Gluten-Free Bread and Bakery Products Technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
RO0318
Ministry of Agriculture of the Czech Republic
METROFOOD-PP, No. 871083
EU Horizon 2020 Grant agreement No. 871083
METROFOOD-CZ, LM2018100
Ministry of Education, Youth and Sport of the Czech Republic
PubMed
35159630
PubMed Central
PMC8834121
DOI
10.3390/foods11030480
PII: foods11030480
Knihovny.cz E-zdroje
- Klíčová slova
- bakery products, bread, cereals, enzymes, gluten-free products, sourdough,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Gluten, a protein fraction from wheat, rye, barley, oats, their hybrids and derivatives, is very important in baking technology. The number of people suffering from gluten intolerance is growing worldwide, and at the same time, the need for foods suitable for a gluten-free diet is increasing. Bread and bakery products are an essential part of the daily diet. Therefore, new naturally gluten-free baking ingredients and new methods of processing traditional ingredients are sought. The study discusses the use of additives to replace gluten and ensure the stability and elasticity of the dough, to improve the nutritional quality and sensory properties of gluten-free bread. The current task is to extend the shelf life of gluten-free bread and bakery products and thus extend the possibility of its distribution in a fresh state. This work is also focused on various technological possibilities of gluten-free bread and the preparation of bakery products.
Zobrazit více v PubMed
Al-Toma A., Volta U., Auricchio R., Castillejo G., Sanders D.S., Cellier C., Mulder C.J., Lundin K. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 2019;7:583–613. doi: 10.1177/2050640619844125. PubMed DOI PMC
Gabrovská D., Hálová I., Chrpová D., Ouhrabková J., Sluková M., Vavreinová S., Faměra O., Kohout P., Pánek J., Skřivan P. Cereals in Human Nutrition (Obiloviny v Lidské Výživě) 1st ed. Federation of the Food and Drink Industries of the Czech Republic; Prague, Czech Republic: 2015. pp. 44–49.
Toth M., Vatai G., Koris A. Consumers’ Acceptance, Satisfaction in Consuming Gluten-free Bread: A Market Survey Approach. Int. J. Celiac Dis. 2020;8:44–49.
Codex Standard 118-1979. [(accessed on 9 January 2022)]. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B118-1979%252FCXS_118e_2015.pdf.
Wieser H. Chemistry of gluten proteins. Food Microbiol. 2007;24:115–119. doi: 10.1016/j.fm.2006.07.004. PubMed DOI
Gluten Structure from the Database UNIPROT. [(accessed on 22 January 2022)]. Available online: https://www.uniprot.org/
Gomez A., Ferrero C., Calvelo A., Añón M., Puppo M. Effect of Mixing Time on Structural and Rheological Properties of Wheat Flour Dough for Breadmaking. Int. J. Food Prop. 2011;14:583–598. doi: 10.1080/10942910903295939. DOI
Culetu A., Susman I.E., Duta D.E., Belc N. Nutritional and Functional Properties of Gluten-Free Flours. Appl. Sci. 2021;11:6283. doi: 10.3390/app11146283. DOI
Djeghim F., Bourekoua H., Różyło R., Bieńczak A., Tanaś W., Zidoune M.N. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Appl. Sci. 2021;11:4605. doi: 10.3390/app11104605. DOI
Kirbas Z., Kumcuoglu S., Tavman S. Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. J. Food Sci. Technol. 2019;56:914–926. doi: 10.1007/s13197-018-03554-z. PubMed DOI PMC
Krishna K.R., Bejkar M., Du S., Serventi L. Flax and wattle seed powders enhance volume and softness of gluten-free bread. Food Sci. Technol. Int. 2019;25:66–75. doi: 10.1177/1082013218795808. PubMed DOI
Steffolani E., de la Hera E., Pérez G., Gómez M. Effect of Chia on Gluten-Free Bread Quality. J. Food Qual. 2014;37:309–317. doi: 10.1111/jfq.12098. DOI
Fratelli C., Santos F.G., Muniz D.G., Habu S., Braga A.R.C., Capriles V.D. Psyllium improves the quality and shelf life of gluten-free bread. Foods. 2021;10:954. doi: 10.3390/foods10050954. PubMed DOI PMC
Genevois C.E., de Escalada Pla M.F. Soybean by-products and modified cassava starch for improving alveolar structure and quality characteristics of gluten-free bread. Eur. Food Res. Technol. 2021;247:1477–1488. doi: 10.1007/s00217-021-03725-x. DOI
Skendi A., Papageorgiou M., Varzakas T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods. 2021;10:1997. doi: 10.3390/foods10091997. PubMed DOI PMC
Korus J., Achremowicz B. Fiber preparations of different origin used as additives in baking gluten-free breads. Food Sci. Technol. Qual. 2004;1:65–73.
