Antioxidant Paradox in Male Infertility: 'A Blind Eye' on Inflammation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35052671
PubMed Central
PMC8772926
DOI
10.3390/antiox11010167
PII: antiox11010167
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, inflammation, male infertility, oxidative stress, reductive stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The pathophysiology of male infertility involves various interlinked endogenous pathways. About 50% of the cases of infertility in men are idiopathic, and oxidative stress (OS) reportedly serves as a central mechanism in impairing male fertility parameters. The endogenous antioxidant system operates to conserve the seminal redox homeostasis required for normal male reproduction. OS strikes when a generation of seminal reactive oxygen species (ROS) overwhelms endogenous antioxidant capacity. Thus, antioxidant treatment finds remarkable relevance in the case of idiopathic male infertility or subfertility. However, due to lack of proper detection of OS in male infertility, use of antioxidant(s) in some cases may be arbitrary or lead to overuse and induction of 'reductive stress'. Moreover, inflammation is closely linked to OS and may establish a vicious loop that is capable of disruption to male reproductive tissues. The result is exaggeration of cellular damage and disruption of male reproductive tissues. Therefore, limitations of antioxidant therapy in treating male infertility are the failure in the selection of specific treatments targeting inflammation and OS simultaneously, two of the core mechanisms of male infertility. The present review aims to elucidate the antioxidant paradox in male infertility treatment, from the viewpoints of both induction of reductive stress as well as overlooking the inflammatory consequences.
Zobrazit více v PubMed
Agarwal A., Mulgund A., Hamada A., Chyatte M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015;13:37. doi: 10.1186/s12958-015-0032-1. PubMed DOI PMC
Vander Borght M., Wyns C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018;62:2–10. doi: 10.1016/j.clinbiochem.2018.03.012. PubMed DOI
Aktan G., Doğru-Abbasoğlu S., Küçükgergin C., Kadıoğlu A., Özdemirler-Erata G., Koçak-Toker N. Mystery of idiopathic male infertility: Is oxidative stress an actual risk? Fertil. Steril. 2013;99:1211–1215. doi: 10.1016/j.fertnstert.2012.11.045. PubMed DOI
Alahmar A.T., Calogero A.E., Sengupta P., Dutta S. Coenzyme q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J. Men’s Health. 2021;39:346–351. doi: 10.5534/wjmh.190145. PubMed DOI PMC
Alahmar A.T., Sengupta P. Impact of coenzyme q10 and selenium on seminal fluid parameters and antioxidant status in men with idiopathic infertility. Biol. Trace Elem. Res. 2021;199:1246–1252. doi: 10.1007/s12011-020-02251-3. PubMed DOI
Agarwal A., Sengupta P. Male Infertility. Springer; Berlin/Heidelberg, Germany: 2020. Oxidative stress and its association with male infertility; pp. 57–68.
Sengupta P., Dutta S., Krajewska-Kulak E. The disappearing sperms: Analysis of reports published between 1980 and 2015. Am. J. Men’s Health. 2017;11:1279–1304. doi: 10.1177/1557988316643383. PubMed DOI PMC
Pant P.R. Factors affecting male infertility. J. Inst. Med. 2009;31:10–12. doi: 10.3126/jiom.v31i3.2973. DOI
Lettieri G., D’Agostino G., Mele E., Cardito C., Esposito R., Cimmino A., Giarra A., Trifuoggi M., Raimondo S., Notari T., et al. Discovery of the involvement in DNA oxidative damage of human sperm nuclear basic proteins of healthy young men living in polluted areas. Int. J. Mol. Sci. 2020;21:4198. doi: 10.3390/ijms21124198. PubMed DOI PMC
Lettieri G., Marra F., Moriello C., Prisco M., Notari T., Trifuoggi M., Giarra A., Bosco L., Montano L., Piscopo M. Molecular alterations in spermatozoa of a family case living in the land of fires. A first look at possible transgenerational effects of pollutants. Int. J. Mol. Sci. 2020;21:6710. doi: 10.3390/ijms21186710. PubMed DOI PMC
Sharma R., Harlev A., Agarwal A., Esteves S.C. Cigarette smoking and semen quality: A new meta-analysis examining the effect of the 2010 world health organization laboratory methods for the examination of human semen. Eur. Urol. 2016;70:635–645. doi: 10.1016/j.eururo.2016.04.010. PubMed DOI
Bundhun P.K., Janoo G., Bhurtu A., Teeluck A.R., Soogund M.Z.S., Pursun M., Huang F. Tobacco smoking and semen quality in infertile males: A systematic review and meta-analysis. BMC Public Health. 2019;19:36. doi: 10.1186/s12889-018-6319-3. PubMed DOI PMC
