Prion Strains Differ in Susceptibility to Photodynamic Oxidation

. 2022 Jan 18 ; 27 (3) : . [epub] 20220118

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35163872

Grantová podpora
GAUK 140215 Charles University
PRIMUS/MED/008 Charles University
NV18-04-00179 Czech Health Research Council

Prion disorders, or transmissible spongiform encephalophaties (TSE), are fatal neurodegenerative diseases affecting mammals. Prion-infectious particles comprise of misfolded pathological prion proteins (PrPTSE). Different TSEs are associated with distinct PrPTSE folds called prion strains. The high resistance of prions to conventional sterilization increases the risk of prion transmission in medical, veterinary and food industry practices. Recently, we have demonstrated the ability of disulfonated hydroxyaluminum phthalocyanine to photodynamically inactivate mouse RML prions by generated singlet oxygen. Herein, we studied the efficiency of three phthalocyanine derivatives in photodynamic treatment of seven mouse adapted prion strains originating from sheep, human, and cow species. We report the different susceptibilities of the strains to photodynamic oxidative elimination of PrPTSE epitopes: RML, A139, Fu-1 > mBSE, mvCJD > ME7, 22L. The efficiency of the phthalocyanine derivatives in the epitope elimination also differed (AlPcOH(SO3)2 > ZnPc(SO3)1-3 > SiPc(OH)2(SO3)1-3) and was not correlated to the yields of generated singlet oxygen. Our data suggest that the structural properties of both the phthalocyanine and the PrPTSE strain may affect the effectiveness of the photodynamic prion inactivation. Our finding provides a new option for the discrimination of prion strains and highlights the necessity of utilizing range of prion strains when validating the photodynamic prion decontamination procedures.

Zobrazit více v PubMed

Morales R., Abid K., Soto C. The prion strain phenomenon: Molecular basis and unprecedented features. Biochim. Biophys. Acta. 2007;1772:681–691. doi: 10.1016/j.bbadis.2006.12.006. PubMed DOI PMC

Carta M., Aguzzi A. Molecular foundations of prion strain diversity. Curr. Opin. Neurobiol. 2021;72:22–31. doi: 10.1016/j.conb.2021.07.010. PubMed DOI

Taylor D.M. Resistance of transmissible spongiform encephalopathy agents to decontamination. Contrib. Microbiol. 2004;11:136–145. doi: 10.1159/000077054. PubMed DOI

Hughson A.G., Race B., Kraus A., Sangare L.R., Robins L., Groveman B.R., Saijo E., Phillips K., Contreras L., Dhaliwal V., et al. Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid. PLoS Pathog. 2016;12:e1005914. doi: 10.1371/journal.ppat.1005914. PubMed DOI PMC

Lehmann S., Pastore M., Rogez-Kreuz C., Richard M., Belondrade M., Rauwel G., Durand F., Yousfi R., Criquelion J., Clayette P., et al. New hospital disinfection processes for both conventional and prion infectious agents compatible with thermosensitive medical equipment. J. Hosp. Infect. 2009;72:342–350. doi: 10.1016/j.jhin.2009.03.024. PubMed DOI

Peretz D., Supattapone S., Giles K., Vergara J., Freyman Y., Lessard P., Safar J.G., Glidden D.V., McCulloch C., Nguyen H.O., et al. Inactivation of prions by acidic sodium dodecyl sulfate. J. Virol. 2006;80:322–331. doi: 10.1128/JVI.80.1.322-331.2006. PubMed DOI PMC

Marin-Moreno A., Aguilar-Calvo P., Moudjou M., Espinosa J.C., Beringue V., Torres J.M. Thermostability as a highly dependent prion strain feature. Sci. Rep.-UK. 2019;9:11396. doi: 10.1038/s41598-019-47781-6. PubMed DOI PMC

Thackray A.M., Hopkins L., Klein M.A., Bujdoso R. Mouse-adapted ovine scrapie prion strains are characterized by different conformers of PrPSc. J. Virol. 2007;81:12119–12127. doi: 10.1128/JVI.01434-07. PubMed DOI PMC

Janouskova O., Rakusan J., Karaskova M., Holada K. Photodynamic inactivation of prions by disulfonated hydroxyaluminium phthalocyanine. J. Gen. Virol. 2012;93:2512–2517. doi: 10.1099/vir.0.044727-0. PubMed DOI

Kostelanska M., Freisleben J., Backovska Hanusova Z., Mosko T., Vik R., Moravcova D., Hamacek A., Mosinger J., Holada K. Optimization of the photodynamic inactivation of prions by a phthalocyanine photosensitizer: The crucial involvement of singlet oxygen. J. Biophotonics. 2019;12:e201800340. doi: 10.1002/jbio.201800430. PubMed DOI

Cervenakova L., Akimov S., Vasilyeva I., Yakovleva O., McKenzie C., Cervenak J., Piccardo P., Asher D.M. Fukuoka-1 strain of transmissible spongiform encephalopathy agent infects murine bone marrow-derived cells with features of mesenchymal stem cells. Transfusion. 2011;51:1755–1768. doi: 10.1111/j.1537-2995.2010.03041.x. PubMed DOI PMC