Arslan M., Rakha A., Xiaobo Z., Mahmood M.A. Complimenting gluten free bakery products with dietary fiber: Opportunities and constraints. Trends Food Sci. Technol. 2019;83:194–202. doi: 10.1016/j.tifs.2018.11.011. DOI
Morreale F., Benavent-Gila Y., Rosell C.M. Inulin enrichment of gluten free breads: Interaction between inulin and yeast. Food Chem. 2019;278:545–551. doi: 10.1016/j.foodchem.2018.11.066. PubMed DOI
Drabinska N., Zielinski H., Krupa-Kozak U. Technological benefits of inulin-type fructans application in gluten-free products—A review. Trends Food Sci. Technol. 2016;56:149–157. doi: 10.1016/j.tifs.2016.08.015. DOI
Tsatsaragkou K., Protonotariu S., Mandala I. Structural role of fibre addition to increase knowledge of non-gluten bread. J. Cereal Sci. 2016;67:58–67. doi: 10.1016/j.jcs.2015.10.003. DOI
Azizi S., Azizi M.H., Moogouei R., Rajaei P. The effect of Quinoa flour and enzymes on the quality of gluten-free bread. Food Sci. Nutr. 2020;8:2373–2382. doi: 10.1002/fsn3.1527. PubMed DOI PMC
Sandri L.T.B., Santos F.G., Fratelli C., Capriles V.D. Development of gluten-free bread formulations containing whole chia flour with acceptable sensory properties. Food Sci Nutr. 2017;5:1021–1028. doi: 10.1002/fsn3.495. PubMed DOI PMC
Ramos L., Alonso-Hernando A., Martínez-Castro M., Morán-Pérez J.A., Cabrero-Lobato P., Pascual-Maté A., Téllez-Jiménez E., Mujico J.R. Sourdough Biotechnology Applied to Gluten-Free Baked Goods: Rescuing the Tradition. Foods. 2021;10:1498. doi: 10.3390/foods10071498. PubMed DOI PMC
Ketabi A., Soleimanian-Zad S., Kadivar M., Sheikh-zeinoddin M. Production of microbial exopolysaccharides in the sourdough and its effects on the rheological properties of dough. Food Res. Int. 2008;41:948–951. doi: 10.1016/j.foodres.2008.07.009. DOI
Deora N.V., Deswal A.H.N., Mishra H.N. Alternative approaches towards gluten-free dough development: Recent trends. Food Eng. Rev. 2014;6:89–104. doi: 10.1007/s12393-014-9079-6. DOI
Horstman S.W., Atzler J.J., Heitmann M., Zannini E., Lynch K.M., Arendt E.K. A comparative study of gluten-free sprouts in the gluten-free bread-making process. Eur. Food Res. Technol. 2019;245:617–629. doi: 10.1007/s00217-018-3185-2. DOI
Ouazib M., Garzon R., Zaidi F., Rosell C.M. Germinated, toasted and cooked chickpea as ingredients for breadmaking. J. Food Sci. Technol. 2016;53:2664–2672. doi: 10.1007/s13197-016-2238-4. PubMed DOI PMC
Nunes M.H.B., Moore M.M., Ryan L.A.M., Arendt E.K. Impact of emulsifiers on the quality and rheological properties of gluten-free breads and batters. Eur. Food Res. Technol. 2009;228:633–642. doi: 10.1007/s00217-008-0972-1. DOI
Medvid I., Shydlovska O., Ishchenko T. Influence of the combination of emulsifiers on the properties of rice gluten-free dough and the quality of bread. Food and Environ. Saf. 2021;20:172–181.
