Novel Methods for Predicting Fluid Responsiveness in Critically Ill Patients-A Narrative Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MZCZ-DRO-VFN64165
Czech Ministry of Health
PubMed
35204603
PubMed Central
PMC8871108
DOI
10.3390/diagnostics12020513
PII: diagnostics12020513
Knihovny.cz E-zdroje
- Klíčová slova
- circulatory shock, fluid responsiveness, fluid therapy, hypovolemia, preload, tissue perfusion, volume expansion,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In patients with acute circulatory failure, fluid administration represents a first-line therapeutic intervention for improving cardiac output. However, only approximately 50% of patients respond to fluid infusion with a significant increase in cardiac output, defined as fluid responsiveness. Additionally, excessive volume expansion and associated hyperhydration have been shown to increase morbidity and mortality in critically ill patients. Thus, except for cases of obvious hypovolaemia, fluid responsiveness should be routinely tested prior to fluid administration. Static markers of cardiac preload, such as central venous pressure or pulmonary artery wedge pressure, have been shown to be poor predictors of fluid responsiveness despite their widespread use to guide fluid therapy. Dynamic tests including parameters of aortic blood flow or respiratory variability of inferior vena cava diameter provide much higher diagnostic accuracy. Nevertheless, they are also burdened with several significant limitations, reducing the reliability, or even precluding their use in many clinical scenarios. This non-systematic narrative review aims to provide an update on the novel, less employed dynamic tests of fluid responsiveness evaluation in critically ill patients.
Zobrazit více v PubMed
Marik P.E., Weinmann M. Optimizing fluid therapy in shock. Curr. Opin. Crit. Care. 2019;25:246–251. doi: 10.1097/MCC.0000000000000604. PubMed DOI
Monnet X., Teboul J.-L. Assessment of volume responsiveness during mechanical ventilation: Recent advances. Crit. Care. 2013;17:217. doi: 10.1186/cc12526. PubMed DOI PMC
Marik P.E., Levitov A., Young A., Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143:364–370. doi: 10.1378/chest.12-1274. PubMed DOI
Vincent J.-L., Weil M.H. Fluid challenge revisited. Crit. Care Med. 2006;34:1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5. PubMed DOI
Michard F., Teboul J.-L. Predicting fluid responsiveness in ICU patients: A critical analysis of the evidence. Chest. 2002;121:2000–2008. doi: 10.1378/chest.121.6.2000. PubMed DOI
Cecconi M., Teboul J.-L., Pettila V., Wilkman E., Molnar Z., Della Rocca G., Aldecoa C., Artigas A., Jog S., Sander M., et al. Fluid challenges in intensive care: The FENICE study: A global inception cohort study. Intensive Care Med. 2015;41:1529–1537. doi: 10.1007/s00134-015-3850-x. PubMed DOI PMC
O’Connor M.E., Prowle J.R. Fluid Overload. Crit. Care Clin. 2015;31:803–821. doi: 10.1016/j.ccc.2015.06.013. PubMed DOI
Wiedemann H.P., Wheeler A.P., Bernard G.R. Comparison of two fluid–management strategies in acute lung injury. N. Engl. J. Med. 2006;354:2564–2575. doi: 10.1016/j.jvs.2006.08.053. PubMed DOI
Acheampong A., Vincent J.L. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit. Care. 2015;19:251. doi: 10.1186/s13054-015-0970-1. PubMed DOI PMC
Boyd J., Forbes J., Nakada T.A., Walley K.R., Russell J.A. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit. Care Med. 2011;39:259–265. doi: 10.1097/CCM.0b013e3181feeb15. PubMed DOI
Neyra J.A., Li X., Canepa-Escaro F., Adams-Huet B., Toto R.D., Yee J., Hedayati S.S. Cumulative Fluid Balance and Mortality in Septic Patients With or Without Acute Kidney Injury and Chronic Kidney Disease. Crit. Care Med. 2016;44:1891–1900. doi: 10.1097/CCM.0000000000001835. PubMed DOI PMC
