
Takeda K., Shimozono R., Noguchi T., Umeda T., Morimoto Y., Naguro I., Tobiume K., Saitoh M., Matsuzawa A., Ichijo H. Apoptosis Signal-regulating Kinase (ASK) 2 Functions as a Mitogen-activated Protein Kinase Kinase Kinase in a Heteromeric Complex with ASK1. J. Biol. Chem. 2007;282:7522–7531. doi: 10.1074/jbc.M607177200. PubMed DOI
Kaji T., Yoshida S., Kawai K., Fuchigami Y., Watanabe W., Kubodera H., Kishimoto T. ASK3, a novel member of the apoptosis signal-regulating kinase family, is essential for stress-induced cell death in HeLa cells. Biochem. Biophys. Res. Commun. 2010;395:213–218. doi: 10.1016/j.bbrc.2010.03.164. PubMed DOI
Iriyama T., Takeda K., Nakamura H., Morimoto Y., Kuroiwa T., Mizukami J., Umeda T., Noguchi T., Naguro I., Nishitoh H., et al. ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis. EMBO J. 2009;28:843–853. doi: 10.1038/emboj.2009.32. PubMed DOI PMC
Ortner E., Moelling K. Heteromeric complex formation of ASK2 and ASK1 regulates stress-induced signaling. Biochem. Biophys. Res. Commun. 2007;362:454–459. doi: 10.1016/j.bbrc.2007.08.006. PubMed DOI
Naguro I., Umeda T., Kobayashi Y., Maruyama J., Hattori K., Shimizu Y., Kataoka K., Kim-Mitsuyama S., Uchida S., Vandewalle A., et al. ASK3 responds to osmotic stress and regulates blood pressure by suppressing WNK1-SPAK/OSR1 signaling in the kidney. Nat. Commun. 2012;3:1285. doi: 10.1038/ncomms2283. PubMed DOI
Watanabe K., Umeda T., Niwa K., Naguro I., Ichijo H. A PP6-ASK3 Module Coordinates the Bidirectional Cell Volume Regulation under Osmotic Stress. Cell Rep. 2018;22:2809–2817. doi: 10.1016/j.celrep.2018.02.045. PubMed DOI
Kyriakis J.M., Avruch J. Mammalian MAPK Signal Transduction Pathways Activated by Stress and Inflammation: A 10-Year Update. Physiol. Rev. 2012;92:689–737. doi: 10.1152/physrev.00028.2011. PubMed DOI
Rusnak L., Fu H. Regulation of ASK1 signaling by scaffold and adaptor proteins. Adv. Biol. Regul. 2017;66:23–30. doi: 10.1016/j.jbior.2017.10.003. PubMed DOI
Zhang L., Chen J., Fu H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl. Acad. Sci. USA. 1999;96:8511–8515. doi: 10.1073/pnas.96.15.8511. PubMed DOI PMC
Zhang R., He X., Liu W., Lu M., Hsieh J.-T., Min W. AIP1 mediates TNF-α–induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. J. Clin. Investig. 2003;111:1933–1943. doi: 10.1172/JCI200317790. PubMed DOI PMC
Tobiume K., Saitoh M., Ichijo H. Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J. Cell. Physiol. 2002;191:95–104. doi: 10.1002/jcp.10080. PubMed DOI
Song J.J., Rhee J.G., Suntharalingam M., Walsh S.A., Spitz D.R., Lee Y.J. Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J. Biol. Chem. 2002;277:46566–46575. doi: 10.1074/jbc.M206826200. PubMed DOI
Goldman E.H., Chen L., Fu H. Activation of Apoptosis Signal-regulating Kinase 1 by Reactive Oxygen Species through Dephosphorylation at Serine 967 and 14-3-3 Dissociation. J. Biol. Chem. 2004;279:10442–10449. doi: 10.1074/jbc.M311129200. PubMed DOI
Noguchi T., Takeda K., Matsuzawa A., Saegusa K., Nakano H., Gohda J., Inoue J.-I., Ichijo H. Recruitment of Tumor Necrosis Factor Receptor-associated Factor Family Proteins to Apoptosis Signal-regulating Kinase 1 Signalosome Is Essential for Oxidative Stress-induced Cell Death. J. Biol. Chem. 2005;280:37033–37040. doi: 10.1074/jbc.M506771200. PubMed DOI
