One-Enzyme RTX-PCR for the Detection of RNA Viruses from Multiple Virus Genera and Crop Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
35215892
PubMed Central
PMC8924886
DOI
10.3390/v14020298
PII: v14020298
Knihovny.cz E-zdroje
- Klíčová slova
- Capillovirus, Foveavirus, Luteovirus, Nepovirus, Polerovirus, Potexvirus, Potyvirus, RTX-PCR, Tobamovirus, Trichovirus, Tritimovirus, one-step RT-PCR, virus detection,
- MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- fylogeneze MeSH
- nemoci rostlin virologie MeSH
- polymerázová řetězová reakce přístrojové vybavení metody MeSH
- RNA-viry klasifikace genetika izolace a purifikace MeSH
- rostlinné viry klasifikace genetika izolace a purifikace MeSH
- senzitivita a specificita MeSH
- zemědělské plodiny virologie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA-dependentní DNA-polymerasy MeSH
Reverse transcription PCR (RT-PCR) is a popular method for detecting RNA viruses in plants. RT-PCR is usually performed in a classical two-step procedure: in the first step, cDNA is synthesized by reverse transcriptase (RT), followed by PCR amplification by a thermostable polymerase in a separate tube in the second step. However, one-step kits containing multiple enzymes optimized for RT and PCR amplification in a single tube can also be used. Here, we describe an RT-PCR single-enzyme assay based on an RTX DNA polymerase that has both RT and polymerase activities. The expression plasmid pET_RTX_(exo-) was transferred to various E. coli genotypes that either compensated for codon bias (Rosetta-gami 2) or contained additional chaperones to promote solubility (BL21 (DE3) with plasmids pKJE8 or pTf2). The RTX enzyme was then purified and used for the RT-PCR assay. Several purified plant viruses (TMV, PVX, and PVY) were used to determine the efficiency of the assay compared to a commercial one-step RT-PCR kit. The RT-PCR assay with the RTX enzyme was validated for the detection of viruses from different genera using both total RNA and crude sap from infected plants. The detection endpoint of RTX-PCR for purified TMV was estimated to be approximately 0.01 pg of the whole virus per 25 µL reaction, corresponding to 6 virus particles/µL. Interestingly, the endpoint for detection of TMV from crude sap was also 0.01 pg per reaction in simulated crude plant extracts. The longest RNA fragment that could be amplified in a one-tube arrangement was 2379 bp long. The longest DNA fragment that could be amplified during a 10s extension was 6899 bp long. In total, we were able to detect 13 viruses from 11 genera using RTX-PCR. For each virus, two to three specific fragments were amplified. The RT-PCR assay using the RTX enzyme described here is a very robust, inexpensive, rapid, easy to perform, and sensitive single-enzyme assay for the detection of plant viruses.
Zobrazit více v PubMed
Jones R.A.C. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 2009;141:113–130. doi: 10.1016/j.virusres.2008.07.028. PubMed DOI
Mumford R.A., Macarthur R., Boonham N. The role and challenges of new diagnostic technology in plant biosecurity. Food Sec. 2016;8:103–109. doi: 10.1007/s12571-015-0533-y. DOI
Rubio L., Galiplenso L., Ferriol I. Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Front. Plant Sci. 2020;11:1092. doi: 10.3389/fpls.2020.01092. PubMed DOI PMC
Martinelli F., Scalenghe R., Davino S., Panno S., Scuderi G., Ruisi P., Villa P., Stroppiana D., Boschetti M., Goulart L.R., et al. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015;35:1–25. doi: 10.1007/s13593-014-0246-1. DOI
Pallás V., Sánchez-Navarro J.A., James D. Recent advances on the multiplex molecular detection of plant viruses and viroids. Front. Microbiol. 2018;9:2087. doi: 10.3389/fmicb.2018.02087. PubMed DOI PMC