Li D.K., Wang X.T., Liu D.W. Association between elevated central venous pressure and outcomes in critically ill patients. Ann. Intensive Care. 2017;7:83. doi: 10.1186/s13613-017-0306-1. PubMed DOI PMC
Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R., Kumar A., Sevransky J.E., Sprung C.L., Nunnally M.E., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6. PubMed DOI
Levy M.M., Dellinger R.P., Townsend S.R., Linde-Zwirble W.T., Marshall J.C., Bion J., Schorr C., Artigas A., Ramsay G., Beale R., et al. The Surviving Sepsis Campaign: Results of an international guideline-based performance improvement program targeting severe sepsis. Crit. Care Med. 2010;38:367–374. doi: 10.1097/CCM.0b013e3181cb0cdc. PubMed DOI
Monnet X., Teboul J.-L. Volume responsiveness. Curr. Opin. Crit. Care. 2007;13:549–553. doi: 10.1097/MCC.0b013e3282ec68b2. PubMed DOI
Marik P.E., Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit. Care Med. 2013;41:1774–1781. doi: 10.1097/CCM.0b013e31828a25fd. PubMed DOI
Cecconi M., De Backer D., Antonelli M., Beale R., Bakker J., Hofer C., Jaeschke R., Mebazaa A., Pinsky M.R., Teboul J.L., et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–1815. doi: 10.1007/s00134-014-3525-z. PubMed DOI PMC
Monnet X., Marik P., Teboul J.L. Passive leg raising for predicting fluid responsiveness: A systematic review and meta–analysis. Intensive Care Med. 2016;42:1935–1947. doi: 10.1007/s00134-015-4134-1. PubMed DOI
Eskesen T.G., Wetterslev M., Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016;42:324–332. doi: 10.1007/s00134-015-4168-4. PubMed DOI
Ait-Hamou Z.A.-O., Teboul J.L., Anguel N., Monnet X. How to detect a positive response to a fluid bolus when cardiac output is not measured? Ann. Intensive Care. 2019;9:138. doi: 10.1186/s13613-019-0612-x. PubMed DOI PMC
Pinsky M.R., Payen D. Functional hemodynamic monitoring. Crit. Care. 2005;9:566. doi: 10.1186/cc3927. PubMed DOI PMC
Michard F., Boussat S., Chemla D., Anguel N., Mercat A., Lecarpentier Y., Richard C., Pinsky M.R., Teboul J.L. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am. J. Respir. Crit. Care Med. 2000;162:134–138. doi: 10.1164/ajrccm.162.1.9903035. PubMed DOI
Monnet X., Rienzo M., Osman D., Anguel N., Richard C., Pinsky M.R., Teboul J.L. Passive leg raising predicts fluid responsiveness in the critically ill. Crit. Care Med. 2006;34:1402–1407. doi: 10.1097/01.CCM.0000215453.11735.06. PubMed DOI
Mallat J., Meddour M., Durville E., Lemyze M., Pepy F., Temime J., Vangrunderbeeck N., Tronchon L., Thevenin D., Tavernier B. Decrease in pulse pressure and stroke volume variations after mini–fluid challenge accurately predicts fluid responsiveness. Br. J. Anaesth. 2015;115:449–456. doi: 10.1093/bja/aev222. PubMed DOI
Monnet X., Marik P.E., Teboul J.-L. Prediction of fluid responsiveness: An update. Ann. Intensive Care. 2016;6:111. doi: 10.1186/s13613-016-0216-7. PubMed DOI PMC
Michard F. Volume Management Using Dynamic Parameters. Chest. 2005;128:1902–1904. doi: 10.1378/chest.128.4.1902. PubMed DOI
Mahjoub Y., Lejeune V., Muller L., Perbet S., Zieleskiewicz L., Bart F., Veber B., Paugam-Burtz C., Jaber S., Ayham A., et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: A prospective observational multicentre point–prevalence study. Br. J. Anaesth. 2014;112:681–685. doi: 10.1093/bja/aet442. PubMed DOI
Zogheib E., Defouilloy C., Mahjoub Y., Cherradi N., Moubarak M., Beloucif S., Dupont H. Modification of hemodynamic effect after passive leg raising test by the use of elastic compression stocking. Intensive Care Med. 2007;33:S72.