Fujino G., Noguchi T., Matsuzawa A., Yamauchi S., Saitoh M., Takeda K., Ichijo H. Thioredoxin and TRAF Family Proteins Regulate Reactive Oxygen Species-Dependent Activation of ASK1 through Reciprocal Modulation of the N-Terminal Homophilic Interaction of ASK1. Mol. Cell. Biol. 2007;27:8152–8163. doi: 10.1128/MCB.00227-07. PubMed DOI PMC
Cockrell L.M., Puckett M.C., Goldman E.H., Khuri F.R., Fu H. Dual engagement of 14-3-3 proteins controls signal relay from ASK2 to the ASK1 signalosome. Oncogene. 2009;29:822–830. doi: 10.1038/onc.2009.382. PubMed DOI
Federspiel J., Codreanu S.G., Palubinsky A., Winland A.J., Betanzos C.M., McLaughlin B., Liebler D.C. Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Mol. Cell. Proteom. 2016;15:1947–1961. doi: 10.1074/mcp.M115.057364. PubMed DOI PMC
Song J., Lee Y.J. Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1. Biochem. J. 2003;373:845–853. doi: 10.1042/bj20030275. PubMed DOI PMC
Nadeau P.J., Charette S.J., Toledano M.B., Landry J. Disulfide Bond-mediated Multimerization of Ask1 and Its Reduction by Thioredoxin-1 Regulate H2O2-induced c-Jun NH2-terminal Kinase Activation and Apoptosis. Mol. Biol. Cell. 2007;18:3903–3913. doi: 10.1091/mbc.e07-05-0491. PubMed DOI PMC
Nadeau P.J., Charette S.J., Landry J. REDOX Reaction at ASK1-Cys250 Is Essential for Activation of JNK and Induction of Apoptosis. Mol. Biol. Cell. 2009;20:3628–3637. doi: 10.1091/mbc.e09-03-0211. PubMed DOI PMC
Kosek D., Kylarová S., Psenakova K., Rezabkova L., Herman P., Vecer J., Obšilová V., Obsil T. Biophysical and Structural Characterization of the Thioredoxin-binding Domain of Protein Kinase ASK1 and Its Interaction with Reduced Thioredoxin. J. Biol. Chem. 2014;289:24463–24474. doi: 10.1074/jbc.M114.583807. PubMed DOI PMC
Petrvalska O., Kosek D., Kukacka Z., Tosner Z., Man P., Vecer J., Herman P., Obsilova V., Obsil T. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1) J. Biol. Chem. 2016;291:20753–20765. doi: 10.1074/jbc.M116.724310. PubMed DOI PMC
Kylarova S., Kosek D., Petrvalska O., Psenakova K., Man P., Vecer J., Herman P., Obsilova V., Obsil T. Cysteine residues mediate high-affinity binding of thioredoxin to ASK1. FEBS J. 2016;283:3821–3838. doi: 10.1111/febs.13893. PubMed DOI
Psenakova K., Hexnerova R., Srb P., Obsilova V., Veverka V., Obsil T. The redox-active site of thioredoxin is directly involved in apoptosis signal-regulating kinase 1 binding that is modulated by oxidative stress. FEBS J. 2019;287:1626–1644. doi: 10.1111/febs.15101. PubMed DOI
Lee J.A., Park J.E., Lee D.H., Park S.G., Myung P.K., Park B.C., Cho S. G1 to S phase transition protein 1 induces apoptosis signal-regulating kinase 1 activation by dissociating 14-3-3 from ASK1. Oncogene. 2007;27:1297–1305. doi: 10.1038/sj.onc.1210740. PubMed DOI
Liu Y., Min W. Thioredoxin Promotes ASK1 Ubiquitination and Degradation to Inhibit ASK1-Mediated Apoptosis in a Redox Activity-Independent Manner. Circ. Res. 2002;90:1259–1266. doi: 10.1161/01.RES.0000022160.64355.62. PubMed DOI
Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17:2596–2606. doi: 10.1093/emboj/17.9.2596. PubMed DOI PMC
