Application of silver solid amalgam electrodes in electrochemical detection of DNA damage
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35132476
DOI
10.1007/s00216-022-03917-8
PII: 10.1007/s00216-022-03917-8
Knihovny.cz E-zdroje
- Klíčová slova
- Amalgam electrode, DNA damage, Electrochemical biosensor, Methylene blue, UV radiation,
- MeSH
- biosenzitivní techniky * metody MeSH
- DNA chemie MeSH
- elektrochemické techniky metody MeSH
- elektrody MeSH
- lidé MeSH
- methylenová modř chemie MeSH
- poškození DNA MeSH
- sperma MeSH
- stříbro * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- methylenová modř MeSH
- stříbro * MeSH
In this study, a mercury meniscus-modified silver solid amalgam electrode was used for the first time for the detection of UV-induced DNA damage. The integrity of the double-stranded DNA (dsDNA) layer was detected indirectly using the evaluation of the methylene blue reduction within its accumulation into dsDNA after the UV irradiation of the biosensor surface with two different wavelengths (254 nm and 365 nm), monitored by differential pulse voltammetry. Moreover, a simple electrochemical characterization of the biosensor surface was performed using cyclic voltammetry of the redox indicator hexaammineruthenium chloride (RuHex) present in the solution. Electrochemical impedance spectroscopy (EIS) was used in both cases for the verification of results. Individual electrochemical signals depend on the time of biosensor exposure to UV irradiation as well as on the selected wavelengths and are different for both used types of dsDNA (salmon sperm and calf thymus). The highest degradation degree up to 60% was observed using sensitive EIS of methylene blue after 10 min irradiation of the biosensor at 254 nm. The use of RuHex seems to be less sensitive for the detection of dsDNA structural changes, when the degradation degree up to 40% was observed, using EIS at the same conditions.
Zobrazit více v PubMed
Paleček E, Bartošík M. Electrochemistry of nucleic acids. Chem Rev. 2012;112:3427–81. https://doi.org/10.1021/cr200303p . PubMed DOI
Santonicola MG, Coscia MG, Sirilli M, Laurenzi S. Nanomaterial-based biosensors for a real-time detection of biological damage by UV light. Proc Annual Int Conf IEEE Eng Med Biol Soc (EMBC). 2015;4391–94.
Ravanat J-L, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B, Biol. 2001;63:88–102. https://doi.org/10.1016/S1011-1344(01)00206-8 . DOI
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids. 2010;2010:592980. https://doi.org/10.4061/2010/592980 . PubMed DOI PMC
Hájková A, Barek J, Vyskočil V. Electrochemical DNA biosensor for detection of DNA damage induced by hydroxyl radicals. Bioelectrochem. 2017;116:1–9. https://doi.org/10.1016/j.bioelechem.2017.02.003 . DOI
Fojta M, Daňhel A, Havran L, Vyskočil V. Recent progress in electrochemical sensors and assays for DNA damage and repair. TrAC - Trends Anal Chem. 2016;79:160–7. https://doi.org/10.1016/j.trac.2015.11.018 . DOI
Gebala M, Stoica L, Neugebauer S, Schuhmann W. Label-free detection of DNA hybridization in presence of intercalators using electrochemical impedance spectroscopy. Electroanalysis. 2009;21:325–31. https://doi.org/10.1002/elan.200804388 . DOI
Hlavata L, Benikova K, Vyskocil V, Labuda J. Evaluation of damage to DNA induced by UV-C radiation and chemical agents using electrochemical biosensor based on low molecular weight DNA and screen-printed carbon electrode. Electrochim Acta. 2012;71:134–9. https://doi.org/10.1016/j.electacta.2012.03.119 . DOI
Gorodetsky AA, Buzzeo MC, Barton JK. DNA-mediated electrochemistry. Bioconjug Chem. 2009;19:2285–96. https://doi.org/10.1021/bc8003149 . DOI
Zhang Y, Hu N. Cyclic voltammetric detection of chemical DNA damage induced by styrene oxide in natural dsDNA layer-by-layer films using methylene blue as electroactive probe. Electrochem Commun. 2007;9:35–41. https://doi.org/10.1016/j.elecom.2006.08.032 . DOI
Arias P, Ferreyra NF, Rivas GA, Bollo S. Glassy carbon electrodes modified with CNT dispersed in chitosan: analytical applications for sensing DNA-methylene blue interaction. J Electroanal Chem. 2009;634:123–6. https://doi.org/10.1016/j.jelechem.2009.07.022 . DOI
Yau HCM, Chan HL, Yang M. Electrochemical properties of DNA-intercalating doxorubicin and methylene blue on n-hexadecyl mercaptan-doped 5-thiol-labeled DNA-modified gold electrodes. Biosens Bioelectron. 2003;18:873–9. https://doi.org/10.1016/S0956-5663(02)00161-6 . PubMed DOI
Kara P, Kerman K, Ozkan D, Meric B, Erdem A, Ozkan Z, Ozsoz M. Electrochemical genosensor for the detection of interaction between methylene blue and DNA. Electrochem Commun. 2002;4:705–9. https://doi.org/10.1016/S1388-2481(02)00428-9 . DOI
Lin X, Ni Y, Kokot S. An electrochemical DNA-sensor developed with the use of methylene blue as a redox indicator for the detection of DNA damage induced by endocrine-disrupting compounds. Anal Chim Acta. 2015;867:29–37. https://doi.org/10.1016/j.aca.2015.02.050 . PubMed DOI
García-González R, Costa-García A, Fernández-Abedul MT. Methylene blue covalently attached to single stranded DNA as electroactive label for potential bioassays. Sensors Actuators B Chem. 2014;191:784–90. https://doi.org/10.1016/j.snb.2013.10.037 . DOI
De Crozals G, Farre C, Sigaud M, Fortgang P, Sanglar C, Chaix C. Methylene blue phosphoramidite for DNA labelling. Chem Commun. 2015;51:4458–61. https://doi.org/10.1039/C4CC10164B . DOI
Yosypchuk B, Fojta M, Barek J. Amalgam electrodes as tool for study of environmental important compounds and for detection of DNA damages. Int Conf Dev Energy, Environ Econ – Proc. 2010;146–150.
Yosypchuk B, Fojta M, Havran L, Heyrovský M, Paleček E. Voltammetric behavior of osmium-labeled DNA at mercury meniscus-modified solid amalgam electrodes. Detecting DNA hybridization. Electroanalysis. 2006;18:186–94. https://doi.org/10.1002/elan.200503392 . DOI
Krejcova Z, Barek J, Vyskocil V. Voltammetric determination of fenitrothion and study of its interaction with DNA at a mercury meniscus modified silver solid amalgam electrode. Monatshefte fur Chemie. 2016;147:135–42. https://doi.org/10.1007/s00706-015-1595-4 . DOI
Fadrná R, Cahová-Kucharíková K, Havran L, Yosypchuk B, Fojta M. Use of polished and mercury film-modified silver solid amalgam electrodes in electrochemical analysis of DNA. Electroanalysis. 2005;17:452–9. https://doi.org/10.1002/elan.200403181 . DOI
Fadrná R, Yosypchuk B, Fojta M, Navrátil T, Novotný L. Voltammetric determination of adenine, guanine, and DNA using liquid mercury free polished silver solid amalgam electrode. Anal Lett. 2004;37:399–413. https://doi.org/10.1081/Al-120028615 . DOI
Danhel A, Raindlova V, Havran L, Pivonkova H, Hocek M, Fojta M. Electrochemical behaviour of 2,4-dinitrophenylhydrazi(o)ne as multi-redox centre DNA label at mercury meniscus modified silver solid amalgam electrode. Electrochim Acta. 2014;126:122–31. https://doi.org/10.1016/j.electacta.2013.09.147 . DOI
Danhel A, Raindlova V, Havran L, Barek J, Hocek M, Fojta M. Voltammetric study of dsDNA modified by multi-redox label based on N-methyl-4-hydrazino-7-nitrobenzofurazan. Electrochim Acta. 2014;129:348–57. https://doi.org/10.1016/j.electacta.2014.02.137 . DOI
Kucharíková K, Novotný L, Yosypchuk B, Fojta M. Detecting DNA damage with a silver solid amalgam electrode. Electroanalysis. 2004;16:410–4. https://doi.org/10.1002/elan.200302874 . DOI
Barek J, Fischer J, Moreira JC, Wang J. Voltammetric and amperometric determination of biologically active organic compounds using various types of silver amalgam electrodes. In: Kalcher K, Metelka R, Svancara K, Vytras K, editors. Sensing in Electroanalysis, Vol 8. University Press Centre, Pardubice, Czech Republic; 2014. pp. 35–47.