Monnet X., Teboul J.-L. Passive leg raising: Five rules, not a drop of fluid! Crit. Care. 2015;19:18. doi: 10.1186/s13054-014-0708-5. PubMed DOI PMC
Cherpanath T.G., Hirsch A., Geerts B.F., Lagrand W.K., Leeflang M.M., Schultz M.J., Groeneveld A.B. Predicting Fluid Responsiveness by Passive Leg Raising: A Systematic Review and Meta–Analysis of 23 Clinical Trials. Crit. Care Med. 2016;44:981–991. doi: 10.1097/CCM.0000000000001556. PubMed DOI
Monnet X., Osman D., Ridel C., Lamia B., Richard C., Teboul J.L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit. Care Med. 2009;37:951–956. doi: 10.1097/CCM.0b013e3181968fe1. PubMed DOI
Jozwiak M., Depret F., Teboul J.L., Alphonsine J.E., Lai C., Richard C., Monnet X. Predicting Fluid Responsiveness in Critically Ill Patients by Using Combined End-Expiratory and End-Inspiratory Occlusions With Echocardiography. Crit. Care Med. 2017;45:e1131–e1138. doi: 10.1097/CCM.0000000000002704. PubMed DOI
Monnet X., Bleibtreu A., Ferre A., Dres M., Gharbi R., Richard C., Teboul J.L. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit. Care Med. 2012;40:152–157. doi: 10.1097/CCM.0b013e31822f08d7. PubMed DOI
Silva S., Jozwiak M., Teboul J.L., Persichini R., Richard C., Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit. Care Med. 2013;41:1692–1701. doi: 10.1097/CCM.0b013e31828a2323. PubMed DOI
Biais M., Larghi M., Henriot J., de Courson H., Sesay M., Nouette-Gaulain K. End-Expiratory Occlusion Test Predicts Fluid Responsiveness in Patients With Protective Ventilation in the Operating Room. Anesth. Analg. 2017;125:1889–1895. doi: 10.1213/ANE.0000000000002322. PubMed DOI
Xu L.Y., Tu G.W., Cang J., Hou J.Y., Yu Y., Luo Z., Guo K.F. End-expiratory occlusion test predicts fluid responsiveness in cardiac surgical patients in the operating theatre. Ann. Transl. Med. 2019;7:315. doi: 10.21037/atm.2019.06.58. PubMed DOI PMC
Myatra S.N., Prabu N.R., Divatia J.V., Monnet X., Kulkarni A.P., Teboul J.L. The Changes in Pulse Pressure Variation or Stroke Volume Variation After a “Tidal Volume Challenge” Reliably Predict Fluid Responsiveness During Low Tidal Volume Ventilation. Crit. Care Med. 2017;45:415–421. doi: 10.1097/CCM.0000000000002183. PubMed DOI
Beurton A., Gavelli F., Teboul J.L., De Vita N., Monnet X. Changes in the Plethysmographic Perfusion Index During an End-Expiratory Occlusion Detect a Positive Passive Leg Raising Test. Crit. Care Med. 2021;49:e151–e160. doi: 10.1097/CCM.0000000000004768. PubMed DOI
Depret F., Jozwiak M., Teboul J.L., Alphonsine J.E., Richard C., Monnet X. Esophageal Doppler Can Predict Fluid Responsiveness Through End-Expiratory and End–Inspiratory Occlusion Tests. Crit. Care Med. 2019;47:e96–e102. doi: 10.1097/CCM.0000000000003522. PubMed DOI
Monnet X., Dres M., Ferre A., Le Teuff G., Jozwiak M., Bleibtreu A., Le Deley M.C., Chemla D., Richard C., Teboul J.L. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: Comparison with four other dynamic indices. Br. J. Anaesth. 2012;109:330–338. doi: 10.1093/bja/aes182. PubMed DOI
Georges D., de Courson H., Lanchon R., Sesay M., Nouette-Gaulain K., Biais M. End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: An echocardiographic study. Crit. Care. 2018;22:32. doi: 10.1186/s13054-017-1938-0. PubMed DOI PMC
Messina A., Dell’Anna A., Baggiani M., Torrini F., Maresca G.M., Bennett V., Saderi L., Sotgiu G., Antonelli M., Cecconi M. Functional hemodynamic tests: A systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit. Care. 2019;23:264. doi: 10.1186/s13054-019-2545-z. PubMed DOI PMC