Liu H., Nishitoh H., Ichijo H., Kyriakis J.M., Guardavaccaro D., Corrente G., Covone F., Micheli L., D’Agnano I., Starace G., et al. Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by Tumor Necrosis Factor Receptor-Associated Factor 2 Requires Prior Dissociation of the ASK1 Inhibitor Thioredoxin. Mol. Cell. Biol. 2000;20:1797–1815. doi: 10.1128/MCB.20.6.2198-2208.2000. PubMed DOI PMC
Ryuno H., Naguro I., Kamiyama M. ASK family and cancer. Adv. Biol. Regul. 2017;66:72–84. doi: 10.1016/j.jbior.2017.05.003. PubMed DOI
Liu T., Zhou H.J., Min W. ASK family in cardiovascular biology and medicine. Adv. Biol. Regul. 2017;66:54–62. doi: 10.1016/j.jbior.2017.10.011. PubMed DOI PMC
Matsuzawa A. Physiological roles of ASK family members in innate immunity and their involvement in pathogenesis of immune diseases. Adv. Biol. Regul. 2017;66:46–53. doi: 10.1016/j.jbior.2017.10.007. PubMed DOI
Guo X., Namekata K., Kimura A., Harada C., Harada T. ASK1 in neurodegeneration. Adv. Biol. Regul. 2017;66:63–71. doi: 10.1016/j.jbior.2017.08.003. PubMed DOI
Fujisawa T. Therapeutic application of apoptosis signal-regulating kinase 1 inhibitors. Adv. Biol. Regul. 2017;66:85–90. doi: 10.1016/j.jbior.2017.10.004. PubMed DOI
Bühler S., Laufer S. p38 MAPK inhibitors: A patent review (2012–2013) Expert Opin. Ther. Patents. 2014;24:535–554. doi: 10.1517/13543776.2014.894977. PubMed DOI
Ijaz A., Tejada T., Catanuto P., Xia X., Elliot S.J., Lenz O., Jauregui A., Saenz M.O., Molano R.D., Pileggi A., et al. Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney Int. 2009;75:381–388. doi: 10.1038/ki.2008.559. PubMed DOI
Weijman J.F., Kumar A., Jamieson S.A., King C., Caradoc-Davies T.T., Ledgerwood E., Murphy J., Mace P.D. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc. Natl. Acad. Sci. USA. 2017;114:E2096–E2105. doi: 10.1073/pnas.1620813114. PubMed DOI PMC
Bunkoczi G., Salah E., Filippakopoulos P., Fedorov O., Müller S., Sobott F., Parker S.A., Zhang H., Min W., Turk B.E., et al. Structural and Functional Characterization of the Human Protein Kinase ASK1. Structure. 2007;15:1215–1226. doi: 10.1016/j.str.2007.08.011. PubMed DOI PMC
Trevelyan S.J., Brewster J.L., Burgess A.E., Crowther J.M., Cadell A.L., Parker B.L., Croucher D.R., Dobson R.C.J., Murphy J.M., Mace P.D. Structure-based mechanism of preferential complex formation by apoptosis signal–regulating kinases. Sci. Signal. 2020;13:eaay6318. doi: 10.1126/scisignal.aay6318. PubMed DOI
Zhang R., Al-Lamki R., Bai L., Streb J.W., Miano J., Bradley J., Min W. Thioredoxin-2 Inhibits Mitochondria-Located ASK1-Mediated Apoptosis in a JNK-Independent Manner. Circ. Res. 2004;94:1483–1491. doi: 10.1161/01.RES.0000130525.37646.a7. PubMed DOI
Kim A.H., Khursigara G., Sun X., Franke T.F., Chao M.V. Akt Phosphorylates and Negatively Regulates Apoptosis Signal-Regulating Kinase 1. Mol. Cell. Biol. 2001;21:893–901. doi: 10.1128/MCB.21.3.893-901.2001. PubMed DOI PMC
Gu J.J., Wang Z., Reeves R., Magnuson N.S. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene. 2009;28:4261–4271. doi: 10.1038/onc.2009.276. PubMed DOI PMC
Jin L., Li D., Lee J.S., Elf S., Alesi G.N., Fan J., Kang H.-B., Wang D., Fu H., Taunton J., et al. p90 RSK2 Mediates Antianoikis Signals by both Transcription-Dependent and -Independent Mechanisms. Mol. Cell. Biol. 2013;33:2574–2585. doi: 10.1128/MCB.01677-12. PubMed DOI PMC
