Conserved MicroRNAs in Human Nasopharynx Tissue Samples from Swabs Are Differentially Expressed in Response to SARS-CoV-2
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
TJ02000096
Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_025/0007314
Ministry of Education Youth and Sports
PubMed
35205390
PubMed Central
PMC8871708
DOI
10.3390/genes13020348
PII: genes13020348
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, miRNAs, mir-21, real-time RT-PCR, small RNA sequencing,
- MeSH
- analýza hlavních komponent MeSH
- COVID-19 patologie virologie MeSH
- down regulace MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- mikro RNA chemie metabolismus MeSH
- nazofarynx metabolismus virologie MeSH
- RNA virová metabolismus MeSH
- SARS-CoV-2 genetika izolace a purifikace fyziologie MeSH
- sekvenční analýza RNA MeSH
- transkriptom MeSH
- upregulace MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
- RNA virová MeSH
The use of high-throughput small RNA sequencing is well established as a technique to unveil the miRNAs in various tissues. The miRNA profiles are different between infected and non-infected tissues. We compare the SARS-CoV-2 positive and SARS-CoV-2 negative RNA samples extracted from human nasopharynx tissue samples to show different miRNA profiles. We explored differentially expressed miRNAs in response to SARS-CoV-2 in the RNA extracted from nasopharynx tissues of 10 SARS-CoV-2-positive and 10 SARS-CoV-2-negative patients. miRNAs were identified by small RNA sequencing, and the expression levels of selected miRNAs were validated by real-time RT-PCR. We identified 943 conserved miRNAs, likely generated through posttranscriptional modifications. The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA was miR-21, which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx tissues. Our results contribute to further understanding the role of miRNAs in SARS-CoV-2 pathogenesis, which may be crucial for understanding disease symptom development in humans.
Mendeleum Institute of Genetics Mendel University in Brno Valticka 334 691 44 Lednice Czech Republic
Zobrazit více v PubMed
Lee N., Hui D., Wu A., Chan P., Cameron P., Joynt G.M., Ahuja A., Yung M.Y., Leung C.B., To K.F., et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003;348:1986–1994. doi: 10.1056/NEJMoa030685. PubMed DOI
Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26:450–452. doi: 10.1038/s41591-020-0820-9. PubMed DOI PMC
Lim Y.X., Ng Y.L., Tam J.P., Liu D.X. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases. 2016;4:26. doi: 10.3390/diseases4030026. PubMed DOI PMC
Mousavizadeh L., Ghasemi S. Review Article Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect. 2020;54:159–163. doi: 10.1016/j.jmii.2020.03.022. PubMed DOI PMC
Khailany R.A., Safdar M., Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020;19:100682. doi: 10.1016/j.genrep.2020.100682. PubMed DOI PMC
Narayanan K., Ramirez S.I., Lokugamage K.G., Makino S. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res. 2015;202:89–100. doi: 10.1016/j.virusres.2014.11.019. PubMed DOI PMC
O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC
Trobaugh D.W., Klimstra W.B. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol. Med. 2017;23:80–93. doi: 10.1016/j.molmed.2016.11.003. PubMed DOI PMC
Abu-Izneid T., AlHajri N., Ibrahim A.M., Javed M.N., Salem K.M., Pottoo F.H., Kamal M.A. Micro-RNAs in the regulation of immune response against SARS-CoV-2 and other viral infections. J. Adv. Res. 2021;30:133–145. doi: 10.1016/j.jare.2020.11.013. PubMed DOI PMC
