Ex Vivo Effect of Novel Lipophosphonoxins on Root Canal Biofilm Produced by Enterococcus faecalis: Pilot Study

. 2022 Jan 17 ; 12 (1) : . [epub] 20220117

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35054522

(1) Background: The root canal system has complex anatomical and histological features that make it impossible to completely remove all bacteria by mechanical means only; they must be supplemented with disinfectant irrigation. Current disinfectants are unable to eliminate certain microorganisms that persist in the root canal, resulting in treatment failure. At the Institute of Organic Chemistry and Biochemistry, Prague, novel substances with the bactericidal effect, termed lipophosphonoxins (LPPOs), have been discovered. The aim of this pilot study was to investigate the ex vivo effects of second- and third-generation LPPOs on Enterococcus faecalis and compare them with 5% sodium hypochlorite (NaOCl), 0.12% chlorhexidine digluconate, and 17% ethylenediaminetetraacetic acid (EDTA). (2) Methods: The root canal's dentin was used as a carrier for biofilm formation in the extracted human mature mandibular premolars. The samples were filled with cultivation broth and 0.25% glucose with tested solutions. In control samples, only fresh cultivation broth (negative control) and cultivation broth with bacterial suspension (growth control) were used. Each sample was inoculated with E. faecalis CCM4224 except for the negative control, and cultivation was performed. To determine the number of planktonic cells, the sample content was inoculated on blood agar. To evaluate biofilm formation inhibition, samples were placed in tubes with BHI. (3) Results: LPPOs exhibited a reduction in biofilm growth and bacteria comparable to NaOCl, and they were superior to other tested disinfectants. (4) Conclusions: The study results suggest the effect of lipophosphonoxins on E. faecalis CCM 4224 reduces planktonic bacterial cells and inhibits formation of biofilm in root canal samples.

Zobrazit více v PubMed

Basrani B., Malkhassian G. Update of Endodontic Irrigating Solutions. Endodontic Irrigation. Clinical Disinfection of the Root Canal System. 1st ed. Springer International Publishing AG; Cham, Switzerland: 2015. pp. 101–105.

Baumgartner J.C., Siqueira J.R.J.F., Sedgley C.H.M., Kishen A. Microbiology of endodontic disease. In: Ingle J.I., editor. Ingle’s Endodontics. 6th ed. Ajanta Offset and Packaging Limited; New Delhi, India: 2008. pp. 278–286. Chapter 7.

Estrela C., Sydney G.B., Figueiredo J.A.P., Estrela C.R.A. A model system to study antimicrobial strategies in endodontic biofilms. J. Appl. Oral Sci. 2009;17:87–91. doi: 10.1590/S1678-77572009000200003. PubMed DOI PMC

Torabinejad M., Root Canal Disinfectants Endodontics: Colleagues for Excellence News-Letter, Winter 2011. [(accessed on 17 October 2021)]. Available online: http://www.aae.org/publications-and-research/endodontics-colleagues-for-excellence-newsletter/root-canal-irrigants-and-disinfectants.aspx.

Haapasalo M., Qian W., Portenier I., Waltimo T. Effects of Dentin on the Antimicrobial Properties of Endodontic Medicaments. J. Endod. 2007;33:917–925. doi: 10.1016/j.joen.2007.04.008. PubMed DOI

Clegg M.S., Vertucci F.J., Walker C., Belanger M., Britto L.R. The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. J. Endod. 2006;32:434–437. doi: 10.1016/j.joen.2005.07.002. PubMed DOI

Gomes B.P., Ferraz C.C.R., Vianna M.E., Berber V.B., Teixeira F.B., de Souza-Filho F.J. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int. Endod. J. 2001;34:424–428. doi: 10.1046/j.1365-2591.2001.00410.x. PubMed DOI

Hülsmann M., Heckendorff M., Lennon Á. Chelating agents in root canal treatment: Mode of action and indications for their use. Int. Endod. J. 2003;36:810–830. doi: 10.1111/j.1365-2591.2003.00754.x. PubMed DOI

Sen B.H., Akdeniz B., Denizci A. The effect of ethylenediamine-tetraacetic acid on Candida albicans. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2000;90:651–655. doi: 10.1067/moe.2000.109640. PubMed DOI

Rath P.P., Yiu C.K.Y., Matinlinna J.P., Kishen A., Neelakantan P. The effects of sequential and continuous chelation on dentin. Dent. Mater. 2020;36:1655–1665. doi: 10.1016/j.dental.2020.10.010. PubMed DOI

