Enzyme-Photocatalyst Tandem Microrobot Powered by Urea for Escherichia coli Biofilm Eradication
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- TiO 2 nanotubes, bacterial biofilms, enzymatic, micromotors, photocatalysis, urinary infections,
- MeSH
- Biofilms * MeSH
- Escherichia coli * MeSH
- Catalysis MeSH
- Humans MeSH
- Urea pharmacology MeSH
- Robotics * MeSH
- Titanium * pharmacology MeSH
- Urease pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Urea MeSH
- Titanium * MeSH
- Urease MeSH
Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.
See more in PubMed
A. L. Flores-Mireles, J. N. Walker, M. Caparon, S. J. Hultgren, Nat. Rev. Microbiol. 2015, 13, 269.
T. L. Vollmerhausen, A. Conneely, C. Bennett, V. E. Wagner, J. C. Victor, C. P. O'Byrne, J. Photochem. Photobiol. B 2017, 170, 295.
L. E. Nicolle, Antimicrob. Resist. Infect. Control 2014, 3, 23.
G. G. Anderson, J. J. Palermo, J. D. Schilling, R. Roth, J. Heuser, S. J. Hultgren, Science 2003, 301, 105.
J. W. Costerton, P. S. Stewart, E. P. Greenberg, Science 1999, 284, 1318.
a) W. C. de Melo, P. Avci, M. N. de Oliveira, A. Gupta, D. Vecchio, M. Sadasivam, R. Chandran, Y.-Y. Huang, R. Yin, L. R. Perussi, G. P. Tegos, J. R. Perussi, T. Dai, M. R. Hamblin, Expert Rev. Anti-Infect. Ther. 2013, 11, 669;
b) J. Li, C. C. Mayorga-Martinez, C. D. Ohl, M. Pumera, Adv. Funct. Mater. 2021, 32, 2102265.
M. Erriu, C. Blus, S. Szmukler-Moncler, S. Buogo, R. Levi, G. Barbato, D. Madonnaripa, G. Denotti, V. Piras, G. Orrù, Ultrason. Sonochem. 2014, 21, 15.
J. L. Del Pozo, M. S. Rouse, R. Patel, Int. J. Artif. Organs 2008, 31, 786.
a) M. M. Stanton, B.-W. Park, D. Vilela, K. Bente, D. Faivre, M. Sitti, S. Sánchez, ACS Nano 2017, 11, 9968;
b) C. C. Mayorga, J. Zelenka, J. Grmela, H. Michalkova, T. Ruml, J. Mareš, M. Pumera, Adv. Sci. 2021, 8, 2101301.
a) J. Wang, W. Gao, ACS Nano 2012, 6, 5745;
b) K. Villa, J. Viktorova, J. Plutnar, T. Ruml, L. Hoang, M. Pumera, Cell Rep. Phys. Sci. 2020, 1, 100181.
a) M. Ussia, M. Urso, K. Doleželíková, H. Michálková, V. Adam, M. Pumera, Adv. Funct. Mater. 2021, 31, 2101178;
b) D. Vilela, N. Blanco-Cabra, A. Eguskiza, A. C. Hortelao, E. Torrents, S. Sanchez, ACS Appl. Mater. Interfaces 2021, 13, 14964.
Z. Lin, C. Gao, D. Wang, Q. He, Angew. Chem., Int. Ed. 2021, 133, 8832.
T. Cui, S. Wu, Y. Sun, J. Ren, X. Qu, Nano Lett. 2020, 20, 7350.
G. Hwang, A. J. Paula, E. E. Hunter, Y. Liu, A. Babeer, B. Karabucak, K. Stebe, V. Kumar, E. Steager, H. Koo, Sci. Rob. 2019, 4, eaaw2388.
a) Y. Dong, L. Wang, K. Yuan, F. Ji, J. Gao, Z. Zhang, X. Du, Y. Tian, Q. Wang, L. Zhang, ACS Nano 2021, 15, 5056;
b) H. Zhou, C. C. Mayorga-Martinez, S. P., L. Zhang, M. Pumera, Chem. Rev. 2021, 121, 4999.