Gavelli F., Shi R., Teboul J.-L., Azzolina D., Monnet X. The end-expiratory occlusion test for detecting preload responsiveness: A systematic review and meta-analysis. Ann. Intensive Care. 2020;10:65. doi: 10.1186/s13613-020-00682-8. PubMed DOI PMC
Si X., Song X., Lin Q., Nie Y., Zhang G., Xu H., Chen M., Wu J., Guan X. Does End-Expiratory Occlusion Test Predict Fluid Responsiveness in Mechanically Ventilated Patients? A Systematic Review and Meta–Analysis. Shock. 2020;54:751–760. doi: 10.1097/SHK.0000000000001545. PubMed DOI
Yonis H., Bitker L., Aublanc M., Perinel Ragey S., Riad Z., Lissonde F., Louf-Durier A., Debord S., Gobert F., Tapponnier R., et al. Change in cardiac output during Trendelenburg maneuver is a reliable predictor of fluid responsiveness in patients with acute respiratory distress syndrome in the prone position under protective ventilation. Crit. Care. 2017;21:295. doi: 10.1186/s13054-017-1881-0. PubMed DOI PMC
Messina A., Montagnini C., Cammarota G., De Rosa S., Giuliani F., Muratore L., Della Corte F., Navalesi P., Cecconi M. Tidal volume challenge to predict fluid responsiveness in the operating room: An observational study. Eur. J. Anaesthesiol. 2019;36:583–591. doi: 10.1097/EJA.0000000000000998. PubMed DOI
Guinot P.G., Godart J., de Broca B., Bernard E., Lorne E., Dupont H. End-expiratory occlusion manoeuvre does not accurately predict fluid responsiveness in the operating theatre. Br. J. Anaesth. 2014;112:1050–1054. doi: 10.1093/bja/aet582. PubMed DOI
Monnet X., Teboul J.L. End-expiratory occlusion test: Please use the appropriate tools! Br. J. Anaesth. 2015;114:166–167. doi: 10.1093/bja/aeu430. PubMed DOI
Jozwiak M., Mercado P., Teboul J.-L., Benmalek A., Gimenez J., Dépret F., Richard C., Monnet X. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit. Care. 2019;23:116. doi: 10.1186/s13054-019-2413-x. PubMed DOI PMC
Guarracino F., Ferro B., Forfori F., Bertini P., Magliacano L., Pinsky M.R. Jugular vein distensibility predicts fluid responsiveness in septic patients. Crit. Care. 2014;18:647. doi: 10.1186/s13054-014-0647-1. PubMed DOI PMC
Akilli N.B., Cander B., Dundar Z.D., Koylu R. A new parameter for the diagnosis of hemorrhagic shock: Jugular index. J. Crit. Care. 2012;27:530.e13–530.e18. doi: 10.1016/j.jcrc.2012.01.011. PubMed DOI
Broilo F., Meregalli A., Friedman G. Right internal jugular vein distensibility appears to be a surrogate marker for inferior vena cava vein distensibility for evaluating fluid responsiveness. Rev. Bras. Ter. Intensiv. 2015;27:205–211. doi: 10.5935/0103-507X.20150042. PubMed DOI PMC
Ma G.G., Hao G.W., Yang X.M., Zhu D.M., Liu L., Liu H., Tu G.W., Luo Z. Internal jugular vein variability predicts fluid responsiveness in cardiac surgical patients with mechanical ventilation. Ann. Intensive Care. 2018;8:6. doi: 10.1186/s13613-017-0347-5. PubMed DOI PMC
Haliloglu M., Bilgili B., Kararmaz A., Cinel I. The value of internal jugular vein collapsibility index in sepsis. Ulus Travma Acil Cerrahi Derg. 2017;23:294–300. doi: 10.5505/tjtes.2016.04832. PubMed DOI
Thudium M., Klaschik S., Ellerkmann R.K., Putensen C., Hilbert T. Is internal jugular vein extensibility associated with indices of fluid responsiveness in ventilated patients? Acta Anaesthesiol. Scand. 2016;60:723–733. doi: 10.1111/aas.12701. PubMed DOI