Gómez M., Sciarini L.S. Gluten-Free Bakery Products and Pasta. In: Arranz E., Fernández-Bañares F., Rosell C.M., Rodrigo L., Peña A.S., editors. Advances in the Understanding of Gluten Related Pathology and the Evolution of Gluten-Free Foods. OmniaScience; Barcelona, Spain: 2015. pp. 565–604.
Capelli A., Oliva N., Cini E. A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Appl. Sci. 2020;10:6559. doi: 10.3390/app10186559. DOI
Anton A.A., Artfield S.D. Hydrocolloids in gluten-free breads: A review. Int. J. Food Sci. Nutr. 2008;59:11–23. doi: 10.1080/09637480701625630. PubMed DOI
McCarthy D.F., Gallagher E., Gormley T.R., Schober T.J., Arendt E.K. Application of response surface methodology in the development of gluten-free bread. Cereal. Chem. 2005;82:609–615. doi: 10.1094/CC-82-0609. DOI
Demirkesen I., Mert B., Sumnu G., Sahin S. Rheological properties of gluten-free bread formulations. J. Food Engineer. 2010;96:295–303. doi: 10.1016/j.jfoodeng.2009.08.004. DOI
Conte P., Fadda C., Drabinska N., Krupa-Kozak U. Technological and nutritional challenges, and novelty in gluten-free breadmaking: A review. Pol. J. Food Nutr. Sci. 2019;69:5–21. doi: 10.31883/pjfns-2019-0005. DOI
Burešová I., Bureš D., Čurečkova K. Comparison of Gluten-Free Dough Ability to Produce Leavening Gas During Baking and its Impact on Crumb Characteristics. Kvasny Prum. 2017;63:8–10. doi: 10.18832/kp201702. DOI
Arendt E.K., Da Bello F. Gluten-Free Cereal products and Beverages. Department of Food and Nutritional Sciences University College Cork Ireland; Cork, Ireland: Elsevier; Amsterdam, The Netherlands: 2008.
Burešová I. Ph.D. Thesis. Faculty of Science, Palacký University Olomouc; Olomouc, Czech Republic: 2015. [(accessed on 28 January 2022)]. Evaluation of Rheological Characteristics of Gluten-Free Doughs (Metody Hodnocení Reologických Vlastností Bezlepkového Těsta) Available online: https://theses.cz/id/z89z21/buresova-iva-2015.pdf.
Arendt E.K. Advances in Gluten Free Cereal Research. School of Food and Nutritional Sciences, University College Cork; Cork, Ireland: 2016. [(accessed on 29 January 2022)]. Available online: https://www.ksla.se/wp-content/uploads/2016/02/Elke-Arendt.pdf.
Burešová I., Buňka F., Kráčmar S. Rheological characteristics of gluten-free dough. J. Microbiol. Biotech. Food Sci. 2014;3:195–198.
Salehi F. Improvement of gluten-free bread and cake properties using natural hydrocolloids: A review. Food Sci. Nutr. 2019;7:3391–3402. doi: 10.1002/fsn3.1245. PubMed DOI PMC
Rustagi S., Khan S., Choudhary S., Pandey A., Khan M.K., Kumari A., Singh A. Hydroxypropyl methylcellulose and whey protein concentrate as technological improver in formulation of gluten-free protein rich bread. Curr. Res. Nutr Food Sci Jour. 2018;6:211–221.
Lerner A., Wusterhausen P., Ramesh A., Torsten M. Celiac Disease and Lactose Intolerance. Int. J. Celiac Dis. 2018;6:68–70.
Huettner E., Arendt E. Recent advances in gluten-free baking and the current status of oats. Trends Food Sci. Technol. 2010;21:303–331. doi: 10.1016/j.tifs.2010.03.005. DOI
Espinoza-Herrera J., Martínez L.M., Serna-Saldívar S.O., Chuck-Hernández C. Methods for the modification and evaluation of cereal proteins for the substitution of wheat gluten in dough systems. Foods. 2021;10:118. doi: 10.3390/foods10010118. PubMed DOI PMC
Federici E. Physical and chemical treatments of zein to improve gluten-free bread quality. A Dissertation Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy. Department of Food Science, West Lafayette, Indiana May 2021. [(accessed on 13 January 2022)]. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwir0rf3yuT1AhV-7rsIHUp8D4EQFnoECBgQAQ&url=https%3A%2F%2Fhammer.purdue.edu%2Farticles%2Fthesis%2FPHYSICAL_AND_CHEMICAL_TREATEMENTS_OF_ZEIN_TO_IMPROVE_GLUTEN-FREE_BREAD_QUALITY%2F14079554%2F1%2Ffiles%2F26640344.pdf&usg=AOvVaw3O_ie9adAd3_SLq1-sknJF.
Föste M., Elgeti D., Jekle M., Becker T. Manufacture of gluten-free breads—A question of the substrate? Bak. + Biscuit. 2013;6:46–49.
Sciarini L.S., Ribotta P.D., León A.E., Pérez G.T. Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food Bioprocess. Technol. 2010;3:577–585. doi: 10.1007/s11947-008-0098-2. DOI
Foschia M., Horstmann S.W., Arendt E.K., Zannini E. Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Annu. Rev. Food Sci. Technol. 2017;8:75–96. doi: 10.1146/annurev-food-030216-030045. PubMed DOI
Melini F., Melini V., Luziatelli F., Ruzzi M. Current and forward-looking approaches to technological and nutritional improvements of gluten-free bread with legume flours: A critical review. Compr. Rev. Food Sci. Food Saf. 2017;16:1101–1122. doi: 10.1111/1541-4337.12279. PubMed DOI
Aditiya U.J., Changqi L., Shridhar K.S. Functional properties of select seed flours. LWT—Food Sci. Technol. 2015;60:325–331.
Burbano J.J., Cabezas D.M., Correa M.J. Effect of walnut flour addition on rheological, thermal and microstructural properties of a gluten free-batter. LWT—Food Sci. Technol. 2022;154:112819. doi: 10.1016/j.lwt.2021.112819. DOI
Gorissen S.H.M., Crombag J.J.R., Senden J.M.G., Waterval W.A.H., Bierau J., Verdijk L.B., van Loon L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50:1685–1695. doi: 10.1007/s00726-018-2640-5. PubMed DOI PMC
Horstmann S., Lynch K.M., Arendt E.K. Starch characteristics linked to gluten-free products. Foods. 2017;6:29. doi: 10.3390/foods6040029. PubMed DOI PMC
Abdel-Aal E.-S.M. 11 Functionality of Starches and Hydrocolloids in Gluten-Free Foods. In: Gallagher E., editor. Gluten-Free Food Science and Technology. Wiley-Blackwell; Oxford, UK: 2009. p. 200.
Hug-Iten S., Escher F., Conde-Petit B. Structural Properties of Starch in Bread and Bread Model Systems: Influence of an Antistaling α-Amylase. Cereal Chem. 2001;78:421–428. doi: 10.1094/CCHEM.2001.78.4.421. DOI
Mancebo C.M., Merino C., Martínez M.M., Gómez M. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality. J. Food Sci. Technol. 2015;52:6323–6333. doi: 10.1007/s13197-015-1769-4. PubMed DOI PMC
Ziobro R., Korus J., Witczak M., Juszczak L. Influence of modified starches on properties of gluten-free dough and bread. Part II: Quality and staling of gluten-free bread. Food Hydrocoll. 2012;29:68–74. doi: 10.1016/j.foodhyd.2012.02.009. DOI
Hu X., Guo B., Liu C., Yan X., Chen J., Luo S., Liu Y., Wang H., Yang R., Zhong Y., et al. Modification of potato starch by using superheated steam. Carbohydr. Polym. 2018;198:375–384. doi: 10.1016/j.carbpol.2018.06.110. PubMed DOI
Witczak M., Ziobro R., Juszczak L., Korus J. Starch and starch derivatives in gluten-free systems—A review. J. Cereal Sci. 2016;67:46–57. doi: 10.1016/j.jcs.2015.07.007. DOI
Kaur R.S., Chopra C.S. Gluten-free products for celiac susceptible people. Front. Nutr. 2018;5:116. PubMed PMC
Palabiyik I., Yildiz O., Toker O.S., Cavus M., Ceylan M.M., Yurt B. Investigating the addition of enzymes in gluten-free flours—The effect on pasting and textural properties. LWT—Food Sci. Technol., 2016;69:633–641. doi: 10.1016/j.lwt.2016.01.019. DOI
Motahar S.F.S., Ariaeenejad S., Salami M., Emam-Djomeh Z., Mamaghani A.S.A. Improving the quality of gluten-free bread by a novel acidic thermostable α-amylase from metagenomics data. Food Chem. 2021;352:129307. doi: 10.1016/j.foodchem.2021.129307. PubMed DOI
Haghighat-Kharazi S., Kasaai M.R., Milani J.M., Khajeh K. Microencapsulation of α-amylase in beeswax and its application in gluten-free bread as an anti-staling agent. Food Sci. Nutr. 2020;8:5888–5897. doi: 10.1016/j.lwt.2018.01.049. PubMed DOI PMC
Ngemakwe P.N., Le Roes-Hill M., Jideani V. Advances in gluten-free bread technology. Food Sci. Technol. Int. 2014;21:256–276. doi: 10.1177/1082013214531425. PubMed DOI
Bender D., Schoenlechner R. Innovative approaches towards improved gluten-free bread properties. J.Cereal Sci. 2020;91:102904. doi: 10.1016/j.jcs.2019.102904. DOI
Huang W., Li L., Wang F., Wan J., Tilley M., Ren C., Wu S. Effects of transglutaminase on the rheologicaland Mixolab thermomechanical characteristics of oat dough. Food Chem. 2010;121:934–939. doi: 10.1016/j.foodchem.2010.01.008. DOI
Ogilvie O., Roberts S., Sutton K., Larsen N., Gerrard J., Domigan L. The use of microbial transglutaminasein a bread system: A study of gluten protein structure, deamidation state and protein digestion. Food Chem. 2021;340:127903. doi: 10.1016/j.foodchem.2020.127903. PubMed DOI
Dłużewska E., Marciniak-Lukasiak K., Kurek N. Effect of transglutaminase additive on the quality of gluten-free bread. CyTA–J. Food. 2015;13:80–86. doi: 10.1080/19476337.2014.917336. DOI
Tomić J., Torbica A., Belović M. Effect of non-gluten proteins and transglutaminase on dough rheological properties and quality of bread based on millet (Panicum miliaceum) flour. LWT. 2020;118:108852. doi: 10.1016/j.lwt.2019.108852. DOI
Diowksz A., Sadowska A. Impact of sourdough and transglutaminase on gluten-free buckwheat bread quality. Food Biosci. 2021;43:101309. doi: 10.1016/j.fbio.2021.101309. DOI
Silva H.A., Paiva E.G., Lisboa H.M., Duarte E., Cavalcanti-Mata M., Gusmão T., de Gusmão R. Role of chitosan and transglutaminase on the elaboration of gluten-free bread. J. Food Sci. Technol. 2020;57:1877–1886. doi: 10.1007/s13197-019-04223-5. PubMed DOI PMC
Zhao F., Li Y., Li C., Ban X., Cheng L., Hong Y., Gu Z. Co-supported hydrocolloids improve the structure and texture quality of gluten-free bread. LWT. 2021;152:112248. doi: 10.1016/j.lwt.2021.112248. DOI
Azghar A., Zia M. Effects of xanthan gum and guar gum on the quality and storage stability of gluten free frozen dough bread. Amer. J. Food Nutr. 2016;6:107–112.
Manik L.C.M., Nur M. IOP Conference Series: Earth and Environmental Science. Volume 733. IOP Publishing; Bristol, UK: 2021. The recent development of gluten-free bread quality using hydrocolloids; p. 012101.
Ren Y., Linter B.R., Linforth R., Foster T.J. A comprehensive investigation of gluten free bread dough rheology, proving and baking performance and bread qualities by response surface desigh and principal component analysis. Food Funct. 2020;11:5333–5345. doi: 10.1039/D0FO00115E. PubMed DOI
Liu X., Mu T., Sun H., Zhang M., Chen J., Fauconnier M.L. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour. Food Chem. 2018;239:1064–1074. doi: 10.1016/j.foodchem.2017.07.047. PubMed DOI
Morreale F., Garzón R., Rosell C.M. Understanding the role of hydrocolloids viscosity and hydration in developing gluten-free bread. A study with hydroxypropylmethylcellulose. Food Hydrocoll. 2018;77:629–635. doi: 10.1016/j.foodhyd.2017.11.004. DOI
Lazaridou A., Duta D., Papageorgiou M., Belc N., Biliaderis C.G. Effects of hydrocolloids on doughrheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007;79:10331047. doi: 10.1016/j.jfoodeng.2006.03.032. DOI
Hager A.S., Arendt E.K. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and theircombination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breadsbased on rice, maize, teff and buckwheat. Food Hydrocoll. 2013;32:195–203. doi: 10.1016/j.foodhyd.2012.12.021. DOI
Belorio M., Gómez M. Effect of hydration on gluten-free breads made with hydroxypropyl methylcellulose in comparison with psyllium and xanthan gum. Foods. 2020;9:1548. doi: 10.3390/foods9111548. PubMed DOI PMC
Zoghi A., Mirmahdi R.S., Mohammadi M. The role of hydrocolloids in the development of gluten-free cereal-based products for coeliac patients: A review. Int. J. Food Sci. Technol. 2021;56:3138–3147. doi: 10.1111/ijfs.14887. DOI
Marti A., Bottega G., Franzetti L., Morandin F., Quaglia L., Pagani M.A. From wheat sourdough to gluten-free sourdough: A non-conventional process for producing gluten-free bread. Int. J. Food Sci. Technol. 2015;50:1268–1274. doi: 10.1111/ijfs.12757. DOI
Maidana S.D., Finch S., Garro M., Savoy G., Gänzle M., Vignolo G. Development of gluten-free breads started with chia and flaxseed sourdoughs fermented by selected lactic acid bacteria. LWT. 2020;125:109189. doi: 10.1016/j.lwt.2020.109189. DOI
Moroni A.V., Dal Bello F., Arendt E.K. Sourdough in gluten-free bread-making: An ancient technology to solve a novel issue? Food Microbiol. 2009;26:676–684. doi: 10.1016/j.fm.2009.07.001. PubMed DOI
Rinaldi M., Paciulli M., Caligiani A., Scazzina F., Chiavaro E. Sourdough fermentation and chestnut flour in gluten-free bread: A shelf-life evaluation. Food Chem. 2017;224:144–152. doi: 10.1016/j.foodchem.2016.12.055. PubMed DOI
Jagelaviciute J., Cizeikiene D. The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT. 2021;137:110457. doi: 10.1016/j.lwt.2020.110457. DOI
Olojede A.O., Sanni A.I., Banwo K., Adesulu-Dahunsi A.T. Sensory and antioxidant properties and in-vitro digestibility of gluten-free sourdough made with selected starter cultures. LWT. 2020;129:109576. doi: 10.1016/j.lwt.2020.109576. DOI
Puerta P., Garzón R., Rosell C.M., Fiszman S., Laguna L., Tárrega A. Modifying gluten-free bread’s structure using different baking conditions: Impact on oral processing and texture perception. LWT. 2021;140:110718. doi: 10.1016/j.lwt.2020.110718. DOI
Różyło R., Rudy S., Krzykowski A., Dziki D., Gawlik-Dziki U., Różyło K., Skonecki S. Effect of adding fresh and freeze-dried buckwheat sourdough on gluten-free bread quality. Int. J. Food Sci. Technol. 2014;50:313–322. doi: 10.1111/ijfs.12622. DOI
Melini V., Melini F. Strategies to extend bread and GF bread shelf-life: From sourdough to antimicrobial active packaging and nanotechnology. Fermentation. 2018;4:9. doi: 10.3390/fermentation4010009. DOI
Pitt J.I., Hocking A.D. Fungi and Food Spoilage, 3rd ed. Springer; New York, NY, USA: 2009. pp. 401–404.
