A Comparative Study of Two-Minute versus Three-Minute Passive Recovery on Sprint Skating Performance of Ice Hockey Forwards and Defensemen
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34948639
PubMed Central
PMC8701228
DOI
10.3390/ijerph182413029
PII: ijerph182413029
Knihovny.cz E-zdroje
- Klíčová slova
- fatigue index, field test, heart rate, movement pattern, performance decrement, skating performance,
- MeSH
- bruslení * MeSH
- hokej * MeSH
- lidé MeSH
- únava MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The impact of two different passive recovery durations, two and three minutes, between sets of repeated sprint skating ability (RSSA) test on skating speed, speed decrement (Sdec), and heart rate (HR) response of ice hockey forwards (n = 12) and defensemen (n = 7) were determined. Six sets of 3 × 80 m sprint, with two-minute passive recovery between two consecutive sets, were performed in RSSA-2. A three-minute passive recovery period between two consecutive sets was allowed in RSSA-3. Skating speed, Sdec, and HR were measured in all tests. Subjects skated faster (p < 0.05) in most of the RSSA-3 sets than the corresponding set of RSSA-2. Defensemen were slower (p < 0.05) than forwards in most of the cases. The Sdec was higher in defensemen than in forwards, although the difference was significant occasionally. No difference in peak HR and minimum HR between forwards and defensemen was found. RSSA-3 is beneficial over RSSA-2 in both forwards and defensemen by increasing speed. Defensemen are slower and show early fatigability than forwards, and no difference in HR response was noted between forwards and defensemen. This study concludes that three-minute recovery is beneficial over two-minute recovery by increasing skating speed, although Sdec and HR response neither vary significantly between RSSA-2 and RSSA-3, nor between forwards and defensemen.
Faculty of Medical Sciences Cave Hill Campus University of West Indies Bridgetown BB11000 Barbados
Faculty of Science and Technology University of Silesia in Katowice 41 500 Chorzów Poland
Institute of Sport Sciences Jerzy Kukuczka Academy of Physical Education 40 065 Katowice Poland
Zobrazit více v PubMed
Burr J.F., Jamnik R.K., Baker J., Macpherson A., Gledhill N., McGuire E.J. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J. Strength Cond. Res. 2008;22:1535–1543. doi: 10.1519/JSC.0b013e318181ac20. PubMed DOI
Cox M.H., Miles D.S., Verde T.J., Rhodes E.C. Applied Physiology of Ice Hockey. Sports Med. 1995;19:184–201. doi: 10.2165/00007256-199519030-00004. PubMed DOI
Green H., Bishop P., Houston M., McKillop R., Norman R., Stothart P. Time motion and physiological assessments of ice hockey performance. J. Appl. Physiol. 1976;40:159–163. doi: 10.1152/jappl.1976.40.2.159. PubMed DOI
Brocherie F., Girard O., Millet G.P. Updated analysis of changes in locomotor activities across periods in an international ice hockey game. Biol. Sport. 2018;35:261–267. doi: 10.5114/biolsport.2018.77826. PubMed DOI PMC
Agre J.C., Casal D.C., Leon A.S., McNally C., Baxter T.L., Serfass R.C. Professional ice hockey players: Physiologic, anthropometric, and musculoskeletal characteristics. Arch. Phys. Med. Rehabil. 1988;69:188–192. PubMed
Geithner C.A., Lee A.M., Bracko M.R. Physical and performance differences among forwards, defensemen, and goalies in elite women’s ice hockey. J. Strenght Cond. Res. 2006;20:500–505. doi: 10.1519/17375.1. PubMed DOI
Houston M.E., Green H.J. Physiological and anthropometric characteristics of elite Canadian ice hockey players. J. Sports Med. Phys. Fitness. 1976;16:123–128. PubMed
Bracko M.R., George J.D. Prediction of Ice Skating Performance with Off-Ice Testing in Women’s Ice Hockey Players. J. Strength Cond. Res. 2001;15:116–122. doi: 10.1519/1533-4287(2001)015<0116:POISPW>2.0.CO;2. PubMed DOI
Stanula A., Roczniok R., Maszczyk A., Pietraszewski P., Zając A. The role of aerobic capacity in high-intensity intermittent efforts in ice-hockey. Biol. Sport. 2014;31:193–195. doi: 10.5604/20831862.1111437. PubMed DOI PMC