K. Yuan, B. Jurado-Sánchez, A. Escarpa, Angew. Chem., Int. Ed. 2021, 60, 4915.
a) W. Gao, J. Wang, ACS Nano 2014, 8, 4, 3170;
b) B. Jurando-Sánchez, J. Wang, Environ. Sci.: Nano 2018, 5, 1530;
c) L. Kong, A. Ambrosi, M. Z. M. Nasir, J. Guan, M. Pumera, Adv. Funct. Mater. 2019, 29, 1903872;
d) Y. Ying, M. Pumera, Chem. - Eur. J. 2019, 25, 106;
e) L. Wang, K. Villa, Environ. Sci.: Nano 2021, 8, 3440;
f) C. M. Oral, M. Ussia, D. K. Yavuz, M. Pumera, Small 2022, https://doi.org/10.1002/smll.202106271.
a) M. P. Browne, V. Urbanova, J. Plutnar, F. Novotný, M. Pumera, J. Mater. Chem. A 2020, 8, 1120;
b) K. Villa, J. R. Galán-Mascarós, ChemSusChem 2021, 14, 2023;
c) X. Zhou, I. Hwang, O. Tomanec, D. Fehn, A. Mazare, R. Zboril, K. Meyer, P. Schmuki, Adv. Funct. Mater. 2021, 31, 2102843.
a) K. Villa, J. R. Galán-Mascarós, N. López, E. Palomares, Sustainable Energy Fuels 2021, 5, 4560;
b) S. Hejazi, S. Mohajernia, B. Osuagwu, G. Zoppellaro, P. Andryskova, O. Tomanec, S. Kment, R. Zbořil, P. Schmuki, Adv. Mater. 2020, 32, 1908505.
G. G. Genchi, Y. Cao, T. A. Desai, in Smart Nanoparticles for Biomedicine (Ed: G. Ciofani), Elsevier, New York 2018, pp. 143-157.
M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, P. Schmuki, Phys. Status Solidi RRL 2008, 2, 194.
K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 2012, 13, 169.
a) L. Kong, C. C. Mayorga-Martinez, J. Guan, M. Pumera, Small 2020, 16, 1903179;
b) J. Li, M. Pumera, Chem. Soc. Rev. 2021, 50, 2794;
c) J. Zhang, J. Song, F. Mou, J. Guan, A. Sen, Trends Chem. 2021, 3, 387.
a) S. K. Srivastava, M. Guix, O. G. Schmidt, Nano Lett. 2016, 16, 817;
b) R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, ACS Nano 2016, 10, 839.
a) G. Zhao, M. Viehrig, M. Pumera, Lab Chip 2013, 13, 1930;
b) Y. Li, F. Mou, C. Chen, M. You, Y. Yin, L. Xu, J. Guan, RSC Adv. 2016, 6, 10697.
E. Karshalev, B. Esteban-Fernández de Ávila, J. Wang, J. Am. Chem. Soc. 2018, 140, 3810.
M. Enachi, M. Guix, V. Postolache, V. Ciobanu, V. M. Fomin, O. G. Schmidt, I. Tiginyanu, Small 2016, 12, 5497.
Y. Wang, Z. Li, A. A. Solovev, G. Huang, Y. Mei, RSC Adv. 2019, 9, 29433.
T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sci. Rep. 2014, 4, 4043.
K. Villa, A. Black, X. Domènech, J. Peral, Sol. Energy 2012, 86, 558.
K. Huang, L. Chen, J. Deng, J. Xiong, J. Nanomater. 2012, 2012, 11.
K. Almashhori, T. T. Ali, A. Saeed, R. Alwafi, M. Aly, F. E. Al-Hazmi, New J. Chem. 2020, 44, 562.
A. Boonserm, C. Kruehong, V. Seithtanabutara, A. Artnaseaw, P. Kwakhong, Appl. Surf. Sci. 2017, 419, 933.
X. Ma, A. C. Hortelao, A. Miguel-López, S. Sánchez, J. Am. Chem. Soc. 2016, 138, 13782.
S. Tang, F. Zhang, H. Gong, F. Wei, J. Zhuang, E. Karshalev, B. E.-F. de Ávila, C. Huang, Z. Zhou, Z. Li, L. Yin, H. Dong, R. H. Fang, X. Zhang, L. Zhang, J. Wang, Sci. Rob. 2020, 5, eaba6137.
a) H. Choi, S. H. Cho, S. K. Hahn, ACS Nano 2020, 14, 6683;
b) S. Hermanová, M. Pumera, Chem. - Eur. J. 2020, 26, 11085.