Giles K., Berry D.B., Condello C., Hawley R.C., Gallardo-Godoy A., Bryant C., Oehler A., Elepano M., Bhardwaj S., Patel S., et al. Different 2-Aminothiazole Therapeutics Produce Distinct Patterns of Scrapie Prion Neuropathology in Mouse Brains. J. Pharmacol. Exp. Ther. 2015;355:2–12. doi: 10.1124/jpet.115.224659. PubMed DOI PMC

Oelschlegel A.M., Fallahi M., Ortiz-Umpierre S., Weissmann C. The extended cell panel assay characterizes the relationship of prion strains RML, 79A, and 139A and reveals conversion of 139A to 79A-like prions in cell culture. J. Virol. 2012;86:5297–5303. doi: 10.1128/JVI.00181-12. PubMed DOI PMC

Caughey W.S., Raymond L.D., Horiuchi M., Caughey B. Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc. Natl. Acad. Sci. USA. 1998;95:12117–12122. doi: 10.1073/pnas.95.21.12117. PubMed DOI PMC

Priola S.A., Raines A., Caughey W. Prophylactic and therapeutic effects of phthalocyanine tetrasulfonate in scrapie-infected mice. J. Infect. Dis. 2003;188:699–705. doi: 10.1086/377310. PubMed DOI

Caughey W.S., Priola S.A., Kocisko D.A., Raymond L.D., Ward A., Caughey B. Cyclic tetrapyrrole sulfonation, metals, and oligomerization in antiprion activity. Antimicrob. Agents Chemother. 2007;51:3887–3894. doi: 10.1128/AAC.01599-06. PubMed DOI PMC

Valiente-Gabioud A.A., Miotto M.C., Chesta M.E., Lombardo V., Binolfi A., Fernandez C.O. Phthalocyanines as Molecular Scaffolds to Block Disease-Associated Protein Aggregation. Acc. Chem. Res. 2016;49:801–808. doi: 10.1021/acs.accounts.5b00507. PubMed DOI

Dee D.R., Gupta A.N., Anikovskiy M., Sosova I., Grandi E., Rivera L., Vincent A., Brigley A.M., Petersen N.O., Woodside M.T. Phthalocyanine tetrasulfonates bind to multiple sites on natively-folded prion protein. Biochim. Biophys. Acta. 2012;1824:826–832. doi: 10.1016/j.bbapap.2012.03.011. PubMed DOI

Grebenova D., Cajthamlova H., Holada K., Marinov J., Jirsa M., Hrkal Z. Photodynamic effects of meso-tetra (4-sulfonatophenyl)porphine on human leukemia cells HEL and HL60, human lymphocytes and bone marrow progenitor cells. J. Photochem. Photobiol. B. 1997;39:269–278. doi: 10.1016/S1011-1344(97)00017-1. PubMed DOI

Schmidt A.M., Calvete M.J.F. Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks! Molecules. 2021;26:2823. doi: 10.3390/molecules26092823. PubMed DOI PMC

Davies M.J. Protein oxidation and peroxidation. Biochem. J. 2016;473:805–825. doi: 10.1042/BJ20151227. PubMed DOI PMC

Kuznetsova N.A., Gretsova N.S., Derkacheva V.M., Kaliya O.L., Lukyanets E.A. Sulfonated phthalocyanines: Aggregation and singlet oxygen quantum yield in aqueous solutions. J. Porphyr. Phthalocya. 2003;7:147–154. doi: 10.1142/S1088424603000203. DOI

Mosinger J., Mosinger B. Photodynamic sensitizers assay: Rapid and sensitive iodometric measurement. Experientia. 1995;51:106–109. doi: 10.1007/BF01929349. PubMed DOI

Jensen R.L., Arnbjerg J., Ogilby P.R. Temperature Effects on the Solvent-Dependent Deactivation of Singlet Oxygen. J. Am. Chem. Soc. 2010;132:8098–8105. doi: 10.1021/ja101753n. PubMed DOI

Klaper M., Fudickar W., Linker T. Role of Distance in Singlet Oxygen Applications: A Model System. J. Am. Chem. Soc. 2016;138:7024–7029. doi: 10.1021/jacs.6b01555. PubMed DOI

Lee B.I., Lee S., Suh Y.S., Lee J.S., Kim A.K., Kwon O.Y., Yu K., Park C.B. Photoexcited Porphyrins as a Strong Suppressor of beta-Amyloid Aggregation and Synaptic Toxicity. Angew. Chem. Int. Ed. 2015;54:11472–11476. doi: 10.1002/anie.201504310. PubMed DOI

Mitra K., Hartman M.C.T. Silicon phthalocyanines: Synthesis and resurgent applications. Org. Biomol. Chem. 2021;19:1168–1190. doi: 10.1039/D0OB02299C. PubMed DOI

Panigaj M., Glier H., Wildova M., Holada K. Expression of prion protein in mouse erythroid progenitors and differentiating murine erythroleukemia cells. PLoS ONE. 2011;6:e24599. doi: 10.1371/journal.pone.0024599. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...