Chauhan N., Jaggi M., Chauhan S.C., Yallapu M.M. COVID-19: Fighting the invisible enemy with microRNAs. Expert Rev. Anti-Infect. Ther. 2021;19:137–145. doi: 10.1080/14787210.2020.1812385. PubMed DOI PMC
Hum C., Loiselle J., Ahmed N., Shaw T.A., Toudic C., Pezacki J.P. MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs. 2021;81:517–531. doi: 10.1007/s40265-021-01474-5. PubMed DOI PMC
Su W., Aloi M.S., Garden G.A. MicroRNAs mediating CNS inflammation: Small regulators with powerful potential. Brain Behav. Immun. 2016;52:1–8. doi: 10.1016/j.bbi.2015.07.003. PubMed DOI PMC
Morris K.V., Mattick J.S. The rise of regulatory RNA. Nat. Rev. Genet. 2014;15:423–437. doi: 10.1038/nrg3722. PubMed DOI PMC
Bunis D.G., Bronevetsky Y., Krow-Lucal E., Bhakta N.R., Kim C.C., Nerella S., Jones N., Mendoza V.F., Bryson Y.J., Gern J.E., et al. Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human Naive T Cells. Cell Rep. 2021;34:108573. doi: 10.1016/j.celrep.2020.108573. PubMed DOI PMC
Spira A., Yurgelun M.B., Alexandrov L., Rao A., Bejar R., Polyak K., Giannakis M., Shilatifard A., Finn O.J., Dhodapkar M., et al. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res. 2017;77:1510–1541. doi: 10.1158/0008-5472.CAN-16-2346. PubMed DOI PMC
Alles J., Fehlmann T., Fischer U., Backes C., Galata V., Minet M., Hart M., Abu-Halima M., Grasser F.A., Lenhof H.P., et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47:3353–3364. doi: 10.1093/nar/gkz097. PubMed DOI PMC
He H., Li R.Q., Chen Y., Pan P., Tong W.J., Dong X.Y., Chen Y.M., Yu D.J. Integrated DNA and RNA extraction using magnetic beads from viral pathogens causing acute respiratory infections. Sci. Rep. 2017;7:45199. doi: 10.1038/srep45199. PubMed DOI PMC
Corman V.M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D.K., Bleicker T., Brunink S., Schneider J., Schmidt M.L., et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25:2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Andrews S. FastQC: A Quality Control Tool for High Throughput SEQUENCE Data. 2010. [(accessed on 2 February 2021)]. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Hammer Ø., Harper D.A., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:9.
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Arisan E.D., Dart A., Grant G.H., Arisan S., Cuhadaroglu S., Lange S., Uysal-Onganer P. The Prediction of miRNAs in SARS-CoV-2 Genomes: Hsa-miR Databases Identify 7 Key miRs Linked to Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities. Viruses. 2020;12:614. doi: 10.3390/v12060614. PubMed DOI PMC
Chen W., Feng P.M., Liu K.W., Wu M., Lin H. Computational Identification of Small Interfering RNA Targets in SARS-CoV-2. Virol. Sin. 2020;35:359–361. doi: 10.1007/s12250-020-00221-6. PubMed DOI PMC
Chow J.T.S., Salmena L. Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium. Genes. 2020;11:1002. doi: 10.3390/genes11091002. PubMed DOI PMC
Demongeot J., Seligmann H. SARS-CoV-2 and miRNA-like inhibition power. Med. Hypotheses. 2020;144:110245. doi: 10.1016/j.mehy.2020.110245. PubMed DOI PMC
Rad S.M.A.H., McLellan A.D. Implications of SARS-CoV-2 Mutations for Genomic RNA Structure and Host microRNA Targeting. Int. J. Mol. Sci. 2020;21:4807. PubMed PMC
Sardar R., Satish D., Gupta D. Identification of Novel SARS-CoV-2 Drug Targets by Host MicroRNAs and Transcription Factors Coregulatory Interaction Network Analysis. Front. Genet. 2020;11:571274. doi: 10.3389/fgene.2020.571274. PubMed DOI PMC