Kovac J.R., Khanna A., Lipshultz L.I. The effects of cigarette smoking on male fertility. Postgrad. Med. 2015;127:338–341. doi: 10.1080/00325481.2015.1015928. PubMed DOI PMC
Ramgir S.S., Abilash V. Impact of smoking and alcohol consumption on oxidative status in male infertility and sperm quality. Indian J. Pharm. Sci. 2019;81:933–945. doi: 10.36468/pharmaceutical-sciences.588. DOI
Muthusami K., Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil. Steril. 2005;84:919–924. doi: 10.1016/j.fertnstert.2005.04.025. PubMed DOI
Durairajanayagam D. Lifestyle causes of male infertility. Arab J. Urol. 2018;16:10–20. doi: 10.1016/j.aju.2017.12.004. PubMed DOI PMC
Fronczak C.M., Kim E.D., Barqawi A.B. The insults of illicit drug use on male fertility. J. Androl. 2012;33:515–528. doi: 10.2164/jandrol.110.011874. PubMed DOI
Sansone A., Di Dato C., de Angelis C., Menafra D., Pozza C., Pivonello R., Isidori A., Gianfrilli D. Smoke, alcohol and drug addiction and male fertility. Reprod. Biol. Endocrinol. 2018;16:3. doi: 10.1186/s12958-018-0320-7. PubMed DOI PMC
Darbandi M., Darbandi S., Agarwal A., Baskaran S., Dutta S., Sengupta P., Khorshid H.R.K., Esteves S., Gilany K., Hedayati M. Reactive oxygen species-induced alterations in h19-igf2 methylation patterns, seminal plasma metabolites, and semen quality. J. Assist. Reprod. Genet. 2019;36:241–253. doi: 10.1007/s10815-018-1350-y. PubMed DOI PMC
Dutta S., Biswas A., Sengupta P. Obesity, endocrine disruption and male infertility. Asian Pac. J. Reprod. 2019;8:195–202. doi: 10.4103/2305-0500.268133. DOI
Leisegang K., Dutta S. Do lifestyle practices impede male fertility? Andrologia. 2021;53:e13595. doi: 10.1111/and.13595. PubMed DOI
Sengupta P., Dutta S., Karkada I., Chinni S. Endocrinopathies and male infertility. Life. 2022;12:10. doi: 10.3390/life12010010. PubMed DOI PMC
Poljsak B., Šuput D. Ros and antioxidants: Achieving the balance between when to use the synthetic antioxidants. Oxidat. Med. Cell. Long. 2013;2013:956792. doi: 10.1155/2013/956792. PubMed DOI PMC
Sheweita S.A., Tilmisany A.M., Al-Sawaf H. Mechanisms of male infertility: Role of antioxidants. Curr. Drug Metab. 2005;6:495–501. doi: 10.2174/138920005774330594. PubMed DOI
Agarwal A., Sekhon L.H. The role of antioxidant therapy in the treatment of male infertility. Hum. Fertil. 2010;13:217–225. doi: 10.3109/14647273.2010.532279. PubMed DOI
Pérez-Torres I., Guarner-Lans V., Rubio-Ruiz M.E. Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int. J. Mol. Sci. 2017;18:2098. doi: 10.3390/ijms18102098. PubMed DOI PMC
Halliwell B. The antioxidant paradox. Lancet. 2000;355:1179–1180. doi: 10.1016/S0140-6736(00)02075-4. PubMed DOI
De Lamirande E., Gagnon C. Impact of reactive oxygen species on spermatozoa: A balancing act between beneficial and detrimental effects. Hum. Reprod. 1995;10:15–21. doi: 10.1093/humrep/10.suppl_1.15. PubMed DOI
Kothari S., Thompson A., Agarwal A., du Plessis S.S. Free radicals: Their beneficial and detrimental effects on sperm function. Indian J. Exp. Biol. 2010;48:425–435. PubMed
Henkel R., Sandhu I.S., Agarwal A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia. 2019;51:e13162. doi: 10.1111/and.13162. PubMed DOI
Dutta S., Sengupta P., Slama P., Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int. J. Mol. Sci. 2021;22:10043. doi: 10.3390/ijms221810043. PubMed DOI PMC
Izuka E., Menuba I., Sengupta P., Dutta S., Nwagha U. Antioxidants, anti-inflammatory drugs and antibiotics in the treatment of reproductive tract infections and their association with male infertility. Chem. Biol. Lett. 2020;7:156–165.
Darbandi M., Darbandi S., Agarwal A., Baskaran S., Sengupta P., Dutta S., Mokarram P., Saliminejad K., Sadeghi M.R. Oxidative stress-induced alterations in seminal plasma antioxidants: Is there any association with keap1 gene methylation in human spermatozoa? Andrologia. 2019;51:e13159. doi: 10.1111/and.13159. PubMed DOI
Biswas S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016;2016:5698931. doi: 10.1155/2016/5698931. PubMed DOI PMC
Sengupta P., Dutta S. Hormones in male reproduction and fertility. Asian Pac. J. Reprod. 2019;8:187–188. doi: 10.4103/2305-0500.268131. DOI
Zhou W., De Iuliis G.N., Dun M.D., Nixon B. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front. Endocrinol. 2018;9:59. doi: 10.3389/fendo.2018.00059. PubMed DOI PMC
Dutta S., Henkel R., Sengupta P., Agarwal A. Male Infertility. Springer; Berlin/Heidelberg, Germany: 2020. Physiological role of ros in sperm function; pp. 337–345.
