Prion Strains Differ in Susceptibility to Photodynamic Oxidation
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GAUK 140215
Charles University
PRIMUS/MED/008
Charles University
NV18-04-00179
Czech Health Research Council
PubMed
35163872
PubMed Central
PMC8840242
DOI
10.3390/molecules27030611
PII: molecules27030611
Knihovny.cz E-resources
- Keywords
- PDI, PrP, TSE, photodynamic, phthalocyanine, prion, prion inactivation, protein folding, singlet oxygen, strain,
- MeSH
- Photochemotherapy methods MeSH
- Photosensitizing Agents pharmacology MeSH
- Indoles chemistry MeSH
- Humans MeSH
- Brain drug effects metabolism radiation effects MeSH
- Mice MeSH
- Organometallic Compounds chemistry MeSH
- Sheep MeSH
- Oxidation-Reduction MeSH
- Prion Proteins metabolism MeSH
- Prion Diseases drug therapy metabolism pathology MeSH
- Protein Folding MeSH
- Singlet Oxygen MeSH
- Cattle MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Photosensitizing Agents MeSH
- Indoles MeSH
- Organometallic Compounds MeSH
- Prion Proteins MeSH
- Singlet Oxygen MeSH
- zinc(II) phthalocyanine trisulfonic acid MeSH Browser
Prion disorders, or transmissible spongiform encephalophaties (TSE), are fatal neurodegenerative diseases affecting mammals. Prion-infectious particles comprise of misfolded pathological prion proteins (PrPTSE). Different TSEs are associated with distinct PrPTSE folds called prion strains. The high resistance of prions to conventional sterilization increases the risk of prion transmission in medical, veterinary and food industry practices. Recently, we have demonstrated the ability of disulfonated hydroxyaluminum phthalocyanine to photodynamically inactivate mouse RML prions by generated singlet oxygen. Herein, we studied the efficiency of three phthalocyanine derivatives in photodynamic treatment of seven mouse adapted prion strains originating from sheep, human, and cow species. We report the different susceptibilities of the strains to photodynamic oxidative elimination of PrPTSE epitopes: RML, A139, Fu-1 > mBSE, mvCJD > ME7, 22L. The efficiency of the phthalocyanine derivatives in the epitope elimination also differed (AlPcOH(SO3)2 > ZnPc(SO3)1-3 > SiPc(OH)2(SO3)1-3) and was not correlated to the yields of generated singlet oxygen. Our data suggest that the structural properties of both the phthalocyanine and the PrPTSE strain may affect the effectiveness of the photodynamic prion inactivation. Our finding provides a new option for the discrimination of prion strains and highlights the necessity of utilizing range of prion strains when validating the photodynamic prion decontamination procedures.
See more in PubMed
Morales R., Abid K., Soto C. The prion strain phenomenon: Molecular basis and unprecedented features. Biochim. Biophys. Acta. 2007;1772:681–691. doi: 10.1016/j.bbadis.2006.12.006. PubMed DOI PMC
Carta M., Aguzzi A. Molecular foundations of prion strain diversity. Curr. Opin. Neurobiol. 2021;72:22–31. doi: 10.1016/j.conb.2021.07.010. PubMed DOI
Taylor D.M. Resistance of transmissible spongiform encephalopathy agents to decontamination. Contrib. Microbiol. 2004;11:136–145. doi: 10.1159/000077054. PubMed DOI
Hughson A.G., Race B., Kraus A., Sangare L.R., Robins L., Groveman B.R., Saijo E., Phillips K., Contreras L., Dhaliwal V., et al. Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid. PLoS Pathog. 2016;12:e1005914. doi: 10.1371/journal.ppat.1005914. PubMed DOI PMC
Lehmann S., Pastore M., Rogez-Kreuz C., Richard M., Belondrade M., Rauwel G., Durand F., Yousfi R., Criquelion J., Clayette P., et al. New hospital disinfection processes for both conventional and prion infectious agents compatible with thermosensitive medical equipment. J. Hosp. Infect. 2009;72:342–350. doi: 10.1016/j.jhin.2009.03.024. PubMed DOI
Peretz D., Supattapone S., Giles K., Vergara J., Freyman Y., Lessard P., Safar J.G., Glidden D.V., McCulloch C., Nguyen H.O., et al. Inactivation of prions by acidic sodium dodecyl sulfate. J. Virol. 2006;80:322–331. doi: 10.1128/JVI.80.1.322-331.2006. PubMed DOI PMC
Marin-Moreno A., Aguilar-Calvo P., Moudjou M., Espinosa J.C., Beringue V., Torres J.M. Thermostability as a highly dependent prion strain feature. Sci. Rep.-UK. 2019;9:11396. doi: 10.1038/s41598-019-47781-6. PubMed DOI PMC
Thackray A.M., Hopkins L., Klein M.A., Bujdoso R. Mouse-adapted ovine scrapie prion strains are characterized by different conformers of PrPSc. J. Virol. 2007;81:12119–12127. doi: 10.1128/JVI.01434-07. PubMed DOI PMC
Janouskova O., Rakusan J., Karaskova M., Holada K. Photodynamic inactivation of prions by disulfonated hydroxyaluminium phthalocyanine. J. Gen. Virol. 2012;93:2512–2517. doi: 10.1099/vir.0.044727-0. PubMed DOI