Iizuka Y., Nomura T., Sanui M., Mochida Y., Aomatsu A., Lefor A.K. Collapsibility of the Right Internal Jugular Vein Predicts Responsiveness to Fluid Administration in Patients Receiving Pressure Support Ventilation: A Prospective Cohort Study. J. Clin. Med. Res. 2020;12:150–156. doi: 10.14740/jocmr4064. PubMed DOI PMC
Nagdev A.D., Merchant R.C., Tirado-Gonzalez A., Sisson C.A., Murphy M.C. Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann. Emerg. Med. 2010;55:290–295. doi: 10.1016/j.annemergmed.2009.04.021. PubMed DOI
Long E., Oakley E., Duke T., Babl F.E. Does Respiratory Variation in Inferior Vena Cava Diameter Predict Fluid Responsiveness: A Systematic Review and Meta-Analysis. Shock. 2017;47:550–559. doi: 10.1097/SHK.0000000000000801. PubMed DOI
Orso D., Paoli I., Piani T., Cilenti F.L., Cristiani L., Guglielmo N. Accuracy of Ultrasonographic Measurements of Inferior Vena Cava to Determine Fluid Responsiveness: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2020;35:354–363. doi: 10.1177/0885066617752308. PubMed DOI
Du W., Wang X.T., Long Y., Liu D.W. Monitoring Changes in Hepatic Venous Velocities Flow after a Fluid Challenge Can Identify Shock Patients Who Lack Fluid Responsiveness. Chin. Med. J. 2017;130:1202–1210. doi: 10.4103/0366-6999.205848. PubMed DOI PMC
Scheinfeld M.H., Bilali A., Koenigsberg M. Understanding the spectral Doppler waveform of the hepatic veins in health and disease. Radiographics. 2009;29:2081–2098. doi: 10.1148/rg.297095715. PubMed DOI
Baillard C., Cohen Y., Fosse J.P., Karoubi P., Hoang P., Cupa M. Haemodynamic measurements (continuous cardiac output and systemic vascular resistance) in critically ill patients: Transoesophageal Doppler versus continuous thermodilution. Anaesth. Intensive Care. 1999;27:33–37. doi: 10.1177/0310057X9902700106. PubMed DOI
Dark P.M., Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30:2060–2066. doi: 10.1007/s00134-004-2430-2. PubMed DOI
Blehar D.J., Glazier S., Gaspari R.J. Correlation of corrected flow time in the carotid artery with changes in intravascular volume status. J. Crit Care. 2014;29:486–488. doi: 10.1016/j.jcrc.2014.03.025. PubMed DOI
Mackenzie D.C., Khan N.A., Blehar D., Glazier S., Chang Y., Stowell C.P., Noble V.E., Liteplo A.S. Carotid Flow Time Changes with Volume Status in Acute Blood Loss. Ann. Emerg. Med. 2015;66:277–282.e1. doi: 10.1016/j.annemergmed.2015.04.014. PubMed DOI
Hossein-Nejad H., Mohammadinejad P., Lessan-Pezeshki M., Davarani S.S., Banaie M. Carotid artery corrected flow time measurement via bedside ultrasonography in monitoring volume status. J. Crit. Care. 2015;30:1199–1203. doi: 10.1016/j.jcrc.2015.08.014. PubMed DOI
Chebl R.B., Wuhantu J., Kiblawi S., Abou Dagher G., Zgheib H., Bachir R., Carnell J. Corrected carotid flow time and passive leg raise as a measure of volume status. Am. J. Emerg. Med. 2019;37:1460–1465. doi: 10.1016/j.ajem.2018.10.047. PubMed DOI
Shokoohi H., Berry G.W., Shahkolahi M., King J., King J., Salimian M., Poshtmashad A., Pourmand A. The diagnostic utility of sonographic carotid flow time in determining volume responsiveness. J. Crit. Care. 2017;38:231–235. doi: 10.1016/j.jcrc.2016.10.025. PubMed DOI
Barjaktarevic I., Toppen W.E., Hu S., Montoya E.A., Ong S., Buhr R.G., David I.J., Wang T., Rezayat T., Chang S.Y., et al. Ultrasound Assessment of the Change in Carotid Corrected Flow Time in Fluid Responsiveness in Undifferentiated Shock. Crit. Care Med. 2018;46:e1040–e1046. doi: 10.1097/CCM.0000000000003356. PubMed DOI PMC
Judson P.I., Abhilash KP P., Pichamuthu K., Chandy G.M. Evaluation of Carotid Flow Time to Assess Fluid Responsiveness in the Emergency Department. J. Med. Ultrasound. 2021;29:99–104. doi: 10.4103/JMU.JMU_77_20. PubMed DOI PMC
Garcia M.I.M., Cano A.G., Monrove J.C.D. Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients. Crit. Care. 2009;13:R142. doi: 10.1186/cc8027. PubMed DOI PMC
Brennan J.M., Blair J.E., Hampole C., Goonewardena S., Vasaiwala S., Shah D., Spencer K.T., Schmidt G.A. Radial artery pulse pressure variation correlates with brachial artery peak velocity variation in ventilated subjects when measured by internal medicine residents using hand-carried ultrasound devices. Chest. 2007;131:1301–1307. doi: 10.1378/chest.06-1768. PubMed DOI
Préau S., Saulnier F., Dewavrin F., Durocher A., Chagnon J.L. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit. Care Med. 2010;38:819–825. doi: 10.1097/CCM.0b013e3181c8fe7a. PubMed DOI
Luzi A., Marty P., Mari A., Conil J.M., Geeraerts T., Lepage B., Fourcade O., Silva S., Minville V. Noninvasive assessment of hemodynamic response to a fluid challenge using femoral Doppler in critically ill ventilated patients. J. Crit. Care. 2013;28:902–907. doi: 10.1016/j.jcrc.2013.05.010. PubMed DOI
Corradi F., Brusasco C., Garlaschi A., Santori G., Vezzani A., Moscatelli P., Pelosi P. Splenic Doppler resistive index for early detection of occult hemorrhagic shock after polytrauma in adult patients. Shock. 2012;38:466–473. doi: 10.1097/SHK.0b013e31826d1eaf. PubMed DOI
Brusasco C., Tavazzi G., Robba C., Santori G., Vezzani A., Manca T., Corradi F. Splenic Doppler Resistive Index Variation Mirrors Cardiac Responsiveness and Systemic Hemodynamics upon Fluid Challenge Resuscitation in Postoperative Mechanically Ventilated Patients. Biomed. Res. Int. 2018;2018:1978968. doi: 10.1155/2018/1978968. PubMed DOI PMC
Doctor M., Siadecki S.D., Cooper Jr D., Rose G., Drake A.B., Ku M., Suprun M., Saul T. Reliability, Laterality and the Effect of Respiration on the Measured Corrected Flow Time of the Carotid Arteries. J. Emerg. Med. 2017;53:91–97. doi: 10.1016/j.jemermed.2017.01.056. PubMed DOI
Girotto V., Teboul J.L., Beurton A., Galarza L., Guedj T., Richard C., Monnet X. Carotid and femoral Doppler do not allow the assessment of passive leg raising effects. Ann. Intensive Care. 2018;8:67. doi: 10.1186/s13613-018-0413-7. PubMed DOI PMC
Vistisen S.T., Andersen K.K., Frederiksen C.A., Kirkegaard H. Variations in the pre-ejection period induced by ventricular extra systoles may be feasible to predict fluid responsiveness. J. Clin. Monit. Comput. 2014;28:341–349. doi: 10.1007/s10877-013-9528-4. PubMed DOI
Vistisen S.T., Krog M.B., Elkmann T., Vallentin M.F., Scheeren T.W., Sølling C. Extrasystoles for fluid responsiveness prediction in critically ill patients. J. Intensive Care. 2018;6:52. doi: 10.1186/s40560-018-0324-6. PubMed DOI PMC
Vistisen S.T. Using extra systoles to predict fluid responsiveness in cardiothoracic critical care patients. J. Clin. Monit. Comput. 2017;31:693–699. doi: 10.1007/s10877-016-9907-8. PubMed DOI
Vistisen S.T., Berg J.M., Boekel M.F., Modestini M., Bergman R., Jainandunsing J.S., Mariani M.A., Scheeren T.W.L. Using extra systoles and the micro-fluid challenge to predict fluid responsiveness during cardiac surgery. J. Clin. Monit. Comput. 2019;33:777–786. doi: 10.1007/s10877-018-0218-0. PubMed DOI