Agarwal A., Prabakaran S.A. Oxidative stress and antioxidants in male infertility: A difficult balance. Int. J. Reprod. Med. 2005;3:1–8.
Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. PubMed DOI PMC
O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J. Androl. 2015;17:583. doi: 10.4103/1008-682X.153303. PubMed DOI PMC
O’Flaherty C. The enzymatic antioxidant system of human spermatozoa. Adv. Androl. 2014;2014:626374. doi: 10.1155/2014/626374. DOI
Yan L., Liu J., Wu S., Zhang S., Ji G., Gu A. Seminal superoxide dismutase activity and its relationship with semen quality and sod gene polymorphism. J. Assist. Reprod. Genet. 2014;31:549–554. doi: 10.1007/s10815-014-0215-2. PubMed DOI PMC
Fridovich I. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. PubMed DOI
Kolesnikova L., Kurashova N., Bairova T., Dolgikh M., Ershova O., Dashiev B., Korytov L., Koroleva N. Role of glutathione-s-transferase family genes in male infertility. Bull. Exp. Biol. Med. 2017;163:643–645. doi: 10.1007/s10517-017-3869-9. PubMed DOI
Agarwal A., Leisegang K., Sengupta P. Pathology. Elsevier; Amsterdam, The Netherlands: 2020. Oxidative stress in pathologies of male reproductive disorders; pp. 15–27.
Sabeti P., Pourmasumi S., Rahiminia T., Akyash F., Talebi A.R. Etiologies of sperm oxidative stress. Int. J. Reprod. BioMed. 2016;14:231. doi: 10.29252/ijrm.14.4.231. PubMed DOI PMC
Muratori M., Tamburrino L., Marchiani S., Cambi M., Olivito B., Azzari C., Forti G., Baldi E. Investigation on the origin of sperm DNA fragmentation: Role of apoptosis, immaturity and oxidative stress. Mol. Med. 2015;21:109–122. doi: 10.2119/molmed.2014.00158. PubMed DOI PMC
Montano L., Ceretti E., Donato F., Bergamo P., Zani C., Viola G.C.V., Notari T., Pappalardo S., Zani D., Ubaldi S., et al. Effects of a lifestyle change intervention on semen quality in healthy young men living in highly polluted areas in italy: The fast randomized controlled trial. Eur. Urol. Focus. 2021. in press . PubMed DOI
Halliwell B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning) Free Rad. Res. 1999;31:261–272. doi: 10.1080/10715769900300841. PubMed DOI
Willcox J.K., Ash S.L., Catignani G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004;44:275–295. doi: 10.1080/10408690490468489. PubMed DOI
Barratt C.L., Björndahl L., De Jonge C.J., Lamb D.J., Osorio Martini F., McLachlan R., Oates R.D., van der Poel S., St John B., Sigman M. The diagnosis of male infertility: An analysis of the evidence to support the development of global who guidance—challenges and future research opportunities. Hum. Reprod. Update. 2017;23:660–680. doi: 10.1093/humupd/dmx021. PubMed DOI PMC
Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. J. Am. Med. Assoc. 2007;297:842–857. doi: 10.1001/jama.297.8.842. PubMed DOI
Bjelakovic G., Nikolova D., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: A systematic review and meta-analysis. Lancet. 2004;364:1219–1228. doi: 10.1016/S0140-6736(04)17138-9. PubMed DOI
Stanner S., Hughes J., Kelly C., Buttriss J. A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Pub. Health Nutr. 2004;7:407–422. doi: 10.1079/PHN2003543. PubMed DOI
Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochr. Datab. Syst. Rev. 2012;2012:CD007176. doi: 10.1002/14651858.CD007176.pub2. PubMed DOI
Giussani D.A., Niu Y., Herrera E.A., Richter H.G., Camm E.J., Thakor A.S., Kane A.D., Hansell J.A., Brain K.L., Skeffington K.L., et al. Heart disease link to fetal hypoxia and oxidative stress. Adv. Fetal Neonat. Physiol. 2014;814:77–87. PubMed
Busetto G., Agarwal A., Virmani A., Antonini G., Ragonesi G., Del Giudice F., Micic S., Gentile V., De Berardinis E. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study. Andrologia. 2018;50:e12927. doi: 10.1111/and.12927. PubMed DOI
Sengupta P., Agarwal A., Pogrebetskaya M., Roychoudhury S., Durairajanayagam D., Henkel R. Role of withania somnifera (ashwagandha) in the management of male infertility. Reprod. Biomed. Online. 2018;36:311–326. doi: 10.1016/j.rbmo.2017.11.007. PubMed DOI
Torres-Arce E., Vizmanos B., Babio N., Márquez-Sandoval F., Salas-Huetos A. Dietary antioxidants in the treatment of male infertility: Counteracting oxidative stress. Biology. 2021;10:241. doi: 10.3390/biology10030241. PubMed DOI PMC
Venditti M., Ben Rhouma M., Romano M.Z., Messaoudi I., Reiter R.J., Minucci S. Evidence of melatonin ameliorative effects on the blood-testis barrier and sperm quality alterations induced by cadmium in the rat testis. Ecotoxicol. Env. Saf. 2021;226:112878. doi: 10.1016/j.ecoenv.2021.112878. PubMed DOI
Venditti M., Ben Rhouma M., Romano M.Z., Messaoudi I., Reiter R.J., Minucci S. Altered expression of daam1 and prep induced by cadmium toxicity is counteracted by melatonin in the rat testis. Genes. 2021;12:1016. doi: 10.3390/genes12071016. PubMed DOI PMC
Tikkiwal M., Ajmera R.L., Mathur N.K. Effect of zinc administration on seminal zinc and fertility of oligospermic males. Indian J. Physiol. Pharmacol. 1987;31:30–34. PubMed