Li C.X., Hu X., Li L.L., Li J.H. Differential microRNA expression in the peripheral blood from human patients with COVID-19. J. Clin. Lab. Anal. 2020;34:e23590. doi: 10.1002/jcla.23590. PubMed DOI PMC
Lu D.C., Chatterjee S., Xiao K., Riedel I., Wang Y.B., Foo R., Bar C., Thum T. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J. Mol. Cell. Cardiol. 2020;148:46–49. doi: 10.1016/j.yjmcc.2020.08.017. PubMed DOI PMC
Fang Z.D., Du R.F., Edwards A., Flemington E.K., Zhang K. The Sequence Structures of Human MicroRNA Molecules and Their Implications. PLoS ONE. 2013;8:e54215. doi: 10.1371/journal.pone.0054215. PubMed DOI PMC
Elbashir S.M., Martinez J., Patkaniowska A., Lendeckel W., Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877–6888. doi: 10.1093/emboj/20.23.6877. PubMed DOI PMC
Katome T., Obata T., Matsushima R., Masuyama N., Cantley L.C., Gotoh Y., Kishi K., Shiota H., Ebina Y. Use of RNA interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/protein kinase B isoforms in insulin actions. J. Biol. Chem. 2003;278:28312–28323. doi: 10.1074/jbc.M302094200. PubMed DOI
Porstner M., Winkelmann R., Daum P., Schmid J., Pracht K., Corte-Real J., Schreiber S., Haftmann C., Brandl A., Mashreghi M.F., et al. miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2. Eur. J. Immunol. 2015;45:1206–1215. doi: 10.1002/eji.201444637. PubMed DOI
Palmieri A., Pezzetti F., Brunelli G., Martinelli M., Lo Muzio L., Scarano A., Degidi M., Piattelli A., Carinci F. Peptide-15 changes miRNA expression in osteoblast-like cells. Implant. Dent. 2008;17:100–108. doi: 10.1097/ID.0b013e318166d182. PubMed DOI
van Wijnen A.J., van de Peppel J., van Leeuwen J.P., Lian J.B., Stein G.S., Westendorf J.J., Oursler M.J., Im H.J., Taipaleenmaki H., Hesse E., et al. MicroRNA Functions in Osteogenesis and Dysfunctions in Osteoporosis. Curr. Osteoporos. Rep. 2013;11:72–82. doi: 10.1007/s11914-013-0143-6. PubMed DOI PMC
Gailhouste L., Gomez-Santos L., Hagiwara K., Hatada I., Kitagawa N., Kawaharada K., Thirion M., Kosaka N., Takahashi R.U., Shibata T., et al. miR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology. 2013;58:1153–1165. doi: 10.1002/hep.26422. PubMed DOI
Ross S.E., Hemati N., Longo K.A., Bennett C.N., Lucas P.C., Erickson R.L., MacDougald O.A. Inhibition of adipogenesis by Wnt signaling. Science. 2000;289:950–953. doi: 10.1126/science.289.5481.950. PubMed DOI
Hu C.W., Tseng C.W., Chien C.W., Huang H.C., Ku W.C., Lee S.J., Chen Y.J., Juan H.F. Quantitative Proteomics Reveals Diverse Roles of miR-148a from Gastric Cancer Progression to Neurological Development. J. Proteome Res. 2013;12:3993–4004. doi: 10.1021/pr400302w. PubMed DOI
Merkerova M., Vasikova A., Belickova M., Bruchova H. MicroRNA Expression Profiles in Umbilical Cord Blood Cell Lineages. Stem Cells Dev. 2010;19:17–25. doi: 10.1089/scd.2009.0071. PubMed DOI
Giraud-Triboult K., Rochon-Beaucourt C., Nissan X., Champon B., Aubert S., Pietu G. Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b control human mesenchymal stem cell phenotype via EPAS1. Physiol. Genom. 2011;43:77–86. doi: 10.1152/physiolgenomics.00077.2010. PubMed DOI
Li Y., Deng X., Zeng X., Peng X. The Role of Mir-148a in Cancer. J. Cancer. 2016;7:1233–1241. doi: 10.7150/jca.14616. PubMed DOI PMC
Farr R.J., Rootes C.L., Rowntree L.C., Nguyen T.H.O., Hensen L., Kedzierski L., Cheng A.C., Kedzierska K., Au G.G., Marsh G.A., et al. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog. 2021;17:e1009759. doi: 10.1371/journal.ppat.1009759. PubMed DOI PMC
Lu T.X., Munitz A., Rothenberg M.E. MicroRNA-21 Is Up-Regulated in Allergic Airway Inflammation and Regulates IL-12p35 Expression. J. Immunol. 2009;182:4994–5002. doi: 10.4049/jimmunol.0803560. PubMed DOI PMC