Hao W., Takano T., Guillemette J., Papillon J., Ren G., Cybulsky A.V. Induction of Apoptosis by the Ste20-like Kinase SLK, a Germinal Center Kinase That Activates Apoptosis Signal-regulating Kinase and p38. J. Biol. Chem. 2006;281:3075–3084. doi: 10.1074/jbc.M511744200. PubMed DOI
Cho J.-H., Lee M.-K., Yoon K.W., Lee J.E., Cho S.-G., Choi E.-J. Arginine methylation-dependent regulation of ASK1 signaling by PRMT1. Cell Death Differ. 2011;19:859–870. doi: 10.1038/cdd.2011.168. PubMed DOI PMC
Chen M., Qu X., Zhang Z., Wu H., Qin X., Li F., Liu Z., Tian L., Miao J., Shu W. Cross-talk between Arg methylation and Ser phosphorylation modulates apoptosis signal–regulating kinase 1 activation in endothelial cells. Mol. Biol. Cell. 2016;27:1358–1366. doi: 10.1091/mbc.E15-10-0738. PubMed DOI PMC
Nishitoh H., Saitoh M., Mochida Y., Takeda K., Nakano H., Rothe M., Miyazono K., Ichijo H. ASK1 Is Essential for JNK/SAPK Activation by TRAF2. Mol. Cell. 1998;2:389–395. doi: 10.1016/S1097-2765(00)80283-X. PubMed DOI
Jung H., Seong H.-A., Ha H. Murine Protein Serine/Threonine Kinase 38 Activates Apoptosis Signal-regulating Kinase 1 via Thr838 Phosphorylation. J. Biol. Chem. 2008;283:34541–34553. doi: 10.1074/jbc.M807219200. PubMed DOI PMC
Yu L., Min W., He Y., Qin L., Zhang H., Bennett A.M., Chen H. JAK2 and SHP2 Reciprocally Regulate Tyrosine Phosphorylation and Stability of Proapoptotic Protein ASK1. J. Biol. Chem. 2009;284:13481–13488. doi: 10.1074/jbc.M809740200. PubMed DOI PMC
He Y., Zhang W., Zhang R., Zhang H., Min W. SOCS1 Inhibits Tumor Necrosis Factor-induced Activation of ASK1-JNK Inflammatory Signaling by Mediating ASK1 Degradation. J. Biol. Chem. 2006;281:5559–5566. doi: 10.1074/jbc.M512338200. PubMed DOI
Fujii K., Goldman E.H., Park H.R., Zhang L., Chen J., Fu H. Negative control of apoptosis signal-regulating kinase 1 through phosphorylation of Ser-1034. Oncogene. 2004;23:5099–5104. doi: 10.1038/sj.onc.1207668. PubMed DOI
Brys R., Gibson K., Poljak T., Van Der Plas S., Amantini D. Discovery and development of ASK1 inhibitors. Prog. Med. Chem. 2020;59:101–179. doi: 10.1016/bs.pmch.2020.02.001. PubMed DOI
Ogier J.M., Nayagam B., Lockhart P. ASK1 inhibition: A therapeutic strategy with multi-system benefits. J. Mol. Med. 2020;98:335–348. doi: 10.1007/s00109-020-01878-y. PubMed DOI PMC
Cheon S.Y., Cho K.J. Pathological role of apoptosis signal-regulating kinase 1 in human diseases and its potential as a therapeutic target for cognitive disorders. J. Mol. Med. 2019;97:153–161. doi: 10.1007/s00109-018-01739-9. PubMed DOI
Song J., Park K.A., Lee W.T., Lee J.E. Apoptosis Signal Regulating Kinase 1 (ASK1): Potential as a Therapeutic Target for Alzheimer’s Disease. Int. J. Mol. Sci. 2014;15:2119–2129. doi: 10.3390/ijms15022119. PubMed DOI PMC
Breijyeh Z., Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020;25:5789. doi: 10.3390/molecules25245789. PubMed DOI PMC
Kadowaki H., Nishitoh H., Urano F., Sadamitsu C., Matsuzawa A., Takeda K., Masutani H., Yodoi J., Urano Y., Nagano T., et al. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12:19–24. doi: 10.1038/sj.cdd.4401528. PubMed DOI
Hasegawa Y., Toyama K., Uekawa K., Ichijo H., Kim-Mitsuyama S. Role of ASK1/p38 Cascade in a Mouse Model of Alzheimer’s Disease and Brain Aging. J. Alzheimers Dis. 2018;61:259–263. doi: 10.3233/JAD-170645. PubMed DOI
Hirata Y., Nada Y., Yamada Y., Toyama T., Fukunaga K., Hwang G.-W., Noguchi T., Matsuzawa A. Elaidic Acid Potentiates Extracellular ATP-Induced Apoptosis via the P2X7-ROS-ASK1-p38 Axis in Microglial Cell Lines. Biol. Pharm. Bull. 2020;43:1562–1569. doi: 10.1248/bpb.b20-00409. PubMed DOI
Kalia L.V., Lang A.E. Parkinson’s disease. Lancet. 2015;386:896–912. doi: 10.1016/S0140-6736(14)61393-3. PubMed DOI
Pan J., Li H., Zhang B., Xiong R., Zhang Y., Kang W.-Y., Chen W., Zhao Z.-B., Chen S.-D. Small Peptide Inhibitor of JNK3 Protects Dopaminergic Neurons from MPTP Induced Injury via Inhibiting the ASK1-JNK3 Signaling Pathway. PLoS ONE. 2015;10:e0119204. doi: 10.1371/journal.pone.0119204. PubMed DOI PMC
Lee K.-W., Woo J.-M., Im J.-Y., Park E.S., He L., Ichijo H., Junn E., Mouradian M.M. Apoptosis signal-regulating kinase 1 modulates the phenotype of α-synuclein transgenic mice. Neurobiol. Aging. 2014;36:519–526. doi: 10.1016/j.neurobiolaging.2014.07.034. PubMed DOI PMC
Healy D.G., Falchi M., O’Sullivan S.S., Bonifati V., Durr A., Bressman S., Brice A., Aasly J., Zabetian C.P., Goldwurm S., et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol. 2008;7:583–590. doi: 10.1016/S1474-4422(08)70117-0. PubMed DOI PMC
Junn E., Taniguchi H., Jeong B.S., Zhao X., Ichijo H., Mouradian M.M. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl. Acad. Sci. USA. 2005;102:9691–9696. doi: 10.1073/pnas.0409635102. PubMed DOI PMC
Niu Y.-L., Li C., Zhang G.-Y. Blocking Daxx trafficking attenuates neuronal cell death following ischemia/reperfusion in rat hippocampus CA1 region. Arch. Biochem. Biophys. 2011;515:89–98. doi: 10.1016/j.abb.2011.07.016. PubMed DOI
Liu J., Hu H., Wu B. RIPK1 inhibitor ameliorates the MPP(+)/MPTP-induced Parkinson’s disease through the ASK1/JNK signalling pathway. Brain Res. 2021;1757:147310. doi: 10.1016/j.brainres.2021.147310. PubMed DOI
Caron N.S., Wright G.E.B., Hayden M.R. Huntington Disease. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews((R)) University of Washington; Seattle, WA, USA: 1993.
Arning L., Monté D., Hansen W., Wieczorek S., Jagiello P., Akkad D.A., Andrich J., Kraus P.H., Saft C., Epplen J.T. ASK1 and MAP2K6 as modifiers of age at onset in Huntington’s disease. J. Mol. Med. 2008;86:485–490. doi: 10.1007/s00109-007-0299-6. PubMed DOI
Nishitoh H., Matsuzawa A., Tobiume K., Saegusa K., Takeda K., Inoue K., Hori S., Kakizuka A., Ichijo H. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002;16:1345–1355. doi: 10.1101/gad.992302. PubMed DOI PMC
Cho K., Lee B., Cheon S., Kim H., Kim G. Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease. Neuroscience. 2009;163:1128–1134. doi: 10.1016/j.neuroscience.2009.07.048. PubMed DOI
Perrin V., Dufour N., Raoul C., Hassig R., Brouillet E., Aebischer P., Luthi-Carter R., Déglon N. Implication of the JNK pathway in a rat model of Huntington’s disease. Exp. Neurol. 2009;215:191–200. doi: 10.1016/j.expneurol.2008.10.008. PubMed DOI
Cho K.J., Kim H.W., Cheon S.Y., Lee J.E., Kim G.W. Apoptosis signal-regulating kinase-1 aggravates ROS-mediated striatal degeneration in 3-nitropropionic acid-infused mice. Biochem. Biophys. Res. Commun. 2013;441:280–285. doi: 10.1016/j.bbrc.2013.08.103. PubMed DOI