Kessopoulou E., Powers H.J., Sharma K.K., Pearson M.J., Russell J.M., Cooke I.D., Barratt C.L. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin e to treat reactive oxygen species associated male infertility. Fertil. Steril. 1995;64:825–831. doi: 10.1016/S0015-0282(16)57861-3. PubMed DOI
Omu A.E., Dashti H., Al-Othman S. Treatment of asthenozoospermia with zinc sulphate: Andrological, immunological and obstetric outcome. Eur. J. Obs. Gynecol. Reprod. Biol. 1998;79:179–184. doi: 10.1016/S0301-2115(97)00262-5. PubMed DOI
Rolf C., Cooper T., Yeung C., Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin c and vitamin e: A randomized, placebo-controlled, double-blind study. Hum. Reprod. 1999;14:1028–1033. doi: 10.1093/humrep/14.4.1028. PubMed DOI
Greco E., Iacobelli M., Rienzi L., Ubaldi F., Ferrero S., Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J. Androl. 2005;26:349–353. doi: 10.2164/jandrol.04146. PubMed DOI
Balercia G., Regoli F., Armeni T., Koverech A., Mantero F., Boscaro M. Placebo-controlled double-blind randomized trial on the use of l-carnitine, l-acetylcarnitine, or combined l-carnitine and l-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil. Steril. 2005;84:662–671. doi: 10.1016/j.fertnstert.2005.03.064. PubMed DOI
Sigman M., Glass S., Campagnone J., Pryor J.L. Carnitine for the treatment of idiopathic asthenospermia: A randomized, double-blind, placebo-controlled trial. Fertil. Steril. 2006;85:1409–1414. doi: 10.1016/j.fertnstert.2005.10.055. PubMed DOI
Ménézo Y.J., Hazout A., Panteix G., Robert F., Rollet J., Cohen-Bacrie P., Chapuis F., Clément P., Benkhalifa M. Antioxidants to reduce sperm DNA fragmentation: An unexpected adverse effect. Reprod. Biomed. Online. 2007;14:418–421. doi: 10.1016/S1472-6483(10)60887-5. PubMed DOI
Tremellen K., Miari G., Froiland D., Thompson J. A randomised control trial examining the effect of an antioxidant (menevit) on pregnancy outcome during ivf-icsi treatment. Austr. N. Z. J. Obs. Gynaecol. 2007;47:216–221. doi: 10.1111/j.1479-828X.2007.00723.x. PubMed DOI
Hawkes W.C., Alkan Z., Wong K. Selenium supplementation does not affect testicular selenium status or semen quality in north american men. J. Androl. 2009;30:525–533. doi: 10.2164/jandrol.108.006940. PubMed DOI
Tunc O., Thompson J., Tremellen K. Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod. Biomed. Online. 2009;18:761–768. doi: 10.1016/S1472-6483(10)60024-7. PubMed DOI
Gual-Frau J., Abad C., Amengual M.J., Hannaoui N., Checa M.A., Ribas-Maynou J., Lozano I., Nikolaou A., Benet J., García-Peiró A. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade i varicocele patients. Hum. Fertil. 2015;18:225–229. doi: 10.3109/14647273.2015.1050462. PubMed DOI
Stenqvist A., Oleszczuk K., Leijonhufvud I., Giwercman A. Impact of antioxidant treatment on DNA fragmentation index: A double-blind placebo-controlled randomized trial. Andrology. 2018;6:811–816. doi: 10.1111/andr.12547. PubMed DOI
Safarinejad M.R., Safarinejad S., Shafiei N., Safarinejad S. Effects of the reduced form of coenzyme q10 (ubiquinol) on semen parameters in men with idiopathic infertility: A double-blind, placebo controlled, randomized study. J. Urol. 2012;188:526–531. doi: 10.1016/j.juro.2012.03.131. PubMed DOI
Micic S., Lalic N., Djordjevic D., Bojanic N., Bogavac-Stanojevic N., Busetto G.M., Virmani A., Agarwal A. Double-blind, randomised, placebo-controlled trial on the effect of l-carnitine and l-acetylcarnitine on sperm parameters in men with idiopathic oligoasthenozoospermia. Andrologia. 2019;51:e13267. doi: 10.1111/and.13267. PubMed DOI PMC
Schisterman E.F., Sjaarda L.A., Clemons T., Carrell D.T., Perkins N.J., Johnstone E., Lamb D., Chaney K., Van Voorhis B.J., Ryan G. Effect of folic acid and zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment: A randomized clinical trial. J. Am. Med. Assoc. 2020;323:35–48. doi: 10.1001/jama.2019.18714. PubMed DOI PMC
Greabu M., Battino M., Mohora M., Olinescu R., Totan A., Didilescu A. Oxygen, a paradoxical element. Rom. J. Intern. Med. 2008;46:125–135. PubMed
Bioveris A., Chance B. The mitochondrial generation of hydrogen peroxide. Biochem. J. 1973;134:707. doi: 10.1042/bj1340707. PubMed DOI PMC
Halliwell B. Free radicals and antioxidants–quo vadis? Trends Pharm. Sci. 2011;32:125–130. doi: 10.1016/j.tips.2010.12.002. PubMed DOI
Hayyan M., Hashim M.A., AlNashef I.M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016;116:3029–3085. doi: 10.1021/acs.chemrev.5b00407. PubMed DOI
Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003;552:335–344. doi: 10.1113/jphysiol.2003.049478. PubMed DOI PMC
Raha S., Robinson B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 2000;25:502–508. doi: 10.1016/S0968-0004(00)01674-1. PubMed DOI
Halliwell B., Gutteridge J.M. Free Radicals in Biology and Medicine. Oxford University Press; New York, NY, USA: 2015.
