• This record comes from PubMed

Gait changes following robot-assisted gait training in children with cerebral palsy

. 2021 Dec 31 ; 70 (S3) : S397-S408.

Language English Country Czech Republic Media print

Document type Journal Article, Multicenter Study

This study investigated changes of gait pattern induced by a 4-week robot-assisted gait training (RAGT) in twelve ambulatory spastic diparesis children with cerebral palsy (CP) aged 10.4+/-3.2 years old by using computerized gait analysis (CGA). Pre-post intervention CGA data of children with CP was contrasted to the normative data of typically developing children by using cross-correlation and statistically evaluated by a Wilcoxon test. Significant pre-post intervention changes (p<0.01) include: decreased muscle activity of biceps femoris, rectus femoris, and tibialis anterior; a decrease in range of internal hip joint rotation, higher cadence, step length, and increased stride time. This study suggests that RAGT can be used in muscle reeducation and improved hip joint motion range in ambulatory children with CP.

See more in PubMed

ARMAND S, DECOULON G, BONNEFOY-MAZURE A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016;1:448–460. doi: 10.1302/2058-5241.1.000052. PubMed DOI PMC

BAKER RW. Measuring Walking: A Handbook of Clinical Gait Analysis. New Jersey: Wiley; 2013. p. 246.

BAX M, GOLDSTEIN M, ROSENBAUM P, LEVITON A, PANETH N. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol. 2005;47:571–576. doi: 10.1017/S001216220500112X. PubMed DOI

BOJANIC DM, PETROVACKI-BALJ BD, JORGOVANOVIC ND, ILIC VR. Quantification of dynamic EMG patterns during gait in children with cerebral palsy. J Neurosci Methods. 2011;15:325–331. doi: 10.1016/j.jneumeth.2011.04.030. PubMed DOI

BONIKOWSKI M, MROZEK P. Changes in surface EMG patterns in children with cerebral palsy during robotic gait training. Gait Posture. 2012;36:70. doi: 10.1016/j.gaitpost.2011.10.300. DOI

BRUNNER J, ROMKES J. Abnormal EMG muscle activity during gait in patients without neurological disorders. Gait Posture. 2008;27:399–407. doi: 10.1016/j.gaitpost.2007.05.009. PubMed DOI

BRÜTSCH K, SCHULER T, KOENIG A, ZIMMERLI L, MERILLAR S, LUNENBURGER L, RIENER R, JANCKE L, MEYER-HEIM A. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7:493–499. doi: 10.1186/1743-0003-7-15. PubMed DOI PMC

BURDEN A, ARTLETT R. Normalisation of EMG amplitude: an evaluation and comparison of old and new methods. Med Eng Phys. 1999;21:247–257. doi: 10.1016/S1350-4533(99)00054-5. PubMed DOI

BURDEN AM, TREW M, BALTZOPOULOS V. Normalisation of gait EMGs: a re-examination. J Electromyogr Kinesiol. 2003;13:519–532. doi: 10.1016/S1050-6411(03)00082-8. PubMed DOI

COHEN J. Differences between correlation coefficients. In: COHEN J, editor. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates; New York: 1988. pp. 109–139. DOI

COLUMBO G, JOERG M, SCHREIER R, DIETZ V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37:693–700. PubMed

DAVIS RB, ÕUNPUU S, TYBURSKI D, GAGE JR. A gait analysis data collection and reduction technique. Human Mov Sci. 1991;10:575–587. doi: 10.1016/0167-9457(91)90046-Z. DOI

DIXON CP, STEBBINS J, THEOLOGIS T, ZAVATSKY AB. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children. J Biomech. 2014;47:3726–3733. doi: 10.1016/j.jbiomech.2014.09.011. PubMed DOI

DRUZBICKI M, RUSEK W, SNELA S, DUDEK J, SZCZEPANIK M, ZAK E. Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy. J Rehabil Med. 2013;45:358–363. doi: 10.2340/16501977-1114. PubMed DOI

FLUX E, Van der KROGT MM, CAPPA P, PETRARCA M, DESLOOVERE K, HARLAN J. The human body model versus conventional gait models for kinematic gait analysis in children with cerebral palsy. Human Mov Sci. 2020;70:102585. doi: 10.1016/j.humov.2020.102585. PubMed DOI

FORAN JR, STEINMAN S, BARASH I, CHAMBERS HG, LIEBER RL. Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol. 2005;47:713–717. doi: 10.1017/S0012162205001465. PubMed DOI

FOWLER EG, STAUDT LA, GREENBERG MB, OPPENHEIM WL. Selective Control Assessment of the Lower Extremity (SCALE): Development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009;51:607–614. doi: 10.1111/j.1469-8749.2008.03186.x. PubMed DOI