Nishitoh H., Kadowaki H., Nagai A., Maruyama T., Yokota T., Fukutomi H., Noguchi T., Matsuzawa A., Takeda K., Ichijo H. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 2008;22:1451–1464. doi: 10.1101/gad.1640108. PubMed DOI PMC
Yokota S., Kobatake Y., Noda Y., Nakata K., Yamato O., Hara H., Sakai H., Nishida H., Maeda S., Kamishina H. Activation of the unfolded protein response in canine degenerative myelopathy. Neurosci. Lett. 2018;687:216–222. doi: 10.1016/j.neulet.2018.09.040. PubMed DOI
Fujisawa T., Takahashi M., Tsukamoto Y., Yamaguchi N., Nakoji M., Endo M., Kodaira H., Hayashi Y., Nishitoh H., Naguro I., et al. The ASK1-specific inhibitors K811 and K812 prolong survival in a mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 2015;25:245–253. doi: 10.1093/hmg/ddv467. PubMed DOI
Meijles D.N., Cull J.J., Markou T., Cooper S.T., Haines Z.H., Fuller S.J., O’Gara P., Sheppard M.N., Harding S., Sugden P.H., et al. Redox Regulation of Cardiac ASK1 (Apoptosis Signal-Regulating Kinase 1) Controls p38-MAPK (Mitogen-Activated Protein Kinase) and Orchestrates Cardiac Remodeling to Hypertension. Hypertension. 2020;76:1208–1218. doi: 10.1161/HYPERTENSIONAHA.119.14556. PubMed DOI PMC
Kashiwase K., Higuchi Y., Hirotani S., Yamaguchi O., Hikoso S., Takeda T., Watanabe T., Taniike M., Nakai A., Tsujimoto I., et al. CaMKII activates ASK1 and NF-kappaB to induce cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun. 2005;327:136–142. doi: 10.1016/j.bbrc.2004.12.002. PubMed DOI
Huang K.W., Wang I.H., Fu P., Krum H., Bach L.A., Wang B.H. Insulin-like growth factor-1 directly affects cardiac cellular remodelling via distinct pathways. IJC Hearth Vasc. 2021;36:100852. doi: 10.1016/j.ijcha.2021.100852. PubMed DOI PMC
Imoto K., Kukidome D., Nishikawa T., Matsuhisa T., Sonoda K., Fujisawa K., Yano M., Motoshima H., Taguchi T., Tsuruzoe K., et al. Impact of Mitochondrial Reactive Oxygen Species and Apoptosis Signal-Regulating Kinase 1 on Insulin Signaling. Diabetes. 2006;55:1197–1204. doi: 10.2337/db05-1187. PubMed DOI
Ding W., Feng H., Li W.J., Liao H.H., Zhang N., Zhou Z.Y., Mou S.Q., Lin Z., Xia-He N.Z., Xia H., et al. Apocynin attenuates diabetic cardiomyopathy by suppressing ASK1-p38/JNK signaling. Eur. J. Pharmacol. 2021;909:174402. doi: 10.1016/j.ejphar.2021.174402. PubMed DOI
Guo Y., Zhang C., Wang C., Huang Y., Liu J., Chu H., Ren X., Kong L., Ma H. Thioredoxin-1 Is a Target to Attenuate Alzheimer-Like Pathology in Diabetic Encephalopathy by Alleviating Endoplasmic Reticulum Stress and Oxidative Stress. Front. Physiol. 2021;12:675. doi: 10.3389/fphys.2021.651105. PubMed DOI PMC
Ren X., Lv J., Fu Y., Zhang N., Zhang C., Dong Z., Chudhary M., Zhong S., Kong L., Kong H. Upregulation of thioredoxin contributes to inhibiting diabetic hearing impairment. Diabetes Res. Clin. Pract. 2021;179 doi: 10.1016/j.diabres.2021.109025. PubMed DOI
Gilot D., Loyer P., Corlu A., Glaise D., Lagadic-Gossmann D., Atfi A., Morel F., Ichijo H., Guguen-Guillouzo C. Liver protection from apoptosis requires both blockage of initiator caspase activities and inhibition of ASK1/JNK pathway via glutathione S-transferase regulation. J. Biol. Chem. 2002;277:49220–49229. doi: 10.1074/jbc.M207325200. PubMed DOI
