Microrobots for Antibiotic-Resistant Staphylococcus aureus Skin Colony Eradication
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40560979
PubMed Central
PMC12257449
DOI
10.1021/acsami.5c08683
Knihovny.cz E-zdroje
- Klíčová slova
- Janus particles, biofilm, microrobots, skin infection, titanium dioxide,
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- biofilmy účinky léků MeSH
- kůže * mikrobiologie účinky léků MeSH
- methicilin rezistentní Staphylococcus aureus * účinky léků fyziologie MeSH
- peroxid vodíku chemie farmakologie MeSH
- platina chemie farmakologie MeSH
- prasata MeSH
- robotika * přístrojové vybavení MeSH
- stafylokokové infekce kůže * farmakoterapie mikrobiologie MeSH
- stříbro chemie farmakologie MeSH
- titan chemie farmakologie MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- peroxid vodíku MeSH
- platina MeSH
- stříbro MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
Self-propelled nano- and micromachines have immense potential as autonomous seek-and-act devices in biomedical applications. In this study, we present microrobots constructed with inherently biocompatible materials and propulsion systems tailored to skin-related applications. Addressing the significant treatment challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) skin infections, we demonstrate that photocatalytic titanium dioxide microrobots decorated with silver or platinum can effectively and rapidly eradicate MRSA biofilms grown on skin-mimicking membranes and porcine skin tissues. These microrobots are powered by hydrogen peroxide or ultraviolet light─agents considered toxic in high concentrations but commonly used in controlled amounts for skin disinfection and naturally encountered by the skin. By examining the effects of different metal coatings on the propulsion abilities of the microrobots, we show that these chemically propelled devices can eliminate biofilms without causing significant damage to the surrounding skin tissues, as confirmed by histological analysis. This work paves the way for the use of microrobots in skin-related biomedical applications, particularly in cases where traditional antibiotics are ineffective.
Zobrazit více v PubMed
Venugopalan P. L., Esteban-Fernández de Ávila B., Pal M., Ghosh A., Wang J.. Fantastic Voyage of Nanomotors into the Cell. ACS Nano. 2020;14(8):9423–9439. doi: 10.1021/acsnano.0c05217. PubMed DOI
Wang Z., Klingner A., Magdanz V., Misra S., Khalil I. S. M.. Soft Bio-Microrobots: Toward Biomedical Applications. Adv. Intell. Syst. 2024;6:2300093. doi: 10.1002/aisy.202300093. DOI
Oral C. M., Pumera M.. In Vivo Applications of Micro/Nanorobots. Nanoscale. 2023;15:8491–8507. doi: 10.1039/D3NR00502J. PubMed DOI
Soto F., Karshalev E., Zhang F., Esteban-Fernandez de Avila B., Nourhani A., Wang J.. Smart Materials for Microrobots. Chem. Rev. 2022;122(5):5365–5403. doi: 10.1021/acs.chemrev.0c00999. PubMed DOI
Mayorga-Martinez C. C., Zhang L., Pumera M.. Chemical Multiscale Robotics for Bacterial Biofilm Treatment. Chem. Soc. Rev. 2024;53:2284. doi: 10.1039/D3CS00564J. PubMed DOI
Tran H. H., Watkins A., Oh M. J., Babeer A., Schaer T. P., Steager E., Koo H.. Targeting Biofilm Infections in Humans Using Small Scale Robotics. Trends Biotechnol. 2024;42(2):479–495. doi: 10.1016/j.tibtech.2023.10.004. PubMed DOI PMC
Yu Q., Wang C., Zhang X., Chen H., Wu M. X., Lu M.. Photochemical Strategies Toward Precision Targeting Against Multidrug-Resistant Bacterial Infections. ACS Nano. 2024;18(22):14085–14122. doi: 10.1021/acsnano.3c12714. PubMed DOI
Karygianni L., Ren Z., Koo H., Thurnheer T.. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020;28(8):668–681. doi: 10.1016/j.tim.2020.03.016. PubMed DOI
Vestby L. K., Gronseth T., Simm R., Nesse L. L.. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics. 2020;9(2):59. doi: 10.3390/antibiotics9020059. PubMed DOI PMC
Zhou L., Cai L., Ruan H., Zhang L., Wang J., Jiang H., Wu Y., Feng S., Chen J.. Electrospun Chitosan Oligosaccharide/Polycaprolactone Nanofibers Loaded with Wound-Healing Compounds of Rutin and Quercetin as Antibacterial Dressings. Int. J. Biol. Macromol. 2021;183:1145–1154. doi: 10.1016/j.ijbiomac.2021.05.031. PubMed DOI
Liu J., Xie X., Wang T., Chen H., Fu Y., Cheng X., Wu J., Li G., Liu C., Liimatainen H., Zheng Z., Wang X.. et al. Promotion of Wound Healing Using Nanoporous Silk Fibroin Sponges. ACS Appl. Mater. Interfaces. 2023;15:12696–12707. doi: 10.1021/acsami.2c20274. PubMed DOI
Cai L., Zhu X., Ruan H., Yang J., Wei W., Wu Y., Zhou L., Jiang H., Ji M., Chen J.. Curcumin-Stabilized Silver Nanoparticles Encapsulated in Biocompatible Electrospun Nanofibrous Scaffold for Sustained Eradication of Drug-Resistant Bacteria. J. Hazard. Mater. 2023;452:131290. doi: 10.1016/j.jhazmat.2023.131290. PubMed DOI
Wu X., He W., Mu X., Liu Y., Deng J., Liu Y., Nie X.. Macrophage Polarization in Diabetic Wound Healing. Burns Trauma. 2022;10:tkac051. doi: 10.1093/burnst/tkac051. PubMed DOI PMC
Le G., Li J., Li H., Wei W., Yang Q., Chen J.. Rationalizing Hydrogel-Integrated Peroxidase-Mimicking Nanozymes for Combating Drug-Resistant Bacteria and Colorimetric Sensing. Int. J. Biol. Macromol. 2025;291:138576. doi: 10.1016/j.ijbiomac.2024.138576. PubMed DOI
Yang J., Luo H., Zhu X., Cai L., Zhou L., Ruan H., Chen J.. Copper-Doped Bismuth Oxychloride Nanosheets Assembled into Sphere-Like Morphology for Improved Photocatalytic Inactivation of Drug-Resistant Bacteria. Sci. Total Environ. 2024;912:168916. doi: 10.1016/j.scitotenv.2023.168916. PubMed DOI
Li M., Hu X., Zhao Y., Jiao N.. An Overview of Recent Progress in Micro/Nanorobots for Biomedical Applications. Adv. Mater. Technol. 2023;8:2201928. doi: 10.1002/admt.202201928. DOI
Hwang G., Paula A. J., Hunter E. E., Liu Y., Babeer A., Karabucak B., Stebe K., Kumar V., Steager E., Koo H.. Catalytic Antimicrobial Robots for Biofilm Eradication. Sci. Robot. 2019;4:eaaw2388. doi: 10.1126/scirobotics.aaw2388. PubMed DOI PMC
Dong Y., Wang L., Yuan K., Ji F., Gao J., Zhang Z., Du X., Tian Y., Wang Q., Zhang L.. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano. 2021;15(3):5056–5067. doi: 10.1021/acsnano.0c10010. PubMed DOI
Ussia M., Urso M., Kment S., Fialova T., Klima K., Dolezelikova K., Pumera M.. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small. 2022;18(22):2200708. doi: 10.1002/smll.202200708. PubMed DOI
Bhuyan T., Simon A. T., Maity S., Singh A. K., Ghosh S. S., Bandyopadhyay D.. Magnetotactic T-Budbots to Kill-n-Clean Biofilms. ACS Appl. Mater. Interfaces. 2020;12:43352–43364. doi: 10.1021/acsami.0c08444. PubMed DOI
He T., Yang Y., Chen X.-B.. Propulsion Mechanisms of Micro/Nanorobots: A Review. Nanoscale. 2024;16:12696–12734. doi: 10.1039/D4NR01776E. PubMed DOI
Dey K. K., Sen A.. Chemically Propelled Molecules and Machines. J. Am. Chem. Soc. 2017;139:7666–7676. doi: 10.1021/jacs.7b02347. PubMed DOI
Zhou H., Mayorga-Martinez C. C., Pané S., Zhang L., Pumera M.. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021;121:4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Xu T., Gao W., Xu L.-P., Zhang X., Wang S.. Fuel-Free Synthetic Micro-/Nanomachines. Adv. Mater. 2016;29:1603250. doi: 10.1002/adma.201603250. PubMed DOI
Su H., Li S., Yang G.-Z., Qian K.. Janus Micro/Nanorobots in Biomedical Applications. Adv. Healthcare Mater. 2023;12:2202391. doi: 10.1002/adhm.202202391. PubMed DOI
Villa K., Sopha H., Zelenka J., Motola M., Dekanovsky L., Beketova D. C., Macak J. M., Ruml T., Pumera M.. Enzyme-Photocatalyst Tandem Microrobot Powered by Urea for Escherichia coli Biofilm Eradication. Small. 2022;18(36):2106612. doi: 10.1002/smll.202106612. PubMed DOI
Oral C. M., Ussia M., Urso M., Salat J., Novobilsky A., Stefanik M., Ruzek D., Pumera M.. Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract. Adv. Healthcare Mater. 2023;12(8):2202682. doi: 10.1002/adhm.202202682. PubMed DOI
Mayorga-Martinez C. C., Zelenka J., Klima K., Kubanova M., Ruml T., Pumera M.. Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh. Adv. Mater. 2023;35:2300191. doi: 10.1002/adma.202300191. PubMed DOI
Villa K., Viktorova J., Plutnar J., Ruml T., Hoang L., Pumera M.. Chemical Microrobots as Self-Propelled Microbrushes against Dental Biofilm. Cell Rep. Phys. Sci. 2020;1(9):100181. doi: 10.1016/j.xcrp.2020.100181. DOI
Mayorga-Martinez C. C., Zelenka J., Klima K., Mayorga-Burrezo P., Hoang L., Ruml T., Pumera M.. Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano. 2022;16:8694–8703. doi: 10.1021/acsnano.2c02516. PubMed DOI
Xie S., Huang K., Peng J., Liu Y., Cao W., Zhang D., Li X.. Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated NO Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds. Adv. Healthcare Mater. 2022;11(19):2201323. doi: 10.1002/adhm.202201323. PubMed DOI
Arqué X., Torres M. D. T., Patino T., Boaro A., Sánchez S., de la Fuente-Nunez C.. Autonomous Treatment of Bacterial Infections In Vivo Using Antimicrobial Micro- and Nanomotors. ACS Nano. 2022;16(5):7547–7558. doi: 10.1021/acsnano.1c11013. PubMed DOI PMC
Jancik-Prochazkova A., Kmentova H., Ju X., Kment S., Zboril R., Pumera M.. Precision Engineering of Nanorobots: Toward Single Atom Decoration and Defect Control for Enhanced Microplastic Capture. Adv. Funct. Mater. 2024;34:2402567. doi: 10.1002/adfm.202402567. DOI
Chen C., Tang S., Teymourian H., Karshalev E., Zhang F., Li J., Mou F., Liang Y., Guan J., Wang J.. Chemical/Light-Powered Hybrid Micromotors with “On-the-Fly” Optical Brakes. Angew. Chem. 2018;130:8242–8246. doi: 10.1002/ange.201803457. PubMed DOI
Fan D., Sun J., Liu C., Wang S., Han J., Agathokleous E., Zhu Y.. Measurement and Modeling of Hormesis in Soil Bacteria and Fungi under Single and Combined Treatments of Cd and Pb. Sci. Total Environ. 2021;783:147494. doi: 10.1016/j.scitotenv.2021.147494. PubMed DOI
Oral C. M., Ussia M., Yavuz D. K., Pumera M.. Shape Engineering of TiO2 Microrobots for “On-the-Fly” Optical Brake. Small. 2022;18(10):2106271. doi: 10.1002/smll.202106271. PubMed DOI
Ressnerova A., Novotny F., Michalkova H., Pumera M., Adam V., Heger Z.. Efficient Protein Transfection by Swarms of Chemically Powered Plasmonic Virus-Sized Nanorobots. ACS Nano. 2021;15(8):12899–12910. doi: 10.1021/acsnano.1c01172. PubMed DOI
Vyskocil J., Mayorga-Martinez C. C., Jablonska E., Novotny F., Ruml T., Pumera M.. Cancer Cells Microsurgery via Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS Nano. 2020;14:8247–8256. doi: 10.1021/acsnano.0c01705. PubMed DOI
Foster H. A., Ditta I. B., Varghese S., Steele A.. Photocatalytic Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity. Appl. Microbiol. Biotechnol. 2011;90:1847–1868. doi: 10.1007/s00253-011-3213-7. PubMed DOI PMC
Xu T., Xue Z., Li X., Zhang M., Yang R., Qin S., Guo Y.. Development of Membrane-Targeting Osthole Derivatives Containing Pyridinium Quaternary Ammonium Moieties with Potent Anti-Methicilin-Resistant Staphylococcus aureus Properties. J. Med. Chem. 2025;68:7459–7475. doi: 10.1021/acs.jmedchem.4c03167. PubMed DOI
Lopes V. R., Loitto V., Audinot J.-N., Bayat N., Gutleb A. C., Cristobal S.. Dose-Dependent Autophagic Effect of Titanium Dioxide Nanoparticles in Human HaCaT Cells at Non-Cytotoxic Levels. J. Nanobiotechnol. 2016;14:22. doi: 10.1186/s12951-016-0174-0. PubMed DOI PMC
Tyagi N., Srivastava S. K., Arora S., Omar Y., Ijaz Z. M., Al-Ghadhban A., Deshmukh S. K., Carter J. E., Singh A. P., Singh S.. Comparative Analysis of the Relative Potential of Silver, Zinc Oxide, and Titanium Dioxide Nanoparticles Against UVB-Induced DNA Damage for the Prevention of Skin Carcinogenesis. Cancer Lett. 2016;383:53–61. doi: 10.1016/j.canlet.2016.09.026. PubMed DOI PMC
Ahamed M., Khan M. A. M., Akhtar M. J., Alhadlaq H. A., Alshamsan A.. Ag-Doping Regulates the Cytotoxicity of TiO2 Nanoparticles via Oxidative Stress in Human Cancer Cells. Sci. Rep. 2017;7:17662. doi: 10.1038/s41598-017-17559-9. PubMed DOI PMC
Zhu G., Wang Q., Lu S., Niu Y.. Hydrogen Peroxide: A Potential Wound Therapeutic Target. Med. Princ. Pract. 2017;26(4):301–308. doi: 10.1159/000475501. PubMed DOI PMC