FUNG J, BARBEAU H. A dynamic EMG profile index to quantify muscular activation disorder in spastic paretic gait. Electroencephalogr Clin Neurophysiol. 1989;73:233–244. doi: 10.1016/0013-4694(89)90124-7. PubMed DOI

GOLDBERG EJ, FOWLER EG, OPPENHEIM WL. Case reports: The influence of selective voluntary motor control on gait after hamstring lengthening surgery. Clin Orthop Relat Res. 2012;470:1320–1326. doi: 10.1007/s11999-011-2028-2. PubMed DOI PMC

GORDON AM, MAGILL RA. Motor learning: Application of principles to pediatric rehabilitation. In: CAMPBELL SK, PALISANO RJ, ORLIN MN, editors. Physical Therapy for Children. MO Elsevier; St. Louis: 2012. pp. 151–174.

HEMAYATTALAB R, ARABAMERI E, POURAZAR M, DEHESTANI ARDAKANI M, KA-SHEFI M. Effects of self-controlled feedback on learning of a throwing task in children with spastic hemiplegic cerebral palsy. Res Dev Disabil. 2013;34:2884–2889. doi: 10.1016/j.ridd.2013.05.008. PubMed DOI

HEMAYATTALAB R, RASHIDI ROSTAMI L. Effects of frequency of feedback on the learning of motor skill in individuals with cerebral palsy. Res Dev Disabil. 2010;31:212–217. doi: 10.1016/j.ridd.2009.09.002. PubMed DOI

HERMENS HJ, FRERIKS B, MERLETTI R, STEGEMAN D, BLOK J, RAU G, DISSELHORST-KLUG C, HÄGG G. SENIAM 8: European Recommendations for Surface Electromyography. Roessingh Research and Development; 1999. p. 112.

HOF AL, ELZINGA H, GRIMMIUS W, HALBERTSMA JP. Detection of non-standard EMG profiles in walking. Gait Posture. 2005;21:171–177. doi: 10.1016/j.gaitpost.2004.01.015. PubMed DOI

KATZ RT, RYMER WZ. Spastic hypertonia: mechanisms and measurement. Arch Phys Med Rehabil. 1989;70:144–155. PubMed

KNECHT B. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14:496–502. doi: 10.1016/j.ejpn.2010.01.002. PubMed DOI

KOLÁŘ P. Vadné držení těla z pohledu posturální ontogeneze. Pediatrie pro praxi. 2002;3:106–109.

KOOPMAN B, Van ASSELDONK EH, Van der KOOIJ H. Selective control of gait sub-tasks in robotic gait training: foot clearance support in stroke survivors with a powered exo-skeleton. J NeuroEngineering Rehabil. 2013;10:3. doi: 10.1186/1743-0003-10-3. PubMed DOI PMC

JANDA V, PAVLU D. Goniometrie. Brno: Institut pro dalsi vzdelavani pracovniku ve zdravotnictvi; 1993.

MacWILLIAMS BA, COWLEY M, NICHOLSON DE. Foot kinematics and kinetics during adolescent gait. Gait Posture. 2003;17:214–224. doi: 10.1016/S0966-6362(02)00103-0. PubMed DOI

MEYER-HEIM A, BORGGRAEFFE I, AMMANN-REIFFER C. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007;49:900–906. doi: 10.1111/j.1469-8749.2007.00900.x. PubMed DOI

MONAGHAN K, HORGAN F, BLAKE C, CORNALL C, HICKEY PPM, LYONS BE, LANG-HORNE P. Physical treatment interventions for managing spasticity after stroke. Cochrane Dat Syst Rev. 2017;2:1–24. doi: 10.1002/14651858.CD009188.pub2. DOI

NOVAK I. Evidence-based diagnosis, health care, and rehabilitation for children with cerebral palsy. J Child Neurol. 2014;29:1141–1156. doi: 10.1177/0883073814535503. PubMed DOI

PANTELIADIS CP, STRASSBURG HM. History and terminology, classification, incidence and prevalence, aetiology, neuropathology of cerebral palsy, clinical characteristics. In: PANTELIADIS CP, STRASSBURG HM, editors. Cerebral Palsy: Principles and Management. Georg Thieme Verlag Stuttgart; New York: 2004. pp. 5–60.

PATIKAS D, WOLF SI, SCHUSTER W, ARMBRUST P, DREHER D, DODERLEIN L. Electromyographic patterns in children with cerebral palsy: Do they change after surgery? Gait Posture. 2007;26:362–371. doi: 10.1016/j.gaitpost.2006.10.012. PubMed DOI

PERRY J, BURNFIELD JM. Pathological gait. In: PERRY J, BURNFIELD JM, editors. Gait Analysis – Normal and Pathological Function. Slack Incorporated; New Jersey: 2010. pp. 163–237.