Nakagawa H., Maeda S., Hikiba Y., Ohmae T., Shibata W., Yanai A., Sakamoto K., Ogura K., Noguchi T., Karin M., et al. Deletion of Apoptosis Signal-Regulating Kinase 1 Attenuates Acetaminophen-Induced Liver Injury by Inhibiting c-Jun N-Terminal Kinase Activation. Gastroenterology. 2008;135:1311–1321. doi: 10.1053/j.gastro.2008.07.006. PubMed DOI
Xie Y., Ramachandran A., Breckenridge D.G., Liles J.T., Lebofsky M., Farhood A., Jaeschke H. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol. Appl. Pharmacol. 2015;286:1–9. doi: 10.1016/j.taap.2015.03.019. PubMed DOI PMC
Yang X., Zhan Y., Sun Q., Xu X., Kong Y., Zhang J. Adenosine 5′-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation. Oncotarget. 2016;8:6273–6282. doi: 10.18632/oncotarget.14059. PubMed DOI PMC
Yamamoto E., Dong Y.-F., Kataoka K., Yamashita T., Tokutomi Y., Matsuba S., Ichijo H., Ogawa H., Kim-Mitsuyama S. Olmesartan Prevents Cardiovascular Injury and Hepatic Steatosis in Obesity and Diabetes, Accompanied by Apoptosis Signal Regulating Kinase-1 Inhibition. Hypertension. 2008;52:573–580. doi: 10.1161/HYPERTENSIONAHA.108.112292. PubMed DOI
Xiang M., Wang P.-X., Wang A.-B., Zhang X.-J., Zhang Y., Zhang P., Mei F.-H., Chen M.-H., Li H. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J. Hepatol. 2016;64:1365–1377. doi: 10.1016/j.jhep.2016.02.002. PubMed DOI
Wang P.X., Ji Y.X., Zhang X.J., Zhao L.P., Yan Z.Z., Zhang P., Shen L.J., Yang X., Fang J., Tian S., et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat. Med. 2017;23:439–449. doi: 10.1038/nm.4290. PubMed DOI
Loomba R., Lawitz E., Mantry P.S., Jayakumar S., Caldwell S.H., Arnold H., Diehl A.M., Djedjos C.S., Han L., Myers R.P., et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology. 2017;67:549–559. doi: 10.1002/hep.29514. PubMed DOI PMC
Ma F.Y., Tesch G.H., Nikolic-Paterson D.J. ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. Am. J. Physiol. Renal. Physiol. 2014;307:F1263–F1273. doi: 10.1152/ajprenal.00211.2014. PubMed DOI
Ren G., Huynh C., Bijian K., Cybulsky A.V. Role of apoptosis signal-regulating kinase 1 in complement-mediated glomerular epithelial cell injury. Mol. Immunol. 2008;45:2236–2246. doi: 10.1016/j.molimm.2007.11.013. PubMed DOI
Tesch G.H., Ma F.Y., Han Y., Liles J.T., Breckenridge D.G., Nikolic-Paterson D.J. ASK1 Inhibitor Halts Progression of Diabetic Nephropathy inNos3-Deficient Mice. Diabetes. 2015;64:3903–3913. doi: 10.2337/db15-0384. PubMed DOI
Amos L.A., Ma F.Y., Tesch G.H., Liles J.T., Breckenridge D.G., Nikolic-Paterson D.J., Han Y. ASK1 inhibitor treatment suppresses p38/JNK signalling with reduced kidney inflammation and fibrosis in rat crescentic glomerulonephritis. J. Cell Mol. Med. 2018;22:4522–4533. doi: 10.1111/jcmm.13705. PubMed DOI PMC
Chertow G.M., Pergola P.E., Chen F., Kirby B.J., Sundy J.S., Patel U.D., Investigators G.-U. Effects of Selonsertib in Patients with Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2019;30:1980–1990. doi: 10.1681/ASN.2018121231. PubMed DOI PMC
Lin F.-R., Huang S.-Y., Hung K.-H., Su S.-T., Chung C.-H., Matsuzawa A., Hsiao M., Ichijo H., Lin K.-I. ASK1 promotes apoptosis of normal and malignant plasma cells. Blood. 2012;120:1039–1047. doi: 10.1182/blood-2011-12-399808. PubMed DOI
Jiang C.-F., Wen L.-Z., Yin C., Xu W.-P., Shi B., Zhang X., Xie W.-F. Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4α on hepatocellular carcinoma. Oncotarget. 2016;7:27408–27421. doi: 10.18632/oncotarget.8478. PubMed DOI PMC
Madan E., Gogna R., Kuppusamy P., Bhatt M., Mahdi A.A., Pati U. SCO2 Induces p53-Mediated Apoptosis by Thr845 Phosphorylation of ASK-1 and Dissociation of the ASK-1-Trx Complex. Mol. Cell. Biol. 2013;33:1285–1302. doi: 10.1128/MCB.06798-11. PubMed DOI PMC
Xie D., Gore C., Zhou J., Pong R.-C., Zhang H., Yu L., Vessella R.L., Min W., Hsieh J.-T. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc. Natl. Acad. Sci. USA. 2009;106:19878–19883. doi: 10.1073/pnas.0908458106. PubMed DOI PMC
Sobhan P.K., Zhai Q., Green L.C., Hansford L.M., Funa K. ASK1 regulates the survival of neuroblastoma cells by interacting with TLX and stabilizing HIF-1α. Cell. Signal. 2017;30:104–117. doi: 10.1016/j.cellsig.2016.11.018. PubMed DOI
Hayakawa Y., Hirata Y., Nakagawa H., Sakamoto K., Hikiba Y., Kinoshita H., Nakata W., Takahashi R., Tateishi K., Tada M., et al. Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer. Proc. Natl. Acad. Sci. USA. 2011;108:780–785. doi: 10.1073/pnas.1011418108. PubMed DOI PMC
Tzeng H.E., Tsai C.H., Chang Z.L., Su C.M., Wang S.W., Hwang W.L., Tang C.H. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma. Biochem. Pharmacol. 2013;85:531–540. doi: 10.1016/j.bcp.2012.11.021. PubMed DOI
Luo Y., Gao S., Hao Z., Yang Y., Xie S., Li D., Liu M., Zhou J. Apoptosis signal-regulating kinase 1 exhibits oncogenic activity in pancreatic cancer. Oncotarget. 2016;7:75155–75164. doi: 10.18632/oncotarget.12090. PubMed DOI PMC
Yan J., Zhang Y., Sheng G., Ni B., Xiao Y., Wang S., Wang T., Ma Y., Wang H., Wu H., et al. Selonsertib Alleviates the Progression of Rat Osteoarthritis: An in vitro and in vivo Study. Front. Pharmacol. 2021;12:687033. doi: 10.3389/fphar.2021.687033. PubMed DOI PMC
Liu J., Chi M., Lin C., Lee C., Chang T., Han C., Huang Y., Fong Y., Chen H., Tang C. PM2.5 facilitates IL-6 production in human osteoarthritis synovial fibroblasts via ASK1 activation. J. Cell. Physiol. 2020;236:2205–2213. doi: 10.1002/jcp.30009. PubMed DOI
Felson D.T. Developments in the clinical understanding of osteoarthritis. Arthritis Res. Ther. 2009;11:203–211. doi: 10.1186/ar2531. PubMed DOI PMC
Lin X., Wang M., Zhang J., Xu R. p38 MAPK: A Potential Target of Chronic Pain. Curr. Med. Chem. 2014;21:4405–4418. doi: 10.2174/0929867321666140915143040. PubMed DOI
Giraud F., Pereira E., Anizon F., Moreau P. Recent Advances in Pain Management: Relevant Protein Kinases and Their Inhibitors. Molecules. 2021;26:2696. doi: 10.3390/molecules26092696. PubMed DOI PMC
Guo X., Harada C., Namekata K., Matsuzawa A., Camps M., Ji H., Swinnen D., Jorand-Lebrun C., Muzerelle M., Vitte P., et al. Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway. EMBO Mol. Med. 2010;2:504–515. doi: 10.1002/emmm.201000103. PubMed DOI PMC
Mnich S.J., Blanner P.M., Hu L.G., Shaffer A.F., Happa F.A., O’Neil S., Ukairo O., Weiss D., Welsh E., Storer C., et al. Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int. Immunopharmacol. 2010;10:1170–1176. doi: 10.1016/j.intimp.2010.06.023. PubMed DOI
Nygaard G., Di Paolo J.A., Hammaker D., Boyle D.L., Budas G., Notte G.T., Mikaelian I., Barry V., Firestein G.S. Regulation and function of apoptosis signal-regulating kinase 1 in rheumatoid arthritis. Biochem. Pharmacol. 2018;151:282–290. doi: 10.1016/j.bcp.2018.01.041. PubMed DOI