Twist P., Rhodes T. Exercise physiology: A physiological analysis of ice hockey positions. Natl. Strength Cond. Assoc. J. 2008;15:44–46. doi: 10.1519/0744-0049(1993)015<0044:APAOIH>2.3.CO;2. DOI
Bishop D., Spencer M., Duffield R., Lawrence S. The validity of a repeated sprint ability test. J. Sci. Med. Sport. 2001;4:19–29. doi: 10.1016/S1440-2440(01)80004-9. PubMed DOI
Da Silva J.F., Guglielmo L.G.A., Bishop D. Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. J. Strength Cond. Res. 2010;24:2115–2121. doi: 10.1519/JSC.0b013e3181e34794. PubMed DOI
Girard O., Mendez-Villanueva A., Bishop D. Repeated-sprint ability part I: Factors contributing to fatigue. Sports Med. 2011;41:673–694. doi: 10.2165/11590550-000000000-00000. PubMed DOI
Hůlka K., Bělka J., Cuberek R., Schneider O. Reliability of specific on-ice repeated-sprint ability test for ice-hockey players. Acta Gymnica. 2014;44:69–75. doi: 10.5507/ag.2014.007. DOI
Rampinini E., Sassi A., Morelli A., Mazzoni S., Fanchini M., Coutts A.J. Repeated-sprint ability in professional and amateur soccer players. Appl. Physiol. Nutr. Metab. 2009;34:1048–1054. doi: 10.1139/H09-111. PubMed DOI
Oliver J.L. Is a fatigue index a worthwhile measure of repeated sprint ability? J. Sci. Med. Sport. 2009;12:20–23. doi: 10.1016/j.jsams.2007.10.010. PubMed DOI
Glaister M. Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sport. Med. 2005;35:757–777. doi: 10.2165/00007256-200535090-00003. PubMed DOI
Leone M., Léger L.A., Larivière G., Comtois A.S. An on-ice aerobic maximal multistage shuttle skate test for elite adolescent hockey players. Int. J. Sports Med. 2007;28:823–828. doi: 10.1055/s-2007-964986. PubMed DOI
McGowan C.J., Pyne D.B., Thompson K.G., Rattray B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med. 2015;45:1523–1546. doi: 10.1007/s40279-015-0376-x. PubMed DOI
Hopkins W.G., Marshall S.W., Batterham A.M., Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI
Roczniok R., Stanula A., Gabryś T., Szmatlan-Gabryś U., Gołaś A., Stastny P. Physical fitness and performance of polish ice-hockey players competing at different sports levels. J. Hum. Kinet. 2016;50:201–208. doi: 10.1515/hukin-2015-0165. PubMed DOI PMC
Montgomery D.L. Physiology of ice hockey. Sports Med. 1988;5:99–126. doi: 10.2165/00007256-198805020-00003. PubMed DOI
Peterson B.J., Fitzgerald J.S., Dietz C.C., Ziegler K.S., Ingraham S.J., Baker S.E., Snyder E.M. Aerobic capacity is associated with improved repeated shift performance in hockey. J. Strength Cond. Res. 2015;29:1465–1472. doi: 10.1519/JSC.0000000000000786. PubMed DOI
McGawley K., Bishop D. Anaerobic and aerobic contribution to two, 5 × 6-s repeated-sprint bouts. Coach. Sport Sci. J. 2008;3:52.
Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. Endocrinol. Metab. 1999;277:E890–E900. doi: 10.1152/ajpendo.1999.277.5.E890. PubMed DOI
Bogdanis G.C., Nevill M.E., Boobis L.H., Lakomy H.K., Nevill A.M. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol. 1995;482:467–480. doi: 10.1113/jphysiol.1995.sp020533. PubMed DOI PMC
Tomlin D.L., Wenger H.A. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31:1–11. doi: 10.2165/00007256-200131010-00001. PubMed DOI
Spencer M., Fitzsimons M., Dawson B., Bishop D., Goodman C. Reliability of a repeated-sprint test for field-hockey. J. Sci. Med. Sport. 2006;9:181–184. doi: 10.1016/j.jsams.2005.05.001. PubMed DOI
Stanula A., Roczniok R. Game intensity analysis of elite adolescent ice hockey players. J. Hum. Kinet. 2014;44:211–221. doi: 10.2478/hukin-2014-0126. PubMed DOI PMC
Eisenhofer G., Kopin I.J., Goldstein D.S. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacol. Rev. 2004;56:331–349. doi: 10.1124/pr.56.3.1. PubMed DOI
Stanula A., Gabryś T., Roczniok R., Szmatlan-Gabryś U., Ozimek M., Mostowik A. Quantification of the demands during an ice-hockey game based on intensity zones determined from the incremental test outcomes. J. Strength Cond. Res. 2016;30:176–183. doi: 10.1519/JSC.0000000000001081. PubMed DOI