Kostelanska M., Freisleben J., Backovska Hanusova Z., Mosko T., Vik R., Moravcova D., Hamacek A., Mosinger J., Holada K. Optimization of the photodynamic inactivation of prions by a phthalocyanine photosensitizer: The crucial involvement of singlet oxygen. J. Biophotonics. 2019;12:e201800340. doi: 10.1002/jbio.201800430. PubMed DOI
Cervenakova L., Akimov S., Vasilyeva I., Yakovleva O., McKenzie C., Cervenak J., Piccardo P., Asher D.M. Fukuoka-1 strain of transmissible spongiform encephalopathy agent infects murine bone marrow-derived cells with features of mesenchymal stem cells. Transfusion. 2011;51:1755–1768. doi: 10.1111/j.1537-2995.2010.03041.x. PubMed DOI PMC
Giles K., Berry D.B., Condello C., Hawley R.C., Gallardo-Godoy A., Bryant C., Oehler A., Elepano M., Bhardwaj S., Patel S., et al. Different 2-Aminothiazole Therapeutics Produce Distinct Patterns of Scrapie Prion Neuropathology in Mouse Brains. J. Pharmacol. Exp. Ther. 2015;355:2–12. doi: 10.1124/jpet.115.224659. PubMed DOI PMC
Oelschlegel A.M., Fallahi M., Ortiz-Umpierre S., Weissmann C. The extended cell panel assay characterizes the relationship of prion strains RML, 79A, and 139A and reveals conversion of 139A to 79A-like prions in cell culture. J. Virol. 2012;86:5297–5303. doi: 10.1128/JVI.00181-12. PubMed DOI PMC
Caughey W.S., Raymond L.D., Horiuchi M., Caughey B. Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc. Natl. Acad. Sci. USA. 1998;95:12117–12122. doi: 10.1073/pnas.95.21.12117. PubMed DOI PMC
Priola S.A., Raines A., Caughey W. Prophylactic and therapeutic effects of phthalocyanine tetrasulfonate in scrapie-infected mice. J. Infect. Dis. 2003;188:699–705. doi: 10.1086/377310. PubMed DOI
Caughey W.S., Priola S.A., Kocisko D.A., Raymond L.D., Ward A., Caughey B. Cyclic tetrapyrrole sulfonation, metals, and oligomerization in antiprion activity. Antimicrob. Agents Chemother. 2007;51:3887–3894. doi: 10.1128/AAC.01599-06. PubMed DOI PMC
Valiente-Gabioud A.A., Miotto M.C., Chesta M.E., Lombardo V., Binolfi A., Fernandez C.O. Phthalocyanines as Molecular Scaffolds to Block Disease-Associated Protein Aggregation. Acc. Chem. Res. 2016;49:801–808. doi: 10.1021/acs.accounts.5b00507. PubMed DOI
Dee D.R., Gupta A.N., Anikovskiy M., Sosova I., Grandi E., Rivera L., Vincent A., Brigley A.M., Petersen N.O., Woodside M.T. Phthalocyanine tetrasulfonates bind to multiple sites on natively-folded prion protein. Biochim. Biophys. Acta. 2012;1824:826–832. doi: 10.1016/j.bbapap.2012.03.011. PubMed DOI
Grebenova D., Cajthamlova H., Holada K., Marinov J., Jirsa M., Hrkal Z. Photodynamic effects of meso-tetra (4-sulfonatophenyl)porphine on human leukemia cells HEL and HL60, human lymphocytes and bone marrow progenitor cells. J. Photochem. Photobiol. B. 1997;39:269–278. doi: 10.1016/S1011-1344(97)00017-1. PubMed DOI
Schmidt A.M., Calvete M.J.F. Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks! Molecules. 2021;26:2823. doi: 10.3390/molecules26092823. PubMed DOI PMC
Davies M.J. Protein oxidation and peroxidation. Biochem. J. 2016;473:805–825. doi: 10.1042/BJ20151227. PubMed DOI PMC
Kuznetsova N.A., Gretsova N.S., Derkacheva V.M., Kaliya O.L., Lukyanets E.A. Sulfonated phthalocyanines: Aggregation and singlet oxygen quantum yield in aqueous solutions. J. Porphyr. Phthalocya. 2003;7:147–154. doi: 10.1142/S1088424603000203. DOI
Mosinger J., Mosinger B. Photodynamic sensitizers assay: Rapid and sensitive iodometric measurement. Experientia. 1995;51:106–109. doi: 10.1007/BF01929349. PubMed DOI
Jensen R.L., Arnbjerg J., Ogilby P.R. Temperature Effects on the Solvent-Dependent Deactivation of Singlet Oxygen. J. Am. Chem. Soc. 2010;132:8098–8105. doi: 10.1021/ja101753n. PubMed DOI
Klaper M., Fudickar W., Linker T. Role of Distance in Singlet Oxygen Applications: A Model System. J. Am. Chem. Soc. 2016;138:7024–7029. doi: 10.1021/jacs.6b01555. PubMed DOI
Lee B.I., Lee S., Suh Y.S., Lee J.S., Kim A.K., Kwon O.Y., Yu K., Park C.B. Photoexcited Porphyrins as a Strong Suppressor of beta-Amyloid Aggregation and Synaptic Toxicity. Angew. Chem. Int. Ed. 2015;54:11472–11476. doi: 10.1002/anie.201504310. PubMed DOI
Mitra K., Hartman M.C.T. Silicon phthalocyanines: Synthesis and resurgent applications. Org. Biomol. Chem. 2021;19:1168–1190. doi: 10.1039/D0OB02299C. PubMed DOI
Panigaj M., Glier H., Wildova M., Holada K. Expression of prion protein in mouse erythroid progenitors and differentiating murine erythroleukemia cells. PLoS ONE. 2011;6:e24599. doi: 10.1371/journal.pone.0024599. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC