Antioxidant Paradox in Male Infertility: 'A Blind Eye' on Inflammation

. 2022 Jan 16 ; 11 (1) : . [epub] 20220116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35052671

The pathophysiology of male infertility involves various interlinked endogenous pathways. About 50% of the cases of infertility in men are idiopathic, and oxidative stress (OS) reportedly serves as a central mechanism in impairing male fertility parameters. The endogenous antioxidant system operates to conserve the seminal redox homeostasis required for normal male reproduction. OS strikes when a generation of seminal reactive oxygen species (ROS) overwhelms endogenous antioxidant capacity. Thus, antioxidant treatment finds remarkable relevance in the case of idiopathic male infertility or subfertility. However, due to lack of proper detection of OS in male infertility, use of antioxidant(s) in some cases may be arbitrary or lead to overuse and induction of 'reductive stress'. Moreover, inflammation is closely linked to OS and may establish a vicious loop that is capable of disruption to male reproductive tissues. The result is exaggeration of cellular damage and disruption of male reproductive tissues. Therefore, limitations of antioxidant therapy in treating male infertility are the failure in the selection of specific treatments targeting inflammation and OS simultaneously, two of the core mechanisms of male infertility. The present review aims to elucidate the antioxidant paradox in male infertility treatment, from the viewpoints of both induction of reductive stress as well as overlooking the inflammatory consequences.

Zobrazit více v PubMed

Agarwal A., Mulgund A., Hamada A., Chyatte M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015;13:37. doi: 10.1186/s12958-015-0032-1. PubMed DOI PMC

Vander Borght M., Wyns C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018;62:2–10. doi: 10.1016/j.clinbiochem.2018.03.012. PubMed DOI

Aktan G., Doğru-Abbasoğlu S., Küçükgergin C., Kadıoğlu A., Özdemirler-Erata G., Koçak-Toker N. Mystery of idiopathic male infertility: Is oxidative stress an actual risk? Fertil. Steril. 2013;99:1211–1215. doi: 10.1016/j.fertnstert.2012.11.045. PubMed DOI

Alahmar A.T., Calogero A.E., Sengupta P., Dutta S. Coenzyme q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J. Men’s Health. 2021;39:346–351. doi: 10.5534/wjmh.190145. PubMed DOI PMC

Alahmar A.T., Sengupta P. Impact of coenzyme q10 and selenium on seminal fluid parameters and antioxidant status in men with idiopathic infertility. Biol. Trace Elem. Res. 2021;199:1246–1252. doi: 10.1007/s12011-020-02251-3. PubMed DOI

Agarwal A., Sengupta P. Male Infertility. Springer; Berlin/Heidelberg, Germany: 2020. Oxidative stress and its association with male infertility; pp. 57–68.

Sengupta P., Dutta S., Krajewska-Kulak E. The disappearing sperms: Analysis of reports published between 1980 and 2015. Am. J. Men’s Health. 2017;11:1279–1304. doi: 10.1177/1557988316643383. PubMed DOI PMC

Pant P.R. Factors affecting male infertility. J. Inst. Med. 2009;31:10–12. doi: 10.3126/jiom.v31i3.2973. DOI

Lettieri G., D’Agostino G., Mele E., Cardito C., Esposito R., Cimmino A., Giarra A., Trifuoggi M., Raimondo S., Notari T., et al. Discovery of the involvement in DNA oxidative damage of human sperm nuclear basic proteins of healthy young men living in polluted areas. Int. J. Mol. Sci. 2020;21:4198. doi: 10.3390/ijms21124198. PubMed DOI PMC

Lettieri G., Marra F., Moriello C., Prisco M., Notari T., Trifuoggi M., Giarra A., Bosco L., Montano L., Piscopo M. Molecular alterations in spermatozoa of a family case living in the land of fires. A first look at possible transgenerational effects of pollutants. Int. J. Mol. Sci. 2020;21:6710. doi: 10.3390/ijms21186710. PubMed DOI PMC

Sharma R., Harlev A., Agarwal A., Esteves S.C. Cigarette smoking and semen quality: A new meta-analysis examining the effect of the 2010 world health organization laboratory methods for the examination of human semen. Eur. Urol. 2016;70:635–645. doi: 10.1016/j.eururo.2016.04.010. PubMed DOI

Bundhun P.K., Janoo G., Bhurtu A., Teeluck A.R., Soogund M.Z.S., Pursun M., Huang F. Tobacco smoking and semen quality in infertile males: A systematic review and meta-analysis. BMC Public Health. 2019;19:36. doi: 10.1186/s12889-018-6319-3. PubMed DOI PMC

Kovac J.R., Khanna A., Lipshultz L.I. The effects of cigarette smoking on male fertility. Postgrad. Med. 2015;127:338–341. doi: 10.1080/00325481.2015.1015928. PubMed DOI PMC

Ramgir S.S., Abilash V. Impact of smoking and alcohol consumption on oxidative status in male infertility and sperm quality. Indian J. Pharm. Sci. 2019;81:933–945. doi: 10.36468/pharmaceutical-sciences.588. DOI

Muthusami K., Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil. Steril. 2005;84:919–924. doi: 10.1016/j.fertnstert.2005.04.025. PubMed DOI

Durairajanayagam D. Lifestyle causes of male infertility. Arab J. Urol. 2018;16:10–20. doi: 10.1016/j.aju.2017.12.004. PubMed DOI PMC

Fronczak C.M., Kim E.D., Barqawi A.B. The insults of illicit drug use on male fertility. J. Androl. 2012;33:515–528. doi: 10.2164/jandrol.110.011874. PubMed DOI

Sansone A., Di Dato C., de Angelis C., Menafra D., Pozza C., Pivonello R., Isidori A., Gianfrilli D. Smoke, alcohol and drug addiction and male fertility. Reprod. Biol. Endocrinol. 2018;16:3. doi: 10.1186/s12958-018-0320-7. PubMed DOI PMC

Darbandi M., Darbandi S., Agarwal A., Baskaran S., Dutta S., Sengupta P., Khorshid H.R.K., Esteves S., Gilany K., Hedayati M. Reactive oxygen species-induced alterations in h19-igf2 methylation patterns, seminal plasma metabolites, and semen quality. J. Assist. Reprod. Genet. 2019;36:241–253. doi: 10.1007/s10815-018-1350-y. PubMed DOI PMC

Dutta S., Biswas A., Sengupta P. Obesity, endocrine disruption and male infertility. Asian Pac. J. Reprod. 2019;8:195–202. doi: 10.4103/2305-0500.268133. DOI

Leisegang K., Dutta S. Do lifestyle practices impede male fertility? Andrologia. 2021;53:e13595. doi: 10.1111/and.13595. PubMed DOI

Sengupta P., Dutta S., Karkada I., Chinni S. Endocrinopathies and male infertility. Life. 2022;12:10. doi: 10.3390/life12010010. PubMed DOI PMC

Poljsak B., Šuput D. Ros and antioxidants: Achieving the balance between when to use the synthetic antioxidants. Oxidat. Med. Cell. Long. 2013;2013:956792. doi: 10.1155/2013/956792. PubMed DOI PMC

Sheweita S.A., Tilmisany A.M., Al-Sawaf H. Mechanisms of male infertility: Role of antioxidants. Curr. Drug Metab. 2005;6:495–501. doi: 10.2174/138920005774330594. PubMed DOI

Agarwal A., Sekhon L.H. The role of antioxidant therapy in the treatment of male infertility. Hum. Fertil. 2010;13:217–225. doi: 10.3109/14647273.2010.532279. PubMed DOI

Pérez-Torres I., Guarner-Lans V., Rubio-Ruiz M.E. Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int. J. Mol. Sci. 2017;18:2098. doi: 10.3390/ijms18102098. PubMed DOI PMC

Halliwell B. The antioxidant paradox. Lancet. 2000;355:1179–1180. doi: 10.1016/S0140-6736(00)02075-4. PubMed DOI

De Lamirande E., Gagnon C. Impact of reactive oxygen species on spermatozoa: A balancing act between beneficial and detrimental effects. Hum. Reprod. 1995;10:15–21. doi: 10.1093/humrep/10.suppl_1.15. PubMed DOI

Kothari S., Thompson A., Agarwal A., du Plessis S.S. Free radicals: Their beneficial and detrimental effects on sperm function. Indian J. Exp. Biol. 2010;48:425–435. PubMed

Henkel R., Sandhu I.S., Agarwal A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia. 2019;51:e13162. doi: 10.1111/and.13162. PubMed DOI

Dutta S., Sengupta P., Slama P., Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int. J. Mol. Sci. 2021;22:10043. doi: 10.3390/ijms221810043. PubMed DOI PMC

Izuka E., Menuba I., Sengupta P., Dutta S., Nwagha U. Antioxidants, anti-inflammatory drugs and antibiotics in the treatment of reproductive tract infections and their association with male infertility. Chem. Biol. Lett. 2020;7:156–165.

Darbandi M., Darbandi S., Agarwal A., Baskaran S., Sengupta P., Dutta S., Mokarram P., Saliminejad K., Sadeghi M.R. Oxidative stress-induced alterations in seminal plasma antioxidants: Is there any association with keap1 gene methylation in human spermatozoa? Andrologia. 2019;51:e13159. doi: 10.1111/and.13159. PubMed DOI

Biswas S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016;2016:5698931. doi: 10.1155/2016/5698931. PubMed DOI PMC

Sengupta P., Dutta S. Hormones in male reproduction and fertility. Asian Pac. J. Reprod. 2019;8:187–188. doi: 10.4103/2305-0500.268131. DOI

Zhou W., De Iuliis G.N., Dun M.D., Nixon B. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front. Endocrinol. 2018;9:59. doi: 10.3389/fendo.2018.00059. PubMed DOI PMC

Dutta S., Henkel R., Sengupta P., Agarwal A. Male Infertility. Springer; Berlin/Heidelberg, Germany: 2020. Physiological role of ros in sperm function; pp. 337–345.