Katsarou K., Bardani E., Kallemi P., Kalantidis K. Viral detection: Past, present, and future. BioEssays. 2019;41:1900049. doi: 10.1002/bies.201900049. PubMed DOI
Yasukawai K., Yanagihara I., Fujiwara S. Alteration of enzymes and their application to nucleic acid amplification (Review) Int. J. Mol. Med. 2020;46:1633–1643. doi: 10.3892/ijmm.2020.4726. PubMed DOI PMC
Ellefson J.W., Gollihar J., Shroff R., Shivram H., Iyer V.R., Ellington A.D. Synthetic evolutionary origin of a proofreading reverse transcriptase. Science. 2016;352:1590–1593. doi: 10.1126/science.aaf5409. PubMed DOI
Okano H., Baba M., Hidese R., Iida K., Li T., Kojima K., Takita T., Yanagihara I., Fujiwara S., Yasukawa K. Accurate fidelity analysis of the reverse transcriptase by a modified next-generation sequencing. Enzyme Microb. Technol. 2018;115:81–85. doi: 10.1016/j.enzmictec.2018.05.001. PubMed DOI
Sambrook J., Russell D.W. Preparation and transformation of competent E. coli using calcium chloride. Cold Spring Harb. Protoc. 2006;1:3932. doi: 10.1101/pdb.prot3932. PubMed DOI
Taylor T., Denson J.-P., Esposito D. Heterologous Gene Expression in E. coli. Humana Press; New York, NY, USA: 2017. Optimizing expression and solubility of proteins in E. coli using modified media and induction parameters; pp. 65–82. PubMed
Chen S., Zheng X., Cao H., Jiang L., Liu F., Sun X. A simple and efficient method for extraction of Taq DNA polymerase. Electr. J. Biotechnol. 2015;18:355–358. doi: 10.1016/j.ejbt.2015.08.001. DOI
Bruening G., Beachy R.N., Scalla R., Zaitlin M. In vitro and in vivo translation of the ribonucleic acid of a cowpea strain of tobacco mosaic virus. Virology. 1976;71:498–517. doi: 10.1016/0042-6822(76)90377-9. PubMed DOI
Čeřovská N., Filigarová M., Branišová H., Žák P., Dědič P. Some factors influencing purification of Potato virus A (PVA) Acta Virol. 1991;35:469–471. PubMed
Janda M., Navrátil O., Haisel D., Jindřichová B., Fousek J., Burketová L., Čeřovská N., Moravec T. Growth and stress response in Arabidopsis thaliana, Nicotiana benthamiana, Glycine max, Solanum tuberosum and Brassica napus cultivated under polychromatic LEDs. Plant Methods. 2015;11:31. doi: 10.1186/s13007-015-0076-4. PubMed DOI PMC
Association of Applied Biologists Description of Plant Viruses (PVY, PVX a TMV) [(accessed on 24 January 2022)]. Available online: https://www.dpvweb.net/
Moravec T., Čeřovská N., Boonham N. The detection of recombinant, tuber necrosing isolates of Potato virus Y (PVY(NTN)) using a three-primer PCR based in the coat protein gene. J. Virol. Methods. 2003;109:63–68. doi: 10.1016/S0166-0934(03)00047-8. PubMed DOI
Fuchs M., Abawi G.S., Marsella-Herrick P., Cox R., Cox K.D., Carroll J.E., Martin R.R. Occurrence of Tomato ringspot virus and Tobacco ringspot virus in highbush blueberry in New York state. J. Plant Pathol. 2010;92:451–459.
Yang W., Yun Z., Chen. Z., Zhang G., Wu S. Detection of Tobacco ringspot virus by RT-real-time PCR. Acta Phytopathol. Sin. 2007;34:157–160.
Jossey S., Babadoost M. First report of Tobacco ringspot virus in pumpkin (Cucurbita pepo) in Illinois. Plant Dis. 2006;90:1361. doi: 10.1094/PD-90-1361B. PubMed DOI
Singh K., Slavíková L., Kumar J. Reakční směs pro detekci viru mozaiky vodnice v nekulturních a plevelných hostitelích pomocí RT-PCR (Reaction mixture for the detection of Turnip mosaic virus in non-cultural and weed hosts by RT-PCR.) Util. Model. 2020:34520.
Abraham A.D., Menzel W., Lesemann D.-E., Varrelmann M., Vetten H.J. Chickpea chlorotic stunt virus: A new polerovirus infecting cool-season food legumes in Ethiopia. Phytopathology. 2006;96:437–446. doi: 10.1094/PHYTO-96-0437. PubMed DOI
Singh K., Slavíková L., Kumar J. Reakční směs pro detekci viru žloutenky vodnice v nekulturních a plevelných hostitelích pomocí RT-PCR (Reaction mixture for the detection of Turnip yellows virus in non-cultural and weed hosts by RT-PCR) Util. Model. 2021:35270.
Kundu J.K. First Report of barley yellow dwarf virus-PAS in wheat and barley grown in the Czech Republic. Plant Dis. 2008;92:1587. doi: 10.1094/PDIS-92-11-1587B. PubMed DOI
Jarošová J., Kundu J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010;10:146. doi: 10.1186/1471-2229-10-146. PubMed DOI PMC
Singh K., Kundu J.K. Variations in Wheat streak mosaic virus coat protein sequence among crop and non-crop hosts. Crop Pasture Sci. 2017;68:328–336. doi: 10.1071/CP17025. DOI
Kúdela O., Kúdelová M., Nováková S., Glasa M. First report of Wheat streak mosaic virus in Slovakia. Plant Dis. 2008;92:1365. doi: 10.1094/PDIS-92-9-1365C. PubMed DOI
Gadiou S., Kudela O., Ripl J., Rabenstein F., Kundu J.K., Glasa M. An amino acid deletion in Wheat streak mosaic virus capsid protein distinguishes a homogeneous group of European isolates and facilitates their specific detection. Plant Dis. 2009;93:1209–1213. doi: 10.1094/PDIS-93-11-1209. PubMed DOI
Jelkmann W., Keim-Konrad R. Immuno-capture polymerase chain reaction and plate-trapped ELISA for the detection of Apple stem pitting virus. J. Phytopathol. 1997;145:499–503. doi: 10.1111/j.1439-0434.1997.tb00357.x. DOI
Gadiou S., Kundu J.K., Paunovic S., Garcia-Diez P., Komorowska B., Gospodaryk A., Handa A., Massart S., Birisik N., Takur P.D., et al. Genetic diversity of flexiviruses infecting pome fruit trees. J. Plant Pathol. 2010;92:687–693.
Menzel W., Jelkmann W., Maiss E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods. 2002;99:81–92. doi: 10.1016/S0166-0934(01)00381-0. PubMed DOI
James D. A simple and reliable protocol for the detection of Apple stem grooving virus by RT-PCR and in a multiplex PCR assay. J. Virol. Methods. 1999;83:1–9. doi: 10.1016/S0166-0934(99)00078-6. PubMed DOI
Varga A., James D. Detection and differentiation of Plum pox virus using real time multiplex PCR with SYBR Green and melting curve analysis: A rapid method for strain typing. J. Virol. Methods. 2005;123:213–220. doi: 10.1016/j.jviromet.2004.10.005. PubMed DOI
Šubr Z., Pittnerova S., Glasa M. A simplified RT-PCR-based detection of recombinant Plum pox virus isolates. Acta Virol. 2004;48:173–176. PubMed
Jarošová J., Kundu J.K. Simultaneous detection of stone fruit tree viruses by one-step multiplex RT-PCR. Sci. Hortic. 2010;125:68–72. doi: 10.1016/j.scienta.2010.02.011. DOI
Massart S., Brostaux Y., Barbarossa L., César V., Cieslinska M., Dutrecq O., Fonseca F., Guillem R., Laviña A., Olmos A., et al. Inter-laboratory evaluation of a duplex RT-PCR method using crude extracts for the simultaneous detection of Prune dwarf virus and Prunus necrotic ringspot virus. Eur. J. Plant Pathol. 2008;122:539–547. doi: 10.1007/s10658-008-9322-1. DOI
Jarošová J., Kundu J.K. Detection of Prune dwarf virus by one-step RT-PCR and its quantification by real-time PCR. J. Virol. Methods. 2010;164:139–144. doi: 10.1016/j.jviromet.2009.11.032. PubMed DOI
Dušek J., Plchová H., Čeřovská N., Poborilova Z., Navrátil O., Kratochvílová K., Gunter C., Jacobs R., Hitzeroth I.I., Rybicki E.P., et al. Extended set of GoldenBraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Front. Plant Sci. 2020;11:522059. doi: 10.3389/fpls.2020.522059. PubMed DOI PMC
Bhadra S., Maranhao A.C., Paik I., Ellington D.A. A one-enzyme RT-qPCR assay for SARS-CoV-2, and procedures for reagent production. Bio-Protoc. 2021;11:e3898. doi: 10.21769/BioProtoc.3898. DOI
Gawande S.J., Shukla A., Chimote V.P., Kaushal N., Kaundal P., Garg I.D., Chimote K.P. Development of PCR-based techniques for the detection of immobilised Potato virus Y virions. J. Plant Pathol. 2011;93:127–132.
Peiró A., Pallás V., Sánchez-Navarro J.Á. Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. Eur. J. Plant Pathol. 2012;132:469–475. doi: 10.1007/s10658-011-9893-0. DOI
Uga H., Tsuda S. A one–step reverse transcription–polymerase chain reaction system for the simultaneous detection and identification of multiple tospovirus infections. Phytopathology. 2005;95:166–171. doi: 10.1094/PHYTO-95-0166. PubMed DOI
Kundu J.K. A rapid and effective RNA release procedure for virus detection in woody plants by reverse transcription-polymerase chain reaction. Acta Virol. 2003;47:147–151. PubMed
Kundu J.K., Rysanek P. Detection of Beet yellows virus by RT-PCR and immunocapture RT-PCR in Tetragonia expansa and Beta vulgaris. Acta Virol. 2004;48:177–182. PubMed
Thomson D., Dietzgen G.R. Detection of DNA and RNA plant viruses by PCR and RT-PCR using a rapid virus release protocol without tissue homogenization. J. Virol. Methods. 1995;54:85–95. doi: 10.1016/0166-0934(95)00022-M. PubMed DOI
French R., Robertson N.L. Simplified sample preparation for detection of Wheat streak mosaic virus and Barley yellow dwarf virus by PCR. J. Virol. Methods. 1994;49:93–99. doi: 10.1016/0166-0934(94)90059-0. PubMed DOI
Wetzel T., Candresse T., Macquaire G., Ravelonandro M., Dunez J. A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. J. Virol. Methods. 1992;39:27–37. doi: 10.1016/0166-0934(92)90122-T. PubMed DOI
Fenby N.S., Scott N.W., Slater A., Elliott M.C. PCR and non-isotopic labeling techniques for plant virus detection. Cell. Mol. Biol. 1995;41:639–652. PubMed
Zhang S., Ravelonandro M., Russell P., McOwen N., Briard P., Bohannon S., Vrient A. Rapid diagnostic detection of Plum pox virus in Prunus plants by isothermal AmplifyRP® using reverse transcription-recombinase polymerase amplification. J. Virol. Methods. 2014;207:114–120. doi: 10.1016/j.jviromet.2014.06.026. PubMed DOI
Wilisiani F., Tomiyama A., Katoh H., Hartono S., Neriya Y., Nishigawa H., Natsuaki T. Development of a LAMP assay with a portable device for real-time detection of begomoviruses under field conditions. J. Virol. Methods. 2019;265:71–76. doi: 10.1016/j.jviromet.2018.10.005. PubMed DOI
Drygin Y.F., Blintsov A.N., Grigorenko V.G., Andreeva I.P., Osipov A.P., Varitzev Y.A., Uskov A.I., Kravchenko D.V., Atabekov J.G. Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl. Microbiol. Biotechnol. 2012;93:179–189. doi: 10.1007/s00253-011-3522-x. PubMed DOI
Koczula M.K., Gallotta A. Lateral flow assays. Essays Biochem. 2016;60:111–120. PubMed PMC
Safenkova V.I., Pankratova K.G., Zaitsev A.I., Varitsev A.Y., Vengerov Y.Y., Zherdev V.A., Dzantiev B.B. Multiarray on a test strip (MATS): Rapid multiplex immunodetection of priority potato pathogens. Anal. Bioanal. Chem. 2016;408:6009–6017. doi: 10.1007/s00216-016-9463-6. PubMed DOI
Rohrman B.A., Leautaud V., Molyneux E., Richards-Kortum R.R. A Lateral Flow Assay for quantitative detection of amplified HIV-1 RNA. PLoS ONE. 2012;7:e45611. doi: 10.1371/journal.pone.0045611. PubMed DOI PMC
Jailani K.A.A., Hendricks K., Roberts D.P., Paret L.M. Development of a simple one-step multiplex RT-PCR system for simultaneous detection of DNA and RNA viruses of Cucurbit leaf crumple virus, Cucurbit yellow stunting disorder virus, Squash vein yellowing virus, and Cucurbit chlorotic yellows virus. Physiol. Mol. Plant Pathol. 2021;116:101734. doi: 10.1016/j.pmpp.2021.101734. DOI