Agarwal A., Saleh R.A., Bedaiwy M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003;79:829–843. doi: 10.1016/S0015-0282(02)04948-8. PubMed DOI
John Aitken R., Clarkson J.S., Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 1989;41:183–197. doi: 10.1095/biolreprod41.1.183. PubMed DOI
Li X., Fang P., Mai J., Choi E.T., Wang H., Yang X.-F. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 2013;6:19. doi: 10.1186/1756-8722-6-19. PubMed DOI PMC
Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Hampton M.B., Kettle A.J., Winterbourn C.C. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92:3007–3017. doi: 10.1182/blood.V92.9.3007. PubMed DOI
Sengupta P., Dutta S., Alahmar A.T., D’souza U.J.A. Reproductive tract infection, inflammation and male infertility. Chem. Biol. Lett. 2020;7:75–84.
O’Flaherty C.N., de Lamirande E., Gagnon C. Reactive oxygen species and protein kinases modulate the level of phospho-mek-like proteins during human sperm capacitation. Biol. Reprod. 2005;73:94–105. doi: 10.1095/biolreprod.104.038794. PubMed DOI
Garratt M., Bathgate R., de Graaf S.P., Brooks R.C. Copper-zinc superoxide dismutase deficiency impairs sperm motility and in vivo fertility. Reproduction. 2013;146:297–304. doi: 10.1530/REP-13-0229. PubMed DOI
Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Kahn B.E., Brannigan R.E. Obesity and male infertility. Curr. Opin. Urol. 2017;27:441–445. doi: 10.1097/MOU.0000000000000417. PubMed DOI
Tsatsanis C., Dermitzaki E., Avgoustinaki P., Malliaraki N., Mytaras V., Margioris A.N. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (hpg) axis. Hormones. 2015;14:549–562. doi: 10.14310/horm.2002.1649. PubMed DOI
Bhattacharya K., Sengupta P., Dutta S., Karkada I.R. Obesity, systemic inflammation and male infertility. Chem. Biol. Lett. 2020;7:92–98.
Irez T., Bicer S., Sahin E., Dutta S., Sengupta P. Cytokines and adipokines in the regulation of spermatogenesis and semen quality. Chem. Biol. Lett. 2020;7:131–139.
Mathur P.P., Huang L., Kashou A., Vaithinathan S., Agarwal A. Environmental toxicants and testicular apoptosis. Open Reprod. Sci. J. 2011;3:114–124.
Sharma R., Biedenharn K.R., Fedor J.M., Agarwal A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013;11:66. doi: 10.1186/1477-7827-11-66. PubMed DOI PMC
Wendel A. Measurement of in vivo lipid peroxidation and toxicological significance. Free Rad. Biol. Med. 1987;3:355–358. doi: 10.1016/S0891-5849(87)80047-3. PubMed DOI
Castagne V., Lefevre K., Natero R., Becker D., Clarke P. An optimal redox status for the survival of axotomized ganglion cells in the developing retina. Neuroscience. 1999;93:313–320. doi: 10.1016/S0306-4522(99)00138-4. PubMed DOI
Symeonidis E.N., Evgeni E., Palapelas V., Koumasi D., Pyrgidis N., Sokolakis I., Hatzichristodoulou G., Tsiampali C., Mykoniatis I., Zachariou A., et al. Redox balance in male infertility: Excellence through moderation-“μέτρον ἄριστον”. Antioxidants. 2021;10:1534. doi: 10.3390/antiox10101534. PubMed DOI PMC
Panner Selvam M.K., Agarwal A., Henkel R., Finelli R., Robert K.A., Iovine C., Baskaran S. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Rad. Biol. Med. 2020;152:375–385. doi: 10.1016/j.freeradbiomed.2020.03.008. PubMed DOI
Bjørklund G., Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017;33:311–321. doi: 10.1016/j.nut.2016.07.018. PubMed DOI
Zhang H., Limphong P., Pieper J., Liu Q., Rodesch C.K., Christians E., Benjamin I.J. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J. 2012;26:1442–1451. doi: 10.1096/fj.11-199869. PubMed DOI PMC
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC
Walter P., Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038. PubMed DOI
Korge P., Calmettes G., Weiss J.N. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Biochim. Biophys. Acta. 2015;1847:514–525. doi: 10.1016/j.bbabio.2015.02.012. PubMed DOI PMC
Klein E.A., Thompson I.M., Tangen C.M., Crowley J.J., Lucia M.S., Goodman P.J., Minasian L.M., Ford L.G., Parnes H.L., Gaziano J.M. Vitamin e and the risk of prostate cancer: The selenium and vitamin e cancer prevention trial (select) J. Am. Med. Assoc. 2011;306:1549–1556. doi: 10.1001/jama.2011.1437. PubMed DOI PMC
Brewer A.C., Mustafi S.B., Murray T.V., Rajasekaran N.S., Benjamin I.J. Reductive stress linked to small hsps, g6pd, and nrf2 pathways in heart disease. Antioxid. Redox Signal. 2013;18:1114–1127. doi: 10.1089/ars.2012.4914. PubMed DOI PMC
Mentor S., Fisher D. Aggressive antioxidant reductive stress impairs brain endothelial cell angiogenesis and blood brain barrier function. Curr. Neurovas. Res. 2017;14:71–81. doi: 10.2174/1567202613666161129113950. PubMed DOI
Atta E.M., Mohamed N.H., Abdelgawad A.A. Antioxidants: An overview on the natural and synthetic types. Eur. Chem. Bull. 2017;6:365–375. doi: 10.17628/ecb.2017.6.365-375. DOI
Miller E.R., III, Pastor-Barriuso R., Dalal D., Riemersma R.A., Appel L.J., Guallar E. Meta-analysis: High-dosage vitamin e supplementation may increase all-cause mortality. Ann. Int. Med. 2005;142:37–46. doi: 10.7326/0003-4819-142-1-200501040-00110. PubMed DOI
Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group The effect of vitamin e and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Eng. J. Med. 1994;330:1029–1035. doi: 10.1056/NEJM199404143301501. PubMed DOI
Fraga C.G., Motchnik P.A., Shigenaga M.K., Helbock H.J., Jacob R.A., Ames B.N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc. Nat. Acad. Sci. USA. 1991;88:11003–11006. doi: 10.1073/pnas.88.24.11003. PubMed DOI PMC
Aruoma O.I., Halliwell B., Gajewski E., Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem. J. 1991;273:601–604. doi: 10.1042/bj2730601. PubMed DOI PMC
Abad C., Amengual M., Gosálvez J., Coward K., Hannaoui N., Benet J., García-Peiró A., Prats J. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia. 2013;45:211–216. doi: 10.1111/and.12003. PubMed DOI
Ahmadi S., Bashiri R., Ghadiri-Anari A., Nadjarzadeh A. Antioxidant supplements and semen parameters: An evidence based review. Int. J. Reprod. BioMed. 2016;14:729. doi: 10.29252/ijrm.14.12.729. PubMed DOI PMC
Alahmar A.T., Sengupta P., Dutta S., Calogero A.E. Coenzyme q10, oxidative stress markers, and sperm DNA damage in men with idiopathic oligoasthenoteratospermia. Clin. Exp. Reprod. Med. 2021;48:150–155. doi: 10.5653/cerm.2020.04084. PubMed DOI PMC
Alahmar A.T., Calogero A.E., Singh R., Cannarella R., Sengupta P., Dutta S. Coenzyme q10, oxidative stress, and male infertility: A review. Clin. Exp. Reprod. Med. 2021;48:97–104. doi: 10.5653/cerm.2020.04175. PubMed DOI PMC
Showell M.G., Mackenzie-Proctor R., Brown J., Yazdani A., Stankiewicz M.T., Hart R.J. Antioxidants for male subfertility. Cochr. Datab. Syst. Rev. 2014;12:CD007411. doi: 10.1002/14651858.CD007411.pub3. PubMed DOI
Garg H., Kumar R. An update on the role of medical treatment including antioxidant therapy in varicocele. Asian J. Androl. 2016;18:222. PubMed PMC
Alahmar A.T. The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin. Exp. Reprod. Med. 2018;45:57. doi: 10.5653/cerm.2018.45.2.57. PubMed DOI PMC
Silver E.W., Eskenazi B., Evenson D.P., Block G., Young S., Wyrobek A.J. Effect of antioxidant intake on sperm chromatin stability in healthy nonsmoking men. J. Androl. 2005;26:550–556. doi: 10.2164/jandrol.04165. PubMed DOI
Ufer C., Wang C.C., Borchert A., Heydeck D., Kuhn H. Redox control in mammalian embryo development. Antiox. Redox Signal. 2010;13:833–875. doi: 10.1089/ars.2009.3044. PubMed DOI
Harvey A.J., Kind K.L., Thompson J.G. Redox regulation of early embryo development. Reproduction. 2002;123:479–486. doi: 10.1530/rep.0.1230479. PubMed DOI
Giustarini D., Dalle-Donne I., Colombo R., Milzani A., Rossi R. Is ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide. 2008;19:252–258. doi: 10.1016/j.niox.2008.07.003. PubMed DOI
Ménézo Y., Entezami F., Lichtblau I., Belloc S., Cohen M., Dale B. Oxidative stress and fertility: Incorrect assumptions and ineffective solutions? Zygote. 2014;22:80. doi: 10.1017/S0967199412000263. PubMed DOI
Bleau G., Lemarbre J., Faucher G., Roberts K.D., Chapdelaine A. Semen selenium and human fertility. Fertil. Steril. 1984;42:890–894. doi: 10.1016/S0015-0282(16)48261-0. PubMed DOI
Bouayed J., Bohn T. Exogenous antioxidants—Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidat. Med. Cell. Longev. 2010;3:228–237. doi: 10.4161/oxim.3.4.12858. PubMed DOI PMC
Omenn G.S., Goodman G.E., Thornquist M.D., Balmes J., Cullen M.R., Glass A., Keogh J.P., Meyskens F.L., Jr., Valanis B., Williams J.H., Jr. Risk factors for lung cancer and for intervention effects in caret, the beta-carotene and retinol efficacy trial. J. Nat. Cancer Inst. 1996;88:1550–1559. doi: 10.1093/jnci/88.21.1550. PubMed DOI
Donnelly E.T., McClure N., Lewis S.E. The effect of ascorbate and α-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999;14:505–512. doi: 10.1093/mutage/14.5.505. PubMed DOI
Verma A., Kanwar K. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: An in vitro analysis. Andrologia. 1998;30:325–329. doi: 10.1111/j.1439-0272.1998.tb01178.x. PubMed DOI
Moilanen J., Hovatta O., Lindroth L. Vitamin e levels in seminal plasma can be elevated by oral administration of vitamin e in infertile men. Int. J. Androl. 1993;16:165–166. doi: 10.1111/j.1365-2605.1993.tb01171.x. PubMed DOI
DePalma A.F., Rothman R.H., Lewinnek G.E., Canale S.T. Anterior interbody fusion for severe cervical disc degeneration. Surg. Gynecol. Obs. 1972;134:755–758. PubMed
Purvis K., Christiansen E. Infection in the male reproductive tract. Impact, diagnosis and treatment in relation to male infertility. Int. J. Androl. 1993;16:1–13. doi: 10.1111/j.1365-2605.1993.tb01146.x. PubMed DOI
Comhaire F.H., Mahmoud A.M., Depuydt C.E., Zalata A.A., Christophe A.B. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential: The andrologist’s viewpoint. Hum. Reprod. Update. 1999;5:393–398. doi: 10.1093/humupd/5.5.393. PubMed DOI
Dutta S., Sengupta P., Chhikara B.S. Reproductive inflammatory mediators and male infertility. Chem. Biol. Lett. 2020;7:73–74.
Hales D.B., Diemer T., Hales K.H. Role of cytokines in testicular function. Endocrine. 1999;10:201–217. doi: 10.1007/BF02738619. PubMed DOI
Söder O., Sultana T., Jonsson C., Wahlgren A., Petersen C., Holst M. The interleukin-1 system in the testis. Andrologia. 2000;32:52–55. PubMed
Diemer T., Hales D.B., Weidner W. Immune-endocrine interactions and leydig cell function: The role of cytokines. Andrologia. 2003;35:55–63. doi: 10.1046/j.1439-0272.2003.00537.x. PubMed DOI
Maegawa M., Kamada M., Irahara M., Yamamoto S., Yoshikawa S., Kasai Y., Ohmoto Y., Gima H., Thaler C.J., Aono T. A repertoire of cytokines in human seminal plasma. J. Reprod. Immunol. 2002;54:33–42. doi: 10.1016/S0165-0378(01)00063-8. PubMed DOI
Theam O.C., Dutta S., Sengupta P. Role of leucocytes in reproductive tract infections and male infertility. Chem. Biol. Lett. 2020;7:124–130.
Cudicini C., Lejeune H., Gomez E., Bosmans E., Ballet F., Saez J., Jégou B. Human leydig cells and sertoli cells are producers of interleukins-1 and -6. J. Clin. Endocrinol. Metab. 1997;82:1426–1433. doi: 10.1210/jc.82.5.1426. PubMed DOI
Turvey S.E., Broide D.H. Innate immunity. J. Allerg. Clin. Immunol. 2010;125:S24–S32. doi: 10.1016/j.jaci.2009.07.016. PubMed DOI PMC
Keck C., Gerber-Schäfer C., Clad A., Wilhelm C., Breckwoldt M. Seminal tract infections: Impact on male fertility and treatment options. Hum. Reprod. Update. 1998;4:891–903. doi: 10.1093/humupd/4.6.891. PubMed DOI
Dutta S., Sengupta P., Hassan M.F., Biswas A. Role of toll-like receptors in the reproductive tract inflammation and male infertility. Chem. Biol. Lett. 2020;7:113–123.