Agarwal A., Prabakaran S.A. Oxidative stress and antioxidants in male infertility: A difficult balance. Int. J. Reprod. Med. 2005;3:1–8.

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. PubMed DOI PMC

O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J. Androl. 2015;17:583. doi: 10.4103/1008-682X.153303. PubMed DOI PMC

O’Flaherty C. The enzymatic antioxidant system of human spermatozoa. Adv. Androl. 2014;2014:626374. doi: 10.1155/2014/626374. DOI

Yan L., Liu J., Wu S., Zhang S., Ji G., Gu A. Seminal superoxide dismutase activity and its relationship with semen quality and sod gene polymorphism. J. Assist. Reprod. Genet. 2014;31:549–554. doi: 10.1007/s10815-014-0215-2. PubMed DOI PMC

Fridovich I. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. PubMed DOI

Kolesnikova L., Kurashova N., Bairova T., Dolgikh M., Ershova O., Dashiev B., Korytov L., Koroleva N. Role of glutathione-s-transferase family genes in male infertility. Bull. Exp. Biol. Med. 2017;163:643–645. doi: 10.1007/s10517-017-3869-9. PubMed DOI

Agarwal A., Leisegang K., Sengupta P. Pathology. Elsevier; Amsterdam, The Netherlands: 2020. Oxidative stress in pathologies of male reproductive disorders; pp. 15–27.

Sabeti P., Pourmasumi S., Rahiminia T., Akyash F., Talebi A.R. Etiologies of sperm oxidative stress. Int. J. Reprod. BioMed. 2016;14:231. doi: 10.29252/ijrm.14.4.231. PubMed DOI PMC

Muratori M., Tamburrino L., Marchiani S., Cambi M., Olivito B., Azzari C., Forti G., Baldi E. Investigation on the origin of sperm DNA fragmentation: Role of apoptosis, immaturity and oxidative stress. Mol. Med. 2015;21:109–122. doi: 10.2119/molmed.2014.00158. PubMed DOI PMC

Montano L., Ceretti E., Donato F., Bergamo P., Zani C., Viola G.C.V., Notari T., Pappalardo S., Zani D., Ubaldi S., et al. Effects of a lifestyle change intervention on semen quality in healthy young men living in highly polluted areas in italy: The fast randomized controlled trial. Eur. Urol. Focus. 2021. in press . PubMed DOI

Halliwell B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning) Free Rad. Res. 1999;31:261–272. doi: 10.1080/10715769900300841. PubMed DOI

Willcox J.K., Ash S.L., Catignani G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004;44:275–295. doi: 10.1080/10408690490468489. PubMed DOI

Barratt C.L., Björndahl L., De Jonge C.J., Lamb D.J., Osorio Martini F., McLachlan R., Oates R.D., van der Poel S., St John B., Sigman M. The diagnosis of male infertility: An analysis of the evidence to support the development of global who guidance—challenges and future research opportunities. Hum. Reprod. Update. 2017;23:660–680. doi: 10.1093/humupd/dmx021. PubMed DOI PMC

Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis. J. Am. Med. Assoc. 2007;297:842–857. doi: 10.1001/jama.297.8.842. PubMed DOI

Bjelakovic G., Nikolova D., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: A systematic review and meta-analysis. Lancet. 2004;364:1219–1228. doi: 10.1016/S0140-6736(04)17138-9. PubMed DOI

Stanner S., Hughes J., Kelly C., Buttriss J. A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Pub. Health Nutr. 2004;7:407–422. doi: 10.1079/PHN2003543. PubMed DOI

Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochr. Datab. Syst. Rev. 2012;2012:CD007176. doi: 10.1002/14651858.CD007176.pub2. PubMed DOI

Giussani D.A., Niu Y., Herrera E.A., Richter H.G., Camm E.J., Thakor A.S., Kane A.D., Hansell J.A., Brain K.L., Skeffington K.L., et al. Heart disease link to fetal hypoxia and oxidative stress. Adv. Fetal Neonat. Physiol. 2014;814:77–87. PubMed

Busetto G., Agarwal A., Virmani A., Antonini G., Ragonesi G., Del Giudice F., Micic S., Gentile V., De Berardinis E. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double-blind placebo-controlled study. Andrologia. 2018;50:e12927. doi: 10.1111/and.12927. PubMed DOI

Sengupta P., Agarwal A., Pogrebetskaya M., Roychoudhury S., Durairajanayagam D., Henkel R. Role of withania somnifera (ashwagandha) in the management of male infertility. Reprod. Biomed. Online. 2018;36:311–326. doi: 10.1016/j.rbmo.2017.11.007. PubMed DOI

Torres-Arce E., Vizmanos B., Babio N., Márquez-Sandoval F., Salas-Huetos A. Dietary antioxidants in the treatment of male infertility: Counteracting oxidative stress. Biology. 2021;10:241. doi: 10.3390/biology10030241. PubMed DOI PMC

Venditti M., Ben Rhouma M., Romano M.Z., Messaoudi I., Reiter R.J., Minucci S. Evidence of melatonin ameliorative effects on the blood-testis barrier and sperm quality alterations induced by cadmium in the rat testis. Ecotoxicol. Env. Saf. 2021;226:112878. doi: 10.1016/j.ecoenv.2021.112878. PubMed DOI

Venditti M., Ben Rhouma M., Romano M.Z., Messaoudi I., Reiter R.J., Minucci S. Altered expression of daam1 and prep induced by cadmium toxicity is counteracted by melatonin in the rat testis. Genes. 2021;12:1016. doi: 10.3390/genes12071016. PubMed DOI PMC

Tikkiwal M., Ajmera R.L., Mathur N.K. Effect of zinc administration on seminal zinc and fertility of oligospermic males. Indian J. Physiol. Pharmacol. 1987;31:30–34. PubMed

Kessopoulou E., Powers H.J., Sharma K.K., Pearson M.J., Russell J.M., Cooke I.D., Barratt C.L. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin e to treat reactive oxygen species associated male infertility. Fertil. Steril. 1995;64:825–831. doi: 10.1016/S0015-0282(16)57861-3. PubMed DOI

Omu A.E., Dashti H., Al-Othman S. Treatment of asthenozoospermia with zinc sulphate: Andrological, immunological and obstetric outcome. Eur. J. Obs. Gynecol. Reprod. Biol. 1998;79:179–184. doi: 10.1016/S0301-2115(97)00262-5. PubMed DOI

Rolf C., Cooper T., Yeung C., Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin c and vitamin e: A randomized, placebo-controlled, double-blind study. Hum. Reprod. 1999;14:1028–1033. doi: 10.1093/humrep/14.4.1028. PubMed DOI

Greco E., Iacobelli M., Rienzi L., Ubaldi F., Ferrero S., Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J. Androl. 2005;26:349–353. doi: 10.2164/jandrol.04146. PubMed DOI

Balercia G., Regoli F., Armeni T., Koverech A., Mantero F., Boscaro M. Placebo-controlled double-blind randomized trial on the use of l-carnitine, l-acetylcarnitine, or combined l-carnitine and l-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil. Steril. 2005;84:662–671. doi: 10.1016/j.fertnstert.2005.03.064. PubMed DOI

Sigman M., Glass S., Campagnone J., Pryor J.L. Carnitine for the treatment of idiopathic asthenospermia: A randomized, double-blind, placebo-controlled trial. Fertil. Steril. 2006;85:1409–1414. doi: 10.1016/j.fertnstert.2005.10.055. PubMed DOI

Ménézo Y.J., Hazout A., Panteix G., Robert F., Rollet J., Cohen-Bacrie P., Chapuis F., Clément P., Benkhalifa M. Antioxidants to reduce sperm DNA fragmentation: An unexpected adverse effect. Reprod. Biomed. Online. 2007;14:418–421. doi: 10.1016/S1472-6483(10)60887-5. PubMed DOI

Tremellen K., Miari G., Froiland D., Thompson J. A randomised control trial examining the effect of an antioxidant (menevit) on pregnancy outcome during ivf-icsi treatment. Austr. N. Z. J. Obs. Gynaecol. 2007;47:216–221. doi: 10.1111/j.1479-828X.2007.00723.x. PubMed DOI

Hawkes W.C., Alkan Z., Wong K. Selenium supplementation does not affect testicular selenium status or semen quality in north american men. J. Androl. 2009;30:525–533. doi: 10.2164/jandrol.108.006940. PubMed DOI

Tunc O., Thompson J., Tremellen K. Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod. Biomed. Online. 2009;18:761–768. doi: 10.1016/S1472-6483(10)60024-7. PubMed DOI

Gual-Frau J., Abad C., Amengual M.J., Hannaoui N., Checa M.A., Ribas-Maynou J., Lozano I., Nikolaou A., Benet J., García-Peiró A. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade i varicocele patients. Hum. Fertil. 2015;18:225–229. doi: 10.3109/14647273.2015.1050462. PubMed DOI

Stenqvist A., Oleszczuk K., Leijonhufvud I., Giwercman A. Impact of antioxidant treatment on DNA fragmentation index: A double-blind placebo-controlled randomized trial. Andrology. 2018;6:811–816. doi: 10.1111/andr.12547. PubMed DOI

Safarinejad M.R., Safarinejad S., Shafiei N., Safarinejad S. Effects of the reduced form of coenzyme q10 (ubiquinol) on semen parameters in men with idiopathic infertility: A double-blind, placebo controlled, randomized study. J. Urol. 2012;188:526–531. doi: 10.1016/j.juro.2012.03.131. PubMed DOI

Micic S., Lalic N., Djordjevic D., Bojanic N., Bogavac-Stanojevic N., Busetto G.M., Virmani A., Agarwal A. Double-blind, randomised, placebo-controlled trial on the effect of l-carnitine and l-acetylcarnitine on sperm parameters in men with idiopathic oligoasthenozoospermia. Andrologia. 2019;51:e13267. doi: 10.1111/and.13267. PubMed DOI PMC

Schisterman E.F., Sjaarda L.A., Clemons T., Carrell D.T., Perkins N.J., Johnstone E., Lamb D., Chaney K., Van Voorhis B.J., Ryan G. Effect of folic acid and zinc supplementation in men on semen quality and live birth among couples undergoing infertility treatment: A randomized clinical trial. J. Am. Med. Assoc. 2020;323:35–48. doi: 10.1001/jama.2019.18714. PubMed DOI PMC

Greabu M., Battino M., Mohora M., Olinescu R., Totan A., Didilescu A. Oxygen, a paradoxical element. Rom. J. Intern. Med. 2008;46:125–135. PubMed

Bioveris A., Chance B. The mitochondrial generation of hydrogen peroxide. Biochem. J. 1973;134:707. doi: 10.1042/bj1340707. PubMed DOI PMC

Halliwell B. Free radicals and antioxidants–quo vadis? Trends Pharm. Sci. 2011;32:125–130. doi: 10.1016/j.tips.2010.12.002. PubMed DOI

Hayyan M., Hashim M.A., AlNashef I.M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016;116:3029–3085. doi: 10.1021/acs.chemrev.5b00407. PubMed DOI

Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003;552:335–344. doi: 10.1113/jphysiol.2003.049478. PubMed DOI PMC

Raha S., Robinson B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 2000;25:502–508. doi: 10.1016/S0968-0004(00)01674-1. PubMed DOI

Halliwell B., Gutteridge J.M. Free Radicals in Biology and Medicine. Oxford University Press; New York, NY, USA: 2015.

Agarwal A., Saleh R.A., Bedaiwy M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003;79:829–843. doi: 10.1016/S0015-0282(02)04948-8. PubMed DOI

John Aitken R., Clarkson J.S., Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 1989;41:183–197. doi: 10.1095/biolreprod41.1.183. PubMed DOI

Li X., Fang P., Mai J., Choi E.T., Wang H., Yang X.-F. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 2013;6:19. doi: 10.1186/1756-8722-6-19. PubMed DOI PMC

Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI

Hampton M.B., Kettle A.J., Winterbourn C.C. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92:3007–3017. doi: 10.1182/blood.V92.9.3007. PubMed DOI

Sengupta P., Dutta S., Alahmar A.T., D’souza U.J.A. Reproductive tract infection, inflammation and male infertility. Chem. Biol. Lett. 2020;7:75–84.

O’Flaherty C.N., de Lamirande E., Gagnon C. Reactive oxygen species and protein kinases modulate the level of phospho-mek-like proteins during human sperm capacitation. Biol. Reprod. 2005;73:94–105. doi: 10.1095/biolreprod.104.038794. PubMed DOI

Garratt M., Bathgate R., de Graaf S.P., Brooks R.C. Copper-zinc superoxide dismutase deficiency impairs sperm motility and in vivo fertility. Reproduction. 2013;146:297–304. doi: 10.1530/REP-13-0229. PubMed DOI

Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI

Kahn B.E., Brannigan R.E. Obesity and male infertility. Curr. Opin. Urol. 2017;27:441–445. doi: 10.1097/MOU.0000000000000417. PubMed DOI

Tsatsanis C., Dermitzaki E., Avgoustinaki P., Malliaraki N., Mytaras V., Margioris A.N. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (hpg) axis. Hormones. 2015;14:549–562. doi: 10.14310/horm.2002.1649. PubMed DOI

Bhattacharya K., Sengupta P., Dutta S., Karkada I.R. Obesity, systemic inflammation and male infertility. Chem. Biol. Lett. 2020;7:92–98.

Irez T., Bicer S., Sahin E., Dutta S., Sengupta P. Cytokines and adipokines in the regulation of spermatogenesis and semen quality. Chem. Biol. Lett. 2020;7:131–139.

Mathur P.P., Huang L., Kashou A., Vaithinathan S., Agarwal A. Environmental toxicants and testicular apoptosis. Open Reprod. Sci. J. 2011;3:114–124.

Sharma R., Biedenharn K.R., Fedor J.M., Agarwal A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013;11:66. doi: 10.1186/1477-7827-11-66. PubMed DOI PMC

Wendel A. Measurement of in vivo lipid peroxidation and toxicological significance. Free Rad. Biol. Med. 1987;3:355–358. doi: 10.1016/S0891-5849(87)80047-3. PubMed DOI

Castagne V., Lefevre K., Natero R., Becker D., Clarke P. An optimal redox status for the survival of axotomized ganglion cells in the developing retina. Neuroscience. 1999;93:313–320. doi: 10.1016/S0306-4522(99)00138-4. PubMed DOI

Symeonidis E.N., Evgeni E., Palapelas V., Koumasi D., Pyrgidis N., Sokolakis I., Hatzichristodoulou G., Tsiampali C., Mykoniatis I., Zachariou A., et al. Redox balance in male infertility: Excellence through moderation-“μέτρον ἄριστον”. Antioxidants. 2021;10:1534. doi: 10.3390/antiox10101534. PubMed DOI PMC

Panner Selvam M.K., Agarwal A., Henkel R., Finelli R., Robert K.A., Iovine C., Baskaran S. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Rad. Biol. Med. 2020;152:375–385. doi: 10.1016/j.freeradbiomed.2020.03.008. PubMed DOI