Garcia M.V., Copetti M.V. Alternative methods for mould spoilage control in bread and bakery products. Int. Food Res. J. 2019;26:737–749.
Valerio F., De Bellis P., Di Biase M., Lonigro S.L., Giussani B., Visconti A., Lavermicocca P., Sisto A. Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int. J. Food Microbiol. 2012;156:278–285. doi: 10.1016/j.ijfoodmicro.2012.04.005. PubMed DOI
Axel C., Zannini E., Arendt E. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Crit. Rev. Food Sci. Nutr. 2016;57:3528–3542. doi: 10.1080/10408398.2016.1147417. PubMed DOI
Qian M., Liu D., Zhang X., Yin Z., Ismail B.B., Ye X., Guo M. A review of active packaging in bakery products: Applications and future trends. Trends Food Sci. Technol. 2021;114:459–471. doi: 10.1016/j.tifs.2021.06.009. DOI
Romão B., Botelho R.B.A., Alencar E.R., Nunes da Silva V.S., Bertoldo Pacheco M.T., Puppin Zandonadi R. Chemical composition and glycemic index of gluten-free bread commercialized in Brazil. Nutrients. 2020;12:2234. doi: 10.3390/nu12082234. PubMed DOI PMC
Roman L., Belorio M., Gomez M. Gluten-free breads: The gap between research and commercial reality. Compr. Rev. Food Sci. Food Saf. 2019;18:690–702. doi: 10.1111/1541-4337.12437. PubMed DOI
Kurek M.A., Wyrwisz J., Karp S. Effect of modified atmosphere packaging on the quality of wheat bread fortified with soy flour and oat fibre. Food Meas. 2019;13:1864–1872. doi: 10.1007/s11694-019-00105-8. DOI
Pasqualone A. Bread Packaging: Features and Functions. In: Preedy V.R., Watson R.R., editors. Flour and Breads and their Fortification in Health and Disease Prevention. Academic Press; London, UK: 2019. pp. 211–222.