Liu G., Friggeri A., Yang Y., Milosevic J., Ding Q., Thannickal V.J., Kaminski N., Abraham E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 2010;207:1589–1597. doi: 10.1084/jem.20100035. PubMed DOI PMC
Xia B.H., Lu J.S., Wang R., Yang Z.X., Zhou X.W., Huang P.T. miR-21-3p Regulates Influenza A Virus Replication by Targeting Histone Deacetylase-8. Front. Cell. Infect. Microbiol. 2018;8:175. doi: 10.3389/fcimb.2018.00175. PubMed DOI PMC
Chen Y.N., Chen J.B., Wang H., Shi J.J., Wu K.L., Liu S., Liu Y.L., Wu J.G. HCV-Induced miR-21 Contributes to Evasion of Host Immune System by Targeting MyD88 and IRAK1. PLoS Pathog. 2013;9:e1003248. doi: 10.1371/journal.ppat.1003248. PubMed DOI PMC
Houzet L., Yeung M.L., de Lame V., Desai D., Smith S.M., Jeang K.T. MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology. 2008;5:118. doi: 10.1186/1742-4690-5-118. PubMed DOI PMC
Jafarinejad-Farsangi S., Jazi M.M., Rostamzadeh F., Hadizadeh M. High affinity of host human microRNAs to SARS-CoV-2 genome: An in silico analysis. Non-Coding RNA Res. 2020;5:222–231. doi: 10.1016/j.ncrna.2020.11.005. PubMed DOI PMC
Liu M.L., Guo S.C., Hibbert J.M., Jain V., Singh N., Wilson N.O., Stiles J.K. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011;22:121–130. doi: 10.1016/j.cytogfr.2011.06.001. PubMed DOI PMC
Garg A., Seeliger B., Derda A.A., Xiao K., Gietz A., Scherf K., Sonnenschein K., Pink I., Hoeper M.M., Welte T., et al. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur. J. Heart Fail. 2021;23:468–475. doi: 10.1002/ejhf.2096. PubMed DOI PMC
Leon-Icaza S.A., Zeng M., Rosas-Taraco A.G. MicroRNAs in viral acute respiratory infections: Immune regulation, biomarkers, therapy, and vaccines. ExRNA. 2019;1:1. doi: 10.1186/s41544-018-0004-7. PubMed DOI PMC
Git A., Dvinge H., Salmon-Divon M., Osborne M., Kutter C., Hadfield J., Bertone P., Caldas C. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010;16:991–1006. doi: 10.1261/rna.1947110. PubMed DOI PMC
Li R., Zhang H.X., Zheng X.L. MiR-34c induces apoptosis and inhibits the viability of M4e cells by targeting BCL2. Oncol. Lett. 2018;15:3357–3361. doi: 10.3892/ol.2017.7640. PubMed DOI PMC
Francis S.M.S., Davidson M.R., Tan M.E., Wright C.M., Clarke B.E., Duhig E.E., Bowman R.V., Hayward N.K., Fong K.M., Yang I.A. MicroRNA-34c is associated with emphysema severity and modulates SERPINE1 expression. BMC Genom. 2014;15:88 PubMed PMC
Harslund J., Frees D., Leifsson P.S., Offenberg H., Romer M.U., Brunner N., Olsen J.E. The role of Serpine-1 and Tissue inhibitor of metalloproteinase type-1 in early host responses to Staphylococcus aureus intracutaneous infection of mice. Pathog. Dis. 2013;68:96–104. doi: 10.1111/2049-632X.12055. PubMed DOI
Demiray A., Sari T., Caliskan A., Nar R., Aksoy L., Akbubak I.H. Serum microRNA signature is capable of predictive and prognostic factor for SARS-CoV-2 virulence. Turk. J. Biochem. 2021;46:245–253. doi: 10.1515/tjb-2020-0520. DOI
Hasan M.M., Akter R., Ullah M.S., Abedin M.J., Ullah G.M., Hossain M.Z. A Computational Approach for Predicting Role of Human MicroRNAs in MERS-CoV Genome. Adv. Bioinform. 2014;2014:967946. doi: 10.1155/2014/967946. PubMed DOI PMC
Wang L.L., Qin Y., Tong L., Wu S., Wang Q., Jiao Q.G., Guo Z.W., Lin L.X., Wang R.X., Zhao W.R., et al. MiR-342-5p suppresses coxsackievirus B3 biosynthesis by targeting the 2C-coding region. Antivir. Res. 2012;93:270–279. doi: 10.1016/j.antiviral.2011.12.004. PubMed DOI