Bjørklund G., Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017;33:311–321. doi: 10.1016/j.nut.2016.07.018. PubMed DOI

Zhang H., Limphong P., Pieper J., Liu Q., Rodesch C.K., Christians E., Benjamin I.J. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J. 2012;26:1442–1451. doi: 10.1096/fj.11-199869. PubMed DOI PMC

Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC

Walter P., Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038. PubMed DOI

Korge P., Calmettes G., Weiss J.N. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Biochim. Biophys. Acta. 2015;1847:514–525. doi: 10.1016/j.bbabio.2015.02.012. PubMed DOI PMC

Klein E.A., Thompson I.M., Tangen C.M., Crowley J.J., Lucia M.S., Goodman P.J., Minasian L.M., Ford L.G., Parnes H.L., Gaziano J.M. Vitamin e and the risk of prostate cancer: The selenium and vitamin e cancer prevention trial (select) J. Am. Med. Assoc. 2011;306:1549–1556. doi: 10.1001/jama.2011.1437. PubMed DOI PMC

Brewer A.C., Mustafi S.B., Murray T.V., Rajasekaran N.S., Benjamin I.J. Reductive stress linked to small hsps, g6pd, and nrf2 pathways in heart disease. Antioxid. Redox Signal. 2013;18:1114–1127. doi: 10.1089/ars.2012.4914. PubMed DOI PMC

Mentor S., Fisher D. Aggressive antioxidant reductive stress impairs brain endothelial cell angiogenesis and blood brain barrier function. Curr. Neurovas. Res. 2017;14:71–81. doi: 10.2174/1567202613666161129113950. PubMed DOI

Atta E.M., Mohamed N.H., Abdelgawad A.A. Antioxidants: An overview on the natural and synthetic types. Eur. Chem. Bull. 2017;6:365–375. doi: 10.17628/ecb.2017.6.365-375. DOI

Miller E.R., III, Pastor-Barriuso R., Dalal D., Riemersma R.A., Appel L.J., Guallar E. Meta-analysis: High-dosage vitamin e supplementation may increase all-cause mortality. Ann. Int. Med. 2005;142:37–46. doi: 10.7326/0003-4819-142-1-200501040-00110. PubMed DOI

Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group The effect of vitamin e and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Eng. J. Med. 1994;330:1029–1035. doi: 10.1056/NEJM199404143301501. PubMed DOI

Fraga C.G., Motchnik P.A., Shigenaga M.K., Helbock H.J., Jacob R.A., Ames B.N. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc. Nat. Acad. Sci. USA. 1991;88:11003–11006. doi: 10.1073/pnas.88.24.11003. PubMed DOI PMC

Aruoma O.I., Halliwell B., Gajewski E., Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem. J. 1991;273:601–604. doi: 10.1042/bj2730601. PubMed DOI PMC

Abad C., Amengual M., Gosálvez J., Coward K., Hannaoui N., Benet J., García-Peiró A., Prats J. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia. 2013;45:211–216. doi: 10.1111/and.12003. PubMed DOI

Ahmadi S., Bashiri R., Ghadiri-Anari A., Nadjarzadeh A. Antioxidant supplements and semen parameters: An evidence based review. Int. J. Reprod. BioMed. 2016;14:729. doi: 10.29252/ijrm.14.12.729. PubMed DOI PMC

Alahmar A.T., Sengupta P., Dutta S., Calogero A.E. Coenzyme q10, oxidative stress markers, and sperm DNA damage in men with idiopathic oligoasthenoteratospermia. Clin. Exp. Reprod. Med. 2021;48:150–155. doi: 10.5653/cerm.2020.04084. PubMed DOI PMC

Alahmar A.T., Calogero A.E., Singh R., Cannarella R., Sengupta P., Dutta S. Coenzyme q10, oxidative stress, and male infertility: A review. Clin. Exp. Reprod. Med. 2021;48:97–104. doi: 10.5653/cerm.2020.04175. PubMed DOI PMC

Showell M.G., Mackenzie-Proctor R., Brown J., Yazdani A., Stankiewicz M.T., Hart R.J. Antioxidants for male subfertility. Cochr. Datab. Syst. Rev. 2014;12:CD007411. doi: 10.1002/14651858.CD007411.pub3. PubMed DOI

Garg H., Kumar R. An update on the role of medical treatment including antioxidant therapy in varicocele. Asian J. Androl. 2016;18:222. PubMed PMC

Alahmar A.T. The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin. Exp. Reprod. Med. 2018;45:57. doi: 10.5653/cerm.2018.45.2.57. PubMed DOI PMC

Silver E.W., Eskenazi B., Evenson D.P., Block G., Young S., Wyrobek A.J. Effect of antioxidant intake on sperm chromatin stability in healthy nonsmoking men. J. Androl. 2005;26:550–556. doi: 10.2164/jandrol.04165. PubMed DOI

Ufer C., Wang C.C., Borchert A., Heydeck D., Kuhn H. Redox control in mammalian embryo development. Antiox. Redox Signal. 2010;13:833–875. doi: 10.1089/ars.2009.3044. PubMed DOI

Harvey A.J., Kind K.L., Thompson J.G. Redox regulation of early embryo development. Reproduction. 2002;123:479–486. doi: 10.1530/rep.0.1230479. PubMed DOI

Giustarini D., Dalle-Donne I., Colombo R., Milzani A., Rossi R. Is ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide. 2008;19:252–258. doi: 10.1016/j.niox.2008.07.003. PubMed DOI

Ménézo Y., Entezami F., Lichtblau I., Belloc S., Cohen M., Dale B. Oxidative stress and fertility: Incorrect assumptions and ineffective solutions? Zygote. 2014;22:80. doi: 10.1017/S0967199412000263. PubMed DOI

Bleau G., Lemarbre J., Faucher G., Roberts K.D., Chapdelaine A. Semen selenium and human fertility. Fertil. Steril. 1984;42:890–894. doi: 10.1016/S0015-0282(16)48261-0. PubMed DOI

Bouayed J., Bohn T. Exogenous antioxidants—Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidat. Med. Cell. Longev. 2010;3:228–237. doi: 10.4161/oxim.3.4.12858. PubMed DOI PMC

Omenn G.S., Goodman G.E., Thornquist M.D., Balmes J., Cullen M.R., Glass A., Keogh J.P., Meyskens F.L., Jr., Valanis B., Williams J.H., Jr. Risk factors for lung cancer and for intervention effects in caret, the beta-carotene and retinol efficacy trial. J. Nat. Cancer Inst. 1996;88:1550–1559. doi: 10.1093/jnci/88.21.1550. PubMed DOI

Donnelly E.T., McClure N., Lewis S.E. The effect of ascorbate and α-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999;14:505–512. doi: 10.1093/mutage/14.5.505. PubMed DOI

Verma A., Kanwar K. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: An in vitro analysis. Andrologia. 1998;30:325–329. doi: 10.1111/j.1439-0272.1998.tb01178.x. PubMed DOI

Moilanen J., Hovatta O., Lindroth L. Vitamin e levels in seminal plasma can be elevated by oral administration of vitamin e in infertile men. Int. J. Androl. 1993;16:165–166. doi: 10.1111/j.1365-2605.1993.tb01171.x. PubMed DOI

DePalma A.F., Rothman R.H., Lewinnek G.E., Canale S.T. Anterior interbody fusion for severe cervical disc degeneration. Surg. Gynecol. Obs. 1972;134:755–758. PubMed

Purvis K., Christiansen E. Infection in the male reproductive tract. Impact, diagnosis and treatment in relation to male infertility. Int. J. Androl. 1993;16:1–13. doi: 10.1111/j.1365-2605.1993.tb01146.x. PubMed DOI

Comhaire F.H., Mahmoud A.M., Depuydt C.E., Zalata A.A., Christophe A.B. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential: The andrologist’s viewpoint. Hum. Reprod. Update. 1999;5:393–398. doi: 10.1093/humupd/5.5.393. PubMed DOI

Dutta S., Sengupta P., Chhikara B.S. Reproductive inflammatory mediators and male infertility. Chem. Biol. Lett. 2020;7:73–74.

Hales D.B., Diemer T., Hales K.H. Role of cytokines in testicular function. Endocrine. 1999;10:201–217. doi: 10.1007/BF02738619. PubMed DOI

Söder O., Sultana T., Jonsson C., Wahlgren A., Petersen C., Holst M. The interleukin-1 system in the testis. Andrologia. 2000;32:52–55. PubMed

Diemer T., Hales D.B., Weidner W. Immune-endocrine interactions and leydig cell function: The role of cytokines. Andrologia. 2003;35:55–63. doi: 10.1046/j.1439-0272.2003.00537.x. PubMed DOI

Maegawa M., Kamada M., Irahara M., Yamamoto S., Yoshikawa S., Kasai Y., Ohmoto Y., Gima H., Thaler C.J., Aono T. A repertoire of cytokines in human seminal plasma. J. Reprod. Immunol. 2002;54:33–42. doi: 10.1016/S0165-0378(01)00063-8. PubMed DOI

Theam O.C., Dutta S., Sengupta P. Role of leucocytes in reproductive tract infections and male infertility. Chem. Biol. Lett. 2020;7:124–130.

Cudicini C., Lejeune H., Gomez E., Bosmans E., Ballet F., Saez J., Jégou B. Human leydig cells and sertoli cells are producers of interleukins-1 and -6. J. Clin. Endocrinol. Metab. 1997;82:1426–1433. doi: 10.1210/jc.82.5.1426. PubMed DOI

Turvey S.E., Broide D.H. Innate immunity. J. Allerg. Clin. Immunol. 2010;125:S24–S32. doi: 10.1016/j.jaci.2009.07.016. PubMed DOI PMC

Keck C., Gerber-Schäfer C., Clad A., Wilhelm C., Breckwoldt M. Seminal tract infections: Impact on male fertility and treatment options. Hum. Reprod. Update. 1998;4:891–903. doi: 10.1093/humupd/4.6.891. PubMed DOI

Dutta S., Sengupta P., Hassan M.F., Biswas A. Role of toll-like receptors in the reproductive tract inflammation and male infertility. Chem. Biol. Lett. 2020;7:113–123.

Potts J.M., Sharma R., Pasqualotto F., Nelson D., Hall G., Agarwal A. Association of ureaplasma urealyticum with abnormal reactive oxygen species levels and absence of leukocytospermia. J. Urol. 2000;163:1775–1778. doi: 10.1016/S0022-5347(05)67540-4. PubMed DOI

Agarwal A., Majzoub A., Baskaran S., Selvam M.K.P., Cho C.L., Henkel R., Finelli R., Leisegang K., Sengupta P., Barbarosie C. Sperm DNA fragmentation: A new guideline for clinicians. World J. Men’s Health. 2020;38:412. doi: 10.5534/wjmh.200128. PubMed DOI PMC

Yu B., Huang Z. Variations in antioxidant genes and male infertility. BioMed Res. Int. 2015;2015:513196. doi: 10.1155/2015/513196. PubMed DOI PMC

Carrell D.T., Aston K.I. The search for snps, cnvs, and epigenetic variants associated with the complex disease of male infertility. Syst. Biol. Reprod. Med. 2011;57:17–26. doi: 10.3109/19396368.2010.521615. PubMed DOI

Kemal Duru N., Morshedi M., Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 2000;74:1200–1207. doi: 10.1016/S0015-0282(00)01591-0. PubMed DOI

Bisht S., Faiq M., Tolahunase M., Dada R. Oxidative stress and male infertility. Nat. Rev. Urol. 2017;14:470–485. doi: 10.1038/nrurol.2017.69. PubMed DOI

Ritchie C., Ko E.Y. Oxidative stress in the pathophysiology of male infertility. Andrologia. 2021;53:e13581. doi: 10.1111/and.13581. PubMed DOI

Huang C., Cao X., Pang D., Li C., Luo Q., Zou Y., Feng B., Li L., Cheng A., Chen Z. Is male infertility associated with increased oxidative stress in seminal plasma? A-meta analysis. Oncotarget. 2018;9:24494. doi: 10.18632/oncotarget.25075. PubMed DOI PMC

Naz R.K., Evans L. Presence and modulation of interleukin-12 in seminal plasma of fertile and infertile men. J. Androl. 1998;19:302–307. PubMed

Kurkowska W., Bogacz A., Janiszewska M., Gabryś E., Tiszler M., Bellanti F., Kasperczyk S., Machoń-Grecka A., Dobrakowski M., Kasperczyk A. Oxidative stress is associated with reduced sperm motility in normal semen. Am. J. Men’s Health. 2020;14:1557988320939731. doi: 10.1177/1557988320939731. PubMed DOI PMC

Gruschwitz M.S., Brezinschek R., Brezinschek H.P. Cytokine levels in the seminal plasma of infertile males. J. Androl. 1996;17:158–163. PubMed

Halliwell B. The antioxidant paradox: Less paradoxical now? Brit. J. Clin. Pharmacol. 2013;75:637–644. doi: 10.1111/j.1365-2125.2012.04272.x. PubMed DOI PMC

Murphy M.P., Holmgren A., Larsson N.G., Halliwell B., Chang C.J., Kalyanaraman B., Rhee S.G., Thornalley P.J., Partridge L., Gems D., et al. Unraveling the biological roles of reactive oxygen species. Cell. Metab. 2011;13:361–366. doi: 10.1016/j.cmet.2011.03.010. PubMed DOI PMC

Rehman A., Collis C.S., Yang M., Kelly M., Diplock A.T., Halliwell B., Rice-Evans C. The effects of iron and vitamin c co-supplementation on oxidative damage to DNA in healthy volunteers. Biochem. Biophys. Res. Comm. 1998;246:293–298. doi: 10.1006/bbrc.1998.8592. PubMed DOI

Beatty E., England T., Geissler C., Aruoma O., Halliwell B. Effects of antioxidant vitamin supplementation on markers of DNA damage and plasma antioxidants. Proc. Nutr. Soc. 1999;58:44.

Podmore I.D., Griffiths H.R., Herbert K.E., Mistry N., Mistry P., Lunec J. Vitamin c exhibits pro-oxidant properties. Nature. 1998;392:559. doi: 10.1038/33308. PubMed DOI

Son Y.O., Pratheeshkumar P., Roy R.V., Hitron J.A., Wang L., Divya S.P., Xu M., Luo J., Chen G., Zhang Z., et al. Antioncogenic and oncogenic properties of nrf2 in arsenic-induced carcinogenesis. J. Biol. Chem. 2015;290:27090–27100. doi: 10.1074/jbc.M115.675371. PubMed DOI PMC

Djuric Z., Kashif M., Fleming T., Muhammad S., Piel D., von Bauer R., Bea F., Herzig S., Zeier M., Pizzi M., et al. Targeting activation of specific nf-κb subunits prevents stress-dependent atherothrombotic gene expression. Mol. Med. 2012;18:1375–1386. doi: 10.2119/molmed.2012.00282. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...