Svitková V, Vyskočil V. Electrochemical behaviour of methylene blue at bare and DNA-modified silver solid amalgam electrodes. J Solid State Electrochem. 2022; after revisions.
Cesiulis H, Tsyntsaru N, Ramnavicius A, Ragoisha G. The study of thin films by electrochemical impedance spectroscopy. In: Tiginyanu I, Topala P, Ursaki V, editors. Nanostructured and Thin Films for Multifunctional Applications. Springer: Switzerland; 2016. p. 3–42. DOI
Al-Qasmi N, Hameed A, Khan AN, Aslam M, Ismail IMI, Soomro MT. Mercury meniscus on solid silver amalgam electrode as a sensitive electrochemical sensor for tetrachlorvinphos. J Saudi Chem Soc. 2018;22:496–507. https://doi.org/10.1016/j.jscs.2016.07.005 . DOI
Li WY, Xu JG, He XW. Characterization of the binding of methylene blue to DNA by spectroscopic methods. Anal Lett. 2000;33:2453–64. https://doi.org/10.1080/00032710008543201 . DOI
Boon EM, Jackson NM, Wightman MD, Kelley SO, Hill MG, Barton JK. Intercalative stacking: a critical feature of DNA charge-transport electrochemistry. J Phys Chem B. 2003;107:11805–12. https://doi.org/10.1021/jp030753i . DOI
Dai S, Lu W, Wang Y, Yao B. Universal DNA biosensing based on instantaneously electrostatic attraction between hexaammineruthenium (III) and DNA molecules. Biosens Bioelectron. 2019;127:101–7. https://doi.org/10.1016/J.BIOS.2018.12.019 . PubMed DOI
Schrattenecker JD, Heer R, Melnik E, Maier T, Fafilek G, Hainberger R. Hexaammineruthenium (II)/(III) as alternative redox-probe to hexacyanoferrat (II)/(III) for stable impedimetric biosensing with gold electrodes. Biosens Bioelectron. 2019;127:25–30. https://doi.org/10.1016/J.BIOS.2018.12.007 . PubMed DOI
Rafique S, Khan S, Bashir S, Nasir R. Facile development of highly sensitive femtomolar electrochemical DNA biosensor using gold nanoneedle-modified electrode. Chem Papers. 2020;74:229–38. https://doi.org/10.1007/s11696-019-00874-y . DOI
Liang M, Guo L. Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the Fenton reaction. Environ Sci Technol. 2007;41:658–64. https://doi.org/10.1021/es0617688 . PubMed DOI
Liu Y, Jia S, Guo LH. Development of microplate-based photoelectrochemical DNA biosensor array for high throughput detection of DNA damage. Sensors Actuators B Chem. 2012;161:334–40. https://doi.org/10.1016/j.snb.2011.10.041 . DOI
Ziyatdinova G, Labuda J. Complex electrochemical and impedimetric evaluation of DNA damage by using DNA biosensor based on a carbon screen-printed electrode. Anal Methods. 2011;3:2777–82. https://doi.org/10.1039/c1ay05403a . DOI
Oliveira SCB, Oliveira-Brett AM. In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode. Langmuir. 2012;28:4896–901. DOI
Zitka O, Krizkova S, Skalickova S, Kopel P, Babula P, Adam V. Kizek R (2013) Electrochemical study of DNA damaged by oxidation stress. Comb Chem High Throughput Screen. 2013;16:130–41. https://doi.org/10.2174/1386207311316020007 . PubMed DOI