Potts J.M., Sharma R., Pasqualotto F., Nelson D., Hall G., Agarwal A. Association of ureaplasma urealyticum with abnormal reactive oxygen species levels and absence of leukocytospermia. J. Urol. 2000;163:1775–1778. doi: 10.1016/S0022-5347(05)67540-4. PubMed DOI
Agarwal A., Majzoub A., Baskaran S., Selvam M.K.P., Cho C.L., Henkel R., Finelli R., Leisegang K., Sengupta P., Barbarosie C. Sperm DNA fragmentation: A new guideline for clinicians. World J. Men’s Health. 2020;38:412. doi: 10.5534/wjmh.200128. PubMed DOI PMC
Yu B., Huang Z. Variations in antioxidant genes and male infertility. BioMed Res. Int. 2015;2015:513196. doi: 10.1155/2015/513196. PubMed DOI PMC
Carrell D.T., Aston K.I. The search for snps, cnvs, and epigenetic variants associated with the complex disease of male infertility. Syst. Biol. Reprod. Med. 2011;57:17–26. doi: 10.3109/19396368.2010.521615. PubMed DOI
Kemal Duru N., Morshedi M., Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 2000;74:1200–1207. doi: 10.1016/S0015-0282(00)01591-0. PubMed DOI
Bisht S., Faiq M., Tolahunase M., Dada R. Oxidative stress and male infertility. Nat. Rev. Urol. 2017;14:470–485. doi: 10.1038/nrurol.2017.69. PubMed DOI
Ritchie C., Ko E.Y. Oxidative stress in the pathophysiology of male infertility. Andrologia. 2021;53:e13581. doi: 10.1111/and.13581. PubMed DOI
Huang C., Cao X., Pang D., Li C., Luo Q., Zou Y., Feng B., Li L., Cheng A., Chen Z. Is male infertility associated with increased oxidative stress in seminal plasma? A-meta analysis. Oncotarget. 2018;9:24494. doi: 10.18632/oncotarget.25075. PubMed DOI PMC
Naz R.K., Evans L. Presence and modulation of interleukin-12 in seminal plasma of fertile and infertile men. J. Androl. 1998;19:302–307. PubMed
Kurkowska W., Bogacz A., Janiszewska M., Gabryś E., Tiszler M., Bellanti F., Kasperczyk S., Machoń-Grecka A., Dobrakowski M., Kasperczyk A. Oxidative stress is associated with reduced sperm motility in normal semen. Am. J. Men’s Health. 2020;14:1557988320939731. doi: 10.1177/1557988320939731. PubMed DOI PMC
Gruschwitz M.S., Brezinschek R., Brezinschek H.P. Cytokine levels in the seminal plasma of infertile males. J. Androl. 1996;17:158–163. PubMed
Halliwell B. The antioxidant paradox: Less paradoxical now? Brit. J. Clin. Pharmacol. 2013;75:637–644. doi: 10.1111/j.1365-2125.2012.04272.x. PubMed DOI PMC
Murphy M.P., Holmgren A., Larsson N.G., Halliwell B., Chang C.J., Kalyanaraman B., Rhee S.G., Thornalley P.J., Partridge L., Gems D., et al. Unraveling the biological roles of reactive oxygen species. Cell. Metab. 2011;13:361–366. doi: 10.1016/j.cmet.2011.03.010. PubMed DOI PMC
Rehman A., Collis C.S., Yang M., Kelly M., Diplock A.T., Halliwell B., Rice-Evans C. The effects of iron and vitamin c co-supplementation on oxidative damage to DNA in healthy volunteers. Biochem. Biophys. Res. Comm. 1998;246:293–298. doi: 10.1006/bbrc.1998.8592. PubMed DOI
Beatty E., England T., Geissler C., Aruoma O., Halliwell B. Effects of antioxidant vitamin supplementation on markers of DNA damage and plasma antioxidants. Proc. Nutr. Soc. 1999;58:44.
Podmore I.D., Griffiths H.R., Herbert K.E., Mistry N., Mistry P., Lunec J. Vitamin c exhibits pro-oxidant properties. Nature. 1998;392:559. doi: 10.1038/33308. PubMed DOI
Son Y.O., Pratheeshkumar P., Roy R.V., Hitron J.A., Wang L., Divya S.P., Xu M., Luo J., Chen G., Zhang Z., et al. Antioncogenic and oncogenic properties of nrf2 in arsenic-induced carcinogenesis. J. Biol. Chem. 2015;290:27090–27100. doi: 10.1074/jbc.M115.675371. PubMed DOI PMC
Djuric Z., Kashif M., Fleming T., Muhammad S., Piel D., von Bauer R., Bea F., Herzig S., Zeier M., Pizzi M., et al. Targeting activation of specific nf-κb subunits prevents stress-dependent atherothrombotic gene expression. Mol. Med. 2012;18:1375–1386. doi: 10.2119/molmed.2012.00282. PubMed DOI PMC