Do Q.L., Gaudin A. The Efficiency of the Er: YAG Laser and Photon Induced Photoacoustic Streaming (PIPS) as an Activation Method in Endodontic Irrigation: A Literature Review. J. Lasers Med. Sci. 2020;11:316–334. doi: 10.34172/jlms.2020.53. PubMed DOI PMC

Plotino G., Grande N.M., Mercade M. Photodynamic therapy in endodontics. Int. Endod. J. 2019;52:760–774. doi: 10.1111/iej.13057. PubMed DOI

Ortega H.D., Toral F.C., Hernández L.D., González C.E., Varona F.S., Ciodaro A.R. Ex vivo model for studying polymicrobial biofilm formation in root canals. Univ. Sci. 2017;22:31. doi: 10.11144/Javeriana.SC22-1.evmf. DOI

Mohammadi Z., Dummer P.M.H. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int. Endod. J. 2011;44:697–730. doi: 10.1111/j.1365-2591.2011.01886.x. PubMed DOI

Basrani B., Lemonie C. Chlorhexidine gluconate. Aust. Endod. J. 2005;31:48–52. doi: 10.1111/j.1747-4477.2005.tb00221.x. PubMed DOI

McCoy L.C., Wehler C.J., Rich S.E., Garcia R.I., Miller D.R., Jones J.A. Adverse events associated with chlorhexidine use: Results from the Department of Veterans Affairs Dental Diabetes Study. J. Am. Dent. Assoc. 2008;139:178–183. doi: 10.14219/jada.archive.2008.0134. PubMed DOI

Panova N., Zbornikova E., Simak O., Pohl R., Kolar M., Bogdanova K., Večeřová R., Seydlová G., Fišer R., Hadravová R. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS ONE. 2015;10:e0145918. doi: 10.1371/journal.pone.0145918. PubMed DOI PMC

Rejman D., Pohl R., Bartunek P., Ribeiro Pombinho A.J., Krasny L., Latal T. Lipophosphonoxins, Method of Their Preparation and Use. EP2527351B1. [(accessed on 10 December 2021)];2013 December 11; Available online: https://patents.google.com/patent/EP2527351A1/en.

Rejman D., Rabatinova A., Pombinho A.R., Kovackova S., Pohl R., Zbornikova E., Kolář M., Bogdanová K., Nyč O., Šanderová H., et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem. 2011;54:7884–7898. doi: 10.1021/jm2009343. PubMed DOI

Seydlová G., Pohl R., Zborníková E., Ehn M., Šimák O., Panova N., Kolář M., Bogdanová K., Večeřová R., Fišer R. Lipophosphon-oxins II: Design, synthesis and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017;60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI

Distel J.W., Hatton J.F., Gillespie M.J. Biofilm Formation in Medicated Root Canals. J. Endod. 2002;28:689–693. doi: 10.1097/00004770-200210000-00003. PubMed DOI

The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 11.0. 2021. [(accessed on 10 December 2021)]. Available online: http://www.eucast.org.

Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., Beachey E.H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985;22:996–1006. doi: 10.1128/jcm.22.6.996-1006.1985. PubMed DOI PMC

Stepanović S., Vuković D., Hola V., Di Bonaventura G., Djukić S., Cirković I., Ruzicka F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Acta Pathol. Microbiol. Scand. 2007;115:891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x. PubMed DOI

Portenier I., Waltimo T.M., Haapasalo M. Enterococcus faecalis- the root canal survivor and ‘star’ in post-treatment disease. Endod. Top. 2003;6:135–159. doi: 10.1111/j.1601-1546.2003.00040.x. DOI

Hartke A., Giard J.C., Laplace J.M., Auffray Y. Survival of Enterococcus faecalis in an oligotrophic microcosm: Changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl. Environ. Microbiol. 1998;64:4238–4245. doi: 10.1128/AEM.64.11.4238-4245.1998. PubMed DOI PMC

Pinheiro E.T., Mayer M.P.A. Enterococcus faecalis in oral infections. J. Interdiscip. Med. Dent. Sci. 2015;3:e0163001.

