Microrobots for Antibiotic-Resistant Staphylococcus aureus Skin Colony Eradication

. 2025 Jul 09 ; 17 (27) : 39340-39348. [epub] 20250625

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40560979

Self-propelled nano- and micromachines have immense potential as autonomous seek-and-act devices in biomedical applications. In this study, we present microrobots constructed with inherently biocompatible materials and propulsion systems tailored to skin-related applications. Addressing the significant treatment challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) skin infections, we demonstrate that photocatalytic titanium dioxide microrobots decorated with silver or platinum can effectively and rapidly eradicate MRSA biofilms grown on skin-mimicking membranes and porcine skin tissues. These microrobots are powered by hydrogen peroxide or ultraviolet light─agents considered toxic in high concentrations but commonly used in controlled amounts for skin disinfection and naturally encountered by the skin. By examining the effects of different metal coatings on the propulsion abilities of the microrobots, we show that these chemically propelled devices can eliminate biofilms without causing significant damage to the surrounding skin tissues, as confirmed by histological analysis. This work paves the way for the use of microrobots in skin-related biomedical applications, particularly in cases where traditional antibiotics are ineffective.

Zobrazit více v PubMed

Venugopalan P. L., Esteban-Fernández de Ávila B., Pal M., Ghosh A., Wang J.. Fantastic Voyage of Nanomotors into the Cell. ACS Nano. 2020;14(8):9423–9439. doi: 10.1021/acsnano.0c05217. PubMed DOI

Wang Z., Klingner A., Magdanz V., Misra S., Khalil I. S. M.. Soft Bio-Microrobots: Toward Biomedical Applications. Adv. Intell. Syst. 2024;6:2300093. doi: 10.1002/aisy.202300093. DOI

Oral C. M., Pumera M.. In Vivo Applications of Micro/Nanorobots. Nanoscale. 2023;15:8491–8507. doi: 10.1039/D3NR00502J. PubMed DOI

Soto F., Karshalev E., Zhang F., Esteban-Fernandez de Avila B., Nourhani A., Wang J.. Smart Materials for Microrobots. Chem. Rev. 2022;122(5):5365–5403. doi: 10.1021/acs.chemrev.0c00999. PubMed DOI

Mayorga-Martinez C. C., Zhang L., Pumera M.. Chemical Multiscale Robotics for Bacterial Biofilm Treatment. Chem. Soc. Rev. 2024;53:2284. doi: 10.1039/D3CS00564J. PubMed DOI

Tran H. H., Watkins A., Oh M. J., Babeer A., Schaer T. P., Steager E., Koo H.. Targeting Biofilm Infections in Humans Using Small Scale Robotics. Trends Biotechnol. 2024;42(2):479–495. doi: 10.1016/j.tibtech.2023.10.004. PubMed DOI PMC

Yu Q., Wang C., Zhang X., Chen H., Wu M. X., Lu M.. Photochemical Strategies Toward Precision Targeting Against Multidrug-Resistant Bacterial Infections. ACS Nano. 2024;18(22):14085–14122. doi: 10.1021/acsnano.3c12714. PubMed DOI

Karygianni L., Ren Z., Koo H., Thurnheer T.. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020;28(8):668–681. doi: 10.1016/j.tim.2020.03.016. PubMed DOI

Vestby L. K., Gronseth T., Simm R., Nesse L. L.. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics. 2020;9(2):59. doi: 10.3390/antibiotics9020059. PubMed DOI PMC

Zhou L., Cai L., Ruan H., Zhang L., Wang J., Jiang H., Wu Y., Feng S., Chen J.. Electrospun Chitosan Oligosaccharide/Polycaprolactone Nanofibers Loaded with Wound-Healing Compounds of Rutin and Quercetin as Antibacterial Dressings. Int. J. Biol. Macromol. 2021;183:1145–1154. doi: 10.1016/j.ijbiomac.2021.05.031. PubMed DOI

Liu J., Xie X., Wang T., Chen H., Fu Y., Cheng X., Wu J., Li G., Liu C., Liimatainen H., Zheng Z., Wang X.. et al. Promotion of Wound Healing Using Nanoporous Silk Fibroin Sponges. ACS Appl. Mater. Interfaces. 2023;15:12696–12707. doi: 10.1021/acsami.2c20274. PubMed DOI

Cai L., Zhu X., Ruan H., Yang J., Wei W., Wu Y., Zhou L., Jiang H., Ji M., Chen J.. Curcumin-Stabilized Silver Nanoparticles Encapsulated in Biocompatible Electrospun Nanofibrous Scaffold for Sustained Eradication of Drug-Resistant Bacteria. J. Hazard. Mater. 2023;452:131290. doi: 10.1016/j.jhazmat.2023.131290. PubMed DOI

Wu X., He W., Mu X., Liu Y., Deng J., Liu Y., Nie X.. Macrophage Polarization in Diabetic Wound Healing. Burns Trauma. 2022;10:tkac051. doi: 10.1093/burnst/tkac051. PubMed DOI PMC

Le G., Li J., Li H., Wei W., Yang Q., Chen J.. Rationalizing Hydrogel-Integrated Peroxidase-Mimicking Nanozymes for Combating Drug-Resistant Bacteria and Colorimetric Sensing. Int. J. Biol. Macromol. 2025;291:138576. doi: 10.1016/j.ijbiomac.2024.138576. PubMed DOI

Yang J., Luo H., Zhu X., Cai L., Zhou L., Ruan H., Chen J.. Copper-Doped Bismuth Oxychloride Nanosheets Assembled into Sphere-Like Morphology for Improved Photocatalytic Inactivation of Drug-Resistant Bacteria. Sci. Total Environ. 2024;912:168916. doi: 10.1016/j.scitotenv.2023.168916. PubMed DOI

Li M., Hu X., Zhao Y., Jiao N.. An Overview of Recent Progress in Micro/Nanorobots for Biomedical Applications. Adv. Mater. Technol. 2023;8:2201928. doi: 10.1002/admt.202201928. DOI

Hwang G., Paula A. J., Hunter E. E., Liu Y., Babeer A., Karabucak B., Stebe K., Kumar V., Steager E., Koo H.. Catalytic Antimicrobial Robots for Biofilm Eradication. Sci. Robot. 2019;4:eaaw2388. doi: 10.1126/scirobotics.aaw2388. PubMed DOI PMC

Dong Y., Wang L., Yuan K., Ji F., Gao J., Zhang Z., Du X., Tian Y., Wang Q., Zhang L.. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano. 2021;15(3):5056–5067. doi: 10.1021/acsnano.0c10010. PubMed DOI

Ussia M., Urso M., Kment S., Fialova T., Klima K., Dolezelikova K., Pumera M.. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small. 2022;18(22):2200708. doi: 10.1002/smll.202200708. PubMed DOI

Bhuyan T., Simon A. T., Maity S., Singh A. K., Ghosh S. S., Bandyopadhyay D.. Magnetotactic T-Budbots to Kill-n-Clean Biofilms. ACS Appl. Mater. Interfaces. 2020;12:43352–43364. doi: 10.1021/acsami.0c08444. PubMed DOI

He T., Yang Y., Chen X.-B.. Propulsion Mechanisms of Micro/Nanorobots: A Review. Nanoscale. 2024;16:12696–12734. doi: 10.1039/D4NR01776E. PubMed DOI

Dey K. K., Sen A.. Chemically Propelled Molecules and Machines. J. Am. Chem. Soc. 2017;139:7666–7676. doi: 10.1021/jacs.7b02347. PubMed DOI

Zhou H., Mayorga-Martinez C. C., Pané S., Zhang L., Pumera M.. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021;121:4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC

Xu T., Gao W., Xu L.-P., Zhang X., Wang S.. Fuel-Free Synthetic Micro-/Nanomachines. Adv. Mater. 2016;29:1603250. doi: 10.1002/adma.201603250. PubMed DOI

Su H., Li S., Yang G.-Z., Qian K.. Janus Micro/Nanorobots in Biomedical Applications. Adv. Healthcare Mater. 2023;12:2202391. doi: 10.1002/adhm.202202391. PubMed DOI

Villa K., Sopha H., Zelenka J., Motola M., Dekanovsky L., Beketova D. C., Macak J. M., Ruml T., Pumera M.. Enzyme-Photocatalyst Tandem Microrobot Powered by Urea for Escherichia coli Biofilm Eradication. Small. 2022;18(36):2106612. doi: 10.1002/smll.202106612. PubMed DOI

Oral C. M., Ussia M., Urso M., Salat J., Novobilsky A., Stefanik M., Ruzek D., Pumera M.. Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract. Adv. Healthcare Mater. 2023;12(8):2202682. doi: 10.1002/adhm.202202682. PubMed DOI

Mayorga-Martinez C. C., Zelenka J., Klima K., Kubanova M., Ruml T., Pumera M.. Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh. Adv. Mater. 2023;35:2300191. doi: 10.1002/adma.202300191. PubMed DOI

Villa K., Viktorova J., Plutnar J., Ruml T., Hoang L., Pumera M.. Chemical Microrobots as Self-Propelled Microbrushes against Dental Biofilm. Cell Rep. Phys. Sci. 2020;1(9):100181. doi: 10.1016/j.xcrp.2020.100181. DOI

Mayorga-Martinez C. C., Zelenka J., Klima K., Mayorga-Burrezo P., Hoang L., Ruml T., Pumera M.. Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano. 2022;16:8694–8703. doi: 10.1021/acsnano.2c02516. PubMed DOI

Xie S., Huang K., Peng J., Liu Y., Cao W., Zhang D., Li X.. Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated NO Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds. Adv. Healthcare Mater. 2022;11(19):2201323. doi: 10.1002/adhm.202201323. PubMed DOI

Arqué X., Torres M. D. T., Patino T., Boaro A., Sánchez S., de la Fuente-Nunez C.. Autonomous Treatment of Bacterial Infections In Vivo Using Antimicrobial Micro- and Nanomotors. ACS Nano. 2022;16(5):7547–7558. doi: 10.1021/acsnano.1c11013. PubMed DOI PMC

Jancik-Prochazkova A., Kmentova H., Ju X., Kment S., Zboril R., Pumera M.. Precision Engineering of Nanorobots: Toward Single Atom Decoration and Defect Control for Enhanced Microplastic Capture. Adv. Funct. Mater. 2024;34:2402567. doi: 10.1002/adfm.202402567. DOI

Chen C., Tang S., Teymourian H., Karshalev E., Zhang F., Li J., Mou F., Liang Y., Guan J., Wang J.. Chemical/Light-Powered Hybrid Micromotors with “On-the-Fly” Optical Brakes. Angew. Chem. 2018;130:8242–8246. doi: 10.1002/ange.201803457. PubMed DOI

Fan D., Sun J., Liu C., Wang S., Han J., Agathokleous E., Zhu Y.. Measurement and Modeling of Hormesis in Soil Bacteria and Fungi under Single and Combined Treatments of Cd and Pb. Sci. Total Environ. 2021;783:147494. doi: 10.1016/j.scitotenv.2021.147494. PubMed DOI

Oral C. M., Ussia M., Yavuz D. K., Pumera M.. Shape Engineering of TiO2 Microrobots for “On-the-Fly” Optical Brake. Small. 2022;18(10):2106271. doi: 10.1002/smll.202106271. PubMed DOI

Ressnerova A., Novotny F., Michalkova H., Pumera M., Adam V., Heger Z.. Efficient Protein Transfection by Swarms of Chemically Powered Plasmonic Virus-Sized Nanorobots. ACS Nano. 2021;15(8):12899–12910. doi: 10.1021/acsnano.1c01172. PubMed DOI

Vyskocil J., Mayorga-Martinez C. C., Jablonska E., Novotny F., Ruml T., Pumera M.. Cancer Cells Microsurgery via Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS Nano. 2020;14:8247–8256. doi: 10.1021/acsnano.0c01705. PubMed DOI

Foster H. A., Ditta I. B., Varghese S., Steele A.. Photocatalytic Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity. Appl. Microbiol. Biotechnol. 2011;90:1847–1868. doi: 10.1007/s00253-011-3213-7. PubMed DOI PMC

Xu T., Xue Z., Li X., Zhang M., Yang R., Qin S., Guo Y.. Development of Membrane-Targeting Osthole Derivatives Containing Pyridinium Quaternary Ammonium Moieties with Potent Anti-Methicilin-Resistant Staphylococcus aureus Properties. J. Med. Chem. 2025;68:7459–7475. doi: 10.1021/acs.jmedchem.4c03167. PubMed DOI

Lopes V. R., Loitto V., Audinot J.-N., Bayat N., Gutleb A. C., Cristobal S.. Dose-Dependent Autophagic Effect of Titanium Dioxide Nanoparticles in Human HaCaT Cells at Non-Cytotoxic Levels. J. Nanobiotechnol. 2016;14:22. doi: 10.1186/s12951-016-0174-0. PubMed DOI PMC

Tyagi N., Srivastava S. K., Arora S., Omar Y., Ijaz Z. M., Al-Ghadhban A., Deshmukh S. K., Carter J. E., Singh A. P., Singh S.. Comparative Analysis of the Relative Potential of Silver, Zinc Oxide, and Titanium Dioxide Nanoparticles Against UVB-Induced DNA Damage for the Prevention of Skin Carcinogenesis. Cancer Lett. 2016;383:53–61. doi: 10.1016/j.canlet.2016.09.026. PubMed DOI PMC

Ahamed M., Khan M. A. M., Akhtar M. J., Alhadlaq H. A., Alshamsan A.. Ag-Doping Regulates the Cytotoxicity of TiO2 Nanoparticles via Oxidative Stress in Human Cancer Cells. Sci. Rep. 2017;7:17662. doi: 10.1038/s41598-017-17559-9. PubMed DOI PMC

Zhu G., Wang Q., Lu S., Niu Y.. Hydrogen Peroxide: A Potential Wound Therapeutic Target. Med. Princ. Pract. 2017;26(4):301–308. doi: 10.1159/000475501. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...