Mousavisani SZ, Raoof JB, Cheung KY, Camargo ARH, Ruzgas T, Turner APF, Mak WC. Integrating an ex-vivo skin biointerface with electrochemical DNA biosensor for direct measurement of the protective effect of UV blocking agents. Biosens Bioelectron. 2019;128:159–65. https://doi.org/10.1016/j.bios.2018.12.025 . PubMed DOI
Svitkova V, Blaskovicova J, Tekelova M, Kallai BM, Ignat T, Horackova V, Skladal P, Kopel P, Adam V, Farkasova D, Labuda J. Assessment of CdS quantum dots effect on UV damage to DNA using a DNA/quantum dots structured electrochemical biosensor and DNA biosensing in solution. Sensors Actuators B Chem. 2017;243:435–44. https://doi.org/10.1016/j.snb.2016.11.160 . DOI
Blaškovičová J, Sochr J, Koutsogiannis A, Diamantidou D, Kopel P, Adam V, Labuda J. Detection of ROS generated by UV-C irradiation of CdS quantum dots and their effect on damage to chromosomal and plasmid DNA. Electroanalysis. 2018;30:698–704. https://doi.org/10.1002/ELAN.201700648 . DOI
Hlavata L, Striesova I, Ignat T, Blaskovisova J, Ruttkay-Nedecky B, Kopel P, Adam V, Kizek R, Labuda J. An electrochemical DNA-based biosensor to study the effects of CdTe quantum dots on UV-induced damage of DNA. Microchim Acta. 2015;182:1715–22. https://doi.org/10.1007/s00604-015-1502-z . DOI
Yin CX, Yang T, Zhang W, Zhou XD, Jiao K. Electrochemical biosensing for dsDNA damage induced by PbSe quantum dots under UV irradiation. Chinese Chem Lett. 2010;21:716–9. https://doi.org/10.1016/j.cclet.2009.12.025 . DOI
Wang J, Jiang M, Kawde AN. Flow detection of UV radiation-induced DNA damage at a polypyrrole-modified electrode. Electroanalysis. 2001;13:537–40. DOI
Wei W, Ni Q, Pu Y, Yin L, Liu S. Electrochemical biosensor for DNA damage detection based on exonuclease III digestions. J Electroanal Chem. 2014;714–715:25–9. https://doi.org/10.1016/j.jelechem.2013.12.018 . DOI
Fendyur A, Varma S, Lo CT, Voldman J. Cell-based biosensor to report DNA damage in micro- and nanosystems. Anal Chem. 2014;86:7598–605. https://doi.org/10.1021/ac501412c . PubMed DOI PMC
Pujari I, Thomas A, Thomas J, Jhawar N, Guruprasad KP, Rai PS, Satyamoorthy K. Babu VS. Cytotoxicity and radiosensitizing potency of Moscatilin in cancer cells at low radiation doses of X-ray and UV-C. 3 Biotech. 2021;11:281. https://doi.org/10.1007/s13205-021-02827-3 . PubMed DOI PMC
Casini B, Tuvo B, Cristina ML, Spagnolo AM, Totaro M, Baggiani A, Privitera GP. Evaluation of an ultraviolet C (UVC) light-emitting device for disinfection of high touch surfaces in hospital critical areas. Int J Environ Res Public Health. 2019;16:3572. https://doi.org/10.3390/IJERPH16193572 . DOI PMC
Rock C, Hsu Y-J, Curless MS, Carroll KC, Ross Howard T, Carson KA, Cummings S, Anderson M, Milstone AM, Maragakis LL. Ultraviolet-C light evaluation as adjunct disinfection to remove multidrug-resistant organisms. Clin Infect Dis. 2021. https://doi.org/10.1093/CID/CIAB896 . PubMed DOI PMC