Rath P.P., Yiu C.K.Y., Matinlinna J.P., Kishen A., Neelakantan P. The effect of root canal irrigants on dentin: A focused review. Restor. Dent. Endod. 2020;45:e39. doi: 10.5395/rde.2020.45.e39. PubMed DOI PMC

Mohammadi Z. Sodium hypochlorite in endodontics: An update review. Int. Dent. J. 2008;58:329–341. doi: 10.1111/j.1875-595X.2008.tb00354.x. PubMed DOI

Haapasalo M., Shen Y., Wang Z., Gao Y. Irrigation in endodontics. Br. Dent. J. 2014;216:299–303. doi: 10.1038/sj.bdj.2014.204. PubMed DOI

Chaugule V.B., Panse A.M., Gawali P.N. Adverse Reaction of Sodium Hypochlorite during Endodontic Treatment of Primary Teeth. Int. J. Clin. Pediatr. Dent. 2015;8:153–156. doi: 10.5005/jp-journals-10005-1304. PubMed DOI PMC

Wang Z., Shen Y., Haapasalo M. Effectiveness of Endodontic Disinfecting Solutions against Young and Old Enterococcus faecalis Biofilms in Dentin Canals. J. Endod. 2012;38:1376–1379. doi: 10.1016/j.joen.2012.06.035. PubMed DOI

Basudan S.O. Sodium hypochlorite use, storage, and delivery methods: A Survey. Saudi Endod. J. 2019;9:27–33.

Prakash V., Sathya B.A., Tamilselvi R., Subbiya A. Sodium hypochlorite in endodontics—The benchmark irrigant: A review. Eur. J. Mol. Clin. Med. 2020;7:1235–1239.

De Gregorio C., Arias A., Navarrete N., Cisneros R., Cohenca N. Differences in disinfection protocols for root canal treatments between general dentists and endodontists: A web-based survey. J. Am. Dent. Assoc. 2015;146:536–543. doi: 10.1016/j.adaj.2015.01.027. PubMed DOI

Shehab N.F., Zakaria N.A., Taha M.Y.M. Efficiency of sodium hypochlorite as root canal disinfectant against enterococcus faecalis: An in vitro study. EC Microbiol. 2019;15:288–294.

Zehnder M. Root canal irrigants. J. Endod. 2006;32:389–398. doi: 10.1016/j.joen.2005.09.014. PubMed DOI

Estrela C., Estrela C., Barbin E.L., Spanó J.C.E., Marchesan M., Pecora J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002;13:113–117. doi: 10.1590/S0103-64402002000200007. PubMed DOI

Spencer H.R., Ike V., Brennan P.A. Review: The use of sodium hypochlorite in endodontics—potential complications and their management. Br. Dent. J. 2007;202:555–559. doi: 10.1038/bdj.2007.374. PubMed DOI

Khademi A.A., Saleh M., Khabiri M., Jahadi S. Stability of antibacterial activity of chlorhex-idine and doxycycline in bovine root dentine. J. Res. Pharm. Pract. 2014;3:19–22. PubMed PMC

Basrani B.R., Manek S., Sodhi R.N., Fillery E., Manzur A. Interaction between Sodium Hypochlorite and Chlorhexidine Gluconate. J. Endod. 2007;33:966–969. doi: 10.1016/j.joen.2007.04.001. PubMed DOI

Bjelović L.Z., Glišić B.Đ., Živković M.D., Kanjevac T.V. Investigation of pchloroaniline formation in the reactions between different endodontic irrigants. Kragujev. J. Sci. 2019;41:43–52. doi: 10.5937/KgJSci1941043B. DOI

Bui T.B., Baumgartner J.C., Mitchell J.C. Evaluation of the interaction between sodium hypochlorite and chlorhexidine gluconate and its effect on root dentin. J. Endod. 2008;34:181–185. doi: 10.1016/j.joen.2007.11.006. PubMed DOI

Sena N.T., Gomes B.P., Vianna M.E., Berber V.B., Zaia A.A., Ferraz C.C., Souza-Filho J. In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single species biofilms. Int. Endod. J. 2006;39:878–885. doi: 10.1111/j.1365-2591.2006.01161.x. PubMed DOI

Vianna M.E., Gomes B.P. Efficacy of sodium hypochlorite combined with chlorhexidine against Enterococcus faecalis in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009;107:585–589. doi: 10.1016/j.tripleo.2008.10.023. PubMed DOI

Casalinuovo A.I., Sorge R., Bonelli G., Di Francesco P. Evaluation of the antifungal effect of EDTA, a metal chelator agent, on Candida albicans biofilm. Eur. Rev. Med. Pharmacol. Sci. 2017;21:1413–1420. PubMed

Zborníková E., Gallo J., Večeřová R., Bogdanová K., Kolář M., Vítovská D., Pham D.D.D., Pačes O., Mojr V., Šanderová H., et al. Evaluation of Second-Generation Lipophosphonoxins as Antimicrobial Additives in Bone Cement. ACS Omega. 2020;5:3165–3171. doi: 10.1021/acsomega.9b03072. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lipophosphonoxins-A Novel Group of Broad Spectrum Antibacterial Compounds

. 2023 Sep 28 ; 15 (10) : . [epub] 20230928

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...