RADZIMINSKA A, SROKOWSKI G, BULATOWICZ I, KAZMIERCZAK U, STROJEK K, BAUMGART M, ZUKOW W. Humanities dimension of medicine and physiotherapy. Bydgoszcz: University of Health Sciences; 2012. Assessment of the PNF method influence on gait parameters improvement in persons with cerebral palsy; pp. 57–74.

REINKENSMEYER DJ, AOYAGI D, EMKEN JL, GALVEZ JA, ICHI-NOSE W, KERDANYAN G, MANEEKOBKUNWONG S, MINAKATA K, NESSLER JA, WEBER R, ROY RR, De LEON R, BOBROW JE, HARKEMA SJ, EDGERTON VR. Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev. 2006;43:657–670. doi: 10.1682/JRRD.2005.04.0073. PubMed DOI

RIENER R, LÜNENBURGER L, JEZERNIK S, ANDERSCHITZ M, COLOMBO G, DIETZ V. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13:380–394. doi: 10.1109/TNSRE.2005.848628. PubMed DOI

SANKAR CH, MUNDKUR N. Cerebral palsy-definition, classification, etiology and early diagnosis. Indian J Pediatr. 2005;72:865–868. doi: 10.1007/BF02731117. PubMed DOI

SCHULER T, BRÜTSCH K, MÜLLER R, VAN HEDEL HJ, MEYER-HEIM A. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. Neurorehabilitation. 2011;28:401–411. doi: 10.3233/NRE-2011-0670. PubMed DOI

SCHULER T, MÜLLER R, Van HEDEL HJ. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement. J Neuroeng Rehabil. 2013;10:78. doi: 10.1186/1743-0003-10-78. PubMed DOI PMC

SCHULER T, GROB F, Van HEDEL HJ, LABRUYERE R. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J Neuroeng Rehabil. 2017;14:76. doi: 10.1186/s12984-017-0287-1. PubMed DOI PMC

STEWART C, SHORTLAND AP. The biomechanics of pathological gait – from muscle to movement. Acta Bioeng Biomech. 2010;12:3–12. PubMed

SUTHERLAND DH, DAVIDS JR. Common gait abnormalities of the knee in cerebral palsy. Clin Orthop Relat Res. 1993;288:139–147. doi: 10.1097/00003086-199303000-00018. PubMed DOI

SYCZEWSKA M, ŚWIĘCICKA A. Are electromyographic patterns during gait related to abnormality level of the gait in patients with spastic cerebral palsy? Acta Bioeng Biomech. 2016;18:91–96. PubMed

VERAZALUCE-RODRÍGUEZ PR, RODRÍGUEZ-MARTÍNEZ P, NERI-GÁMEZ S, HERNÁNDEZ-AQUINO RM. Evolution of gait in patients with cerebral palsy and assisted movement by training with robotic help equipment. Rehabilitación. 2014;48:3–8. doi: 10.1016/j.rh.2013.04.006. DOI

VREČAR I, MAJDIČ N, JEMEC I, DAMJAN H. Changes in passive range of motion of joints of the lower limbs in children with cerebral palsy after an intense training program on the Lokomat Rehabilitacija. 2013;12:38–45.

WALLARD L, DIETRICH G, KERLIRZIN Y, BREDIN J. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy. Gait Posture. 2018;60:55–60. doi: 10.1016/j.gaitpost.2017.11.007. PubMed DOI

WINTER D. Biomechanics and Motor Control of Human Movement. John Wiley & Sons; New Jersey: 2009. p. 384. DOI

WU M, KIM J, GAEBLER-SPIRA DJ, SCHMIT BD, ARORA P. Robotic resistance treadmill training improves locomotor function in children with cerebral palsy: A randomized controlled pilot study. Arch Phys Med Rehabil. 2017;98:2126–2133. doi: 10.1016/j.apmr.2017.04.022. PubMed DOI PMC

ZARKOVIC D, SORFOVA M. Neurobiomechanical Aspects of Robotic Assisted Gait Training. Rehab Fyzik Lek. 2017;24:43–49.

ZARKOVIC D, SORFOVA M, TUFANO JJ, KUTILEK P, VITECKOVA S, GROLEGER-SRSEN K, RAVNIK D. Effect of robot-assisted gait training on selective voluntary motor control in ambulatory children with cerebral palsy. Indian Pediatr. 2020;57:964–966. doi: 10.1007/s13312-020-2005-5. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...