Valková V., Ďúranová H., Galovičová L., Vukovic N.L., Vukic M., Kačániová M. In Vitro antimicrobial activity of lavender, mint, and rosemary essential oils and the effect of their vapours on growth of Penicillium spp. in a bread model system. Molecules. 2021;26:3859. doi: 10.3390/molecules26133859. PubMed DOI PMC
Galovičová L., Borotová P., Valková V., Vukovic N.L., Vukic M., Štefániková J., Ďúranová H., Kowalczewski P.Ł., Čmiková N., Kačániová M. Thymus vulgaris essential oil and its biological activity. Plants. 2021;10:1959. doi: 10.3390/plants10091959. PubMed DOI PMC
Axel C., Brosnan B., Zannini E., Furey A., Coffey A., Arendt E.K. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int. J. Food Microbiol. 2016;239:86–94. doi: 10.1016/j.ijfoodmicro.2016.05.006. PubMed DOI
Axel C., Röcker B., Brosnan B., Zannini E., Furey A., Coffey A., Arendt E.K. Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol. 2015;47:36–44. doi: 10.1016/j.fm.2014.10.005. PubMed DOI
Bartkiene E., Lele V., Ruzauskas M., Domig K.J., Starkute V., Zavistanaviciute P., Bartkevics V., Pugajeva I., Klupsaite D., Juodeikiene G., et al. Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms. 2020;8:64. doi: 10.3390/microorganisms8010064. PubMed DOI PMC
Zangeneh M., Khorami S., Khalegh M. Bacteriostatic activity and partial characterization of the bacteriocin produced by L. plantarum sp. isolated from traditional sourdough. Food Sci. Nutr. 2020;11:6023–6030. doi: 10.1002/fsn3.1890. PubMed DOI PMC
Quattrini M., Liang N., Fortina M.G., Xiang S., Curtis J., Gänzle M. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int. J. Food Microbiol. 2019;302:8–14. doi: 10.1016/j.ijfoodmicro.2018.09.007. PubMed DOI
Jeong D., Hong J.S., Liu Q., Choi H., Chung H. The effects of different levels of heat-treated legume flour on nutritional, physical, textural, and sensory properties of gluten-free muffins. Cereal Chem. 2020;98:392–404. doi: 10.1002/cche.10379. DOI
Villanueva M., Harasym J., Muñoz J.M., Ronda F. Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocoll. 2019;90:472–481. doi: 10.1016/j.foodhyd.2018.12.048. DOI
Boulemkahel S., Benatallah L., Besombes C., Allaf K., Zidoune M.N. Impact of instant controlled pressure drop (DIC) treatment on the technological quality of gluten-free bread based on rice-field bean formula using design of experiments. Afr. J. Food Sci. 2021;15:121–130.
Chhanwal N., Bhushette P.R., Anandharamakrishnan C. Current perspectives on non-conventional heating ovens for baking process—A review. Food Bioprocess. Technol. 2019;12:1–15. doi: 10.1007/s11947-018-2198-y. DOI
Rosell C.M., Aalami M., Mahdavi S.A. Innovative Gluten-Free Products. In: Pojic M., Tiwari U., editors. Innovative Processing Technologies for Healthy Grains. Wiley-Blackwell; Hoboken, NJ, USA: 2020. pp. 177–198. DOI
Simsek S.T. Evaluation of partial-vacuum baking for gluten-free bread: Effects on quality attributes and storage properties. J. Cereal Sci. 2020;91:102891. doi: 10.1016/j.jcs.2019.102891. DOI
Do Nascimento K.d.O., do Nascimento Dias Paes S., Ivanilda M.A. A Review ‘Clean Labeling’: Applications of Natural Ingredients in Bakery Products. J. Food Nutr. Res. 2018;6:285–294. doi: 10.12691/jfnr-6-5-2. DOI
Kajzer M., Diowksz A. The clean label concept: Novel approaches in gluten-free breadmaking. Appl. Sci. 2021;11:6129. doi: 10.3390/app11136129. DOI
Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. [(accessed on 15 December 2021)]. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:32008R1333.
Karp S., Wyrwisz J., Kurek M.A., Wierzbicka A. The use of high-in-β-glucan oat fibre powder as a structuring agent in gluten-free yeast-leavened cake. Food Sci. Technol. Int. 2019;25:618–629. doi: 10.1177/1082013219856784. PubMed DOI
Montemurro M., Pontonio E., Rizzello C.G. Design of a “Clean-Label” gluten-free bread to meet consumers demand. Foods. 2021;10:462. doi: 10.3390/foods10020462. PubMed DOI PMC
Carcelli A., Masuelli E., Diantom A., Vittadini E., Carini E. Probing the Functionality of Physically Modified Corn Flour as Clean Label Thickening Agent with a Multiscale Characterization. Foods. 2020;9:1105. doi: 10.3390/foods9081105. PubMed DOI PMC