V. Vaiano, O. Sacco, G. Di Capua, N. Femia, D. Sannino, Water 2019, 11, 1642.
J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 2007, 3, 300.
H. Sopha, M. Krbal, S. Ng, J. Prikryl, R. Zazpe, F. K. Yam, J. M. Macak, Appl. Mater. Today 2017, 9, 104.
J. A. Maciá-Agulló, A. Corma, H. Garcia, Chem. - Eur. J. 2015, 21, 10940.
J. Ryu, S. H. Lee, D. H. Nam, C. B. Park, Adv. Mater. 2011, 23, 1883.
A. J. Conneely, C. Bennett, G. M. O'Connor, T. Vollmerhausen, C. O'Byrne, G. Spence, D. Rowe, J. Victor, International Congress on Applications of Lasers & Electro-Optics (ICALEO) 2016, 2016, M604.
Y. Lv, Z. Li, X. Zhou, S. Cheng, L. Zheng, Sci. Total Environ. 2020, 749, 142213.
B. Krajewska, J. Mol. Catal. B: Enzym. 2011, 68, 262.
R. Wu, X. Ou, R. Tian, J. Zhang, H. Jin, M. Dong, J. Li, L. Liu, Nanoscale 2018, 10, 20162.
S. Borse, M. Temgire, A. Khan, S. Joshi, RSC Adv. 2016, 6, 56674.
F. K.-M. Chan, K. Moriwaki, M. J. De Rosa, Methods in Molecular Biology, Humana Press, Totowa, NJ, New York, 2013, Vol. 979, p. 65.
Y. H. Leung, X. Xu, A. P. Y. Ma, F. Liu, A. M. C. Ng, Z. Shen, L. A. Gethings, M. Y. Guo, A. B. Djurišić, P. K. H. Lee, H. K. Lee, W. K. Chan, F. C. C. Leung, Sci. Rep. 2016, 6, 35243.
K. Pathakoti, S. Morrow, C. Han, M. Pelaez, X. He, D. D. Dionysiou, H.-M. Hwang, Environ. Sci. Technol. 2013, 47, 9988.
Y. H. Leung, A. M. C. Ng, X. Xu, Z. Shen, L. A. Gethings, M. T. Wong, C. M. N. Chan, M. Y. Guo, Y. H. Ng, A. B. Djurišić, P. K. H. Lee, W. K. Chan, L. H. Yu, D. L. Phillips, A. P. Y. Ma, F. C. C. Leung, Small 2014, 10, 1171.
Y. Cheng, H. Yang, Y. Yang, J. Huang, K. Wu, Z. Chen, X. Wang, C. Lin, Y. Lai, J. Mater. Chem. B 2018, 6, 1862.
R. Zazpe, M. Knaut, H. Sopha, L. Hromadko, M. Albert, J. Prikryl, V. Gärtnerová, J. W. Bartha, J. M. Macak, Langmuir 2016, 32, 10551.
H. Michalkova, Z. Skubalova, H. Sopha, V. Strmiska, B. Tesarova, S. Dostalova, P. Svec, L. Hromadko, M. Motola, J. M. Macak, V. Adam, Z. Heger, J. Hazard. Mater. 2020, 388, 122054.
H. Yang, N. Fan, W. Luan, S. Tu, Nanoscale Res. Lett. 2009, 4, 344.
N. Li, X. Zhang, S. Chen, X. Hou, Y. Liu, X. Zhai, Mater. Sci. Eng.: B 2011, 176, 688.
A. M. Suhail, M. J. Khalifa, N. M. Saeed, O. A. Ibrahim, Eur. Phys. J. Appl. Phys. 2010, 49, 30601.
Microrobots for Antibiotic-Resistant Staphylococcus aureus Skin Colony Eradication
Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms