Nitric oxide-releasing nanomaterials: from basic research to potential biotechnological applications in agriculture
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35266146
DOI
10.1111/nph.18073
Knihovny.cz E-zdroje
- Klíčová slova
- NO donor, S-nitrosothiol, nanomaterial, nanoparticle, nanotechnology, nitric oxide (NO),
- MeSH
- biotechnologie MeSH
- chitosan * MeSH
- nanotechnologie MeSH
- oxid dusnatý * MeSH
- rostliny MeSH
- zemědělství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chitosan * MeSH
- oxid dusnatý * MeSH
Nitric oxide (NO) is a multifunctional gaseous signal that modulates the growth, development and stress tolerance of higher plants. NO donors have been used to boost plant endogenous NO levels and to activate NO-related responses, but this strategy is often hindered by the relative instability of donors. Alternatively, nanoscience offers a new, promising way to enhance NO delivery to plants, as NO-releasing nanomaterials (e.g. S-nitrosothiol-containing chitosan nanoparticles) have many beneficial physicochemical and biochemical properties compared to non-encapsulated NO donors. Nano NO donors are effective in increasing tissue NO levels and enhancing NO effects both in animal and human systems. The authors believe, and would like to emphasize, that new trends and technologies are essential for advancing plant NO research and nanotechnology may represent a breakthrough in traditional agriculture and environmental science. Herein, we aim to draw the attention of the scientific community to the potential of NO-releasing nanomaterials in both basic and applied plant research as alternatives to conventional NO donors, providing a brief overview of the current knowledge and identifying future research directions. We also express our opinion about the challenges for the application of nano NO donors, such as the environmental footprint and stakeholder's acceptance of these materials.
Agroécologie CNRS INRA Institut Agro Dijon Univ Bourgogne Franche Comté Dijon 21000 France
Center of Natural and Human Sciences Federal University of ABC Santo André SP 09210 580 Brazil
Department of Animal and Plant Biology State University of Londrina Londrina PR 86057 970 Brazil
Department of Applied Sciences University of the West of England Bristol BS16 1QY UK
Department of Plant Biology University of Szeged Szeged 6726 Hungary
Institute of Molecular Plant Sciences University of Edinburgh Edinburgh EH9 3JH UK
National Institute of Plant Genome Research Aruna Asaf Ali Marg New Delhi 110067 India
Zobrazit více v PubMed
Ahmad A, Hashmi SS, Palma JM, Corpas FJ. 2022. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Chemosphere 290: 133329.
Allan J, Belz S, Hoeveler A, Hugas M, Okuda H, Patri A, Rauscher H, Silva P, Slikker W, Sokull-Kluettgen B et al. 2021. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regulatory Toxicology and Pharmacology 122: 104885.
Astuti RI, Nasuno R, Takagi H. 2018. Nitric oxide signalling in yeast. Advances in Microbial Physiology 72: 29-63.
Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, Rose J, Santaella C, Levard C. 2017. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science and Technology 51: 8682-8691.
Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. 2021. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environmental Science and Technology 55: 13417-13431.
Avellan A, Yun J, Zhang ES, Spielman-Sun E, Unrine JM, Thieme J, Li J, Lombi E, Bland G, Lowry GV. 2019. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13: 5291-5305.
Bombo AB, Pereira AES, Lusa MG, de Medeiros Oliveira E, de Oliveira JL, Campos EVR, de Jesus MB, Oliveira HC, Fraceto LF, Mayer JLS. 2019. A mechanistic view of interactions of a nanoherbicide with target organism. Journal of Agricultural and Food Chemistry 67: 4453-4462.
Corpas FJ, González-Gordo S, Palma JM. 2020. Nitric oxide: a radical molecule with potential biotechnological applications in fruit ripening. Journal of Biotechnology 324: 211-219.
Darder M, Karan A, Real G, DeCoster MA. 2020. Cellulose-based biomaterials integrated with copper-cystine hybrid structures as catalysts for nitric oxide generation. Materials Science and Engineering C: Materials for Biological Applications 108: 110369.
Delledonne M, Xia Y, Dixon RA, Lamb C. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585-588.
do Carmo GC, Iastrenski LF, Debiasi TV, da Silva RC, Gomes DG, Pelegrino MT, Bianchini E, Stolf-Moreira R, Pimenta JA, Seabra AB et al. 2021. Nanoencapsulation improves the protective effects of a nitric oxide donor on drought-stressed Heliocarpus popayanensis seedlings. Ecotoxicology and Environmental Safety 225: 112713.
Durner J, Wendehenne D, Klessig DF. 1998. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences, USA 95: 10328-10333.
El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, Rothen-Rutishauser B, Mauch F, Schwab F. 2021. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology 16: 344-353.
Fincheira P, Tortella G, Duran N, Seabra AB, Rubilar O. 2020. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Critical Reviews in Biotechnology 40: 15-30.
Fincheira P, Tortella G, Seabra AB, Quiroz A, Diez MC, Rubilar O. 2021. Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Planta 254: 66.
Gouvea CMCP, Souza JF, Magalhães CAN, Martins IS. 1997. NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regulation 21: 183-187.
Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. 2005. Protein S-nitrosylation: purview and parameters. Nature Reviews Molecular Cell Biology 6: 150-166.
Jiang M, Song Y, Kanwar MK, Ahammed GL, Shao S, Zhou J. 2021. Phytonanotechnology applications in modern agriculture. Journal of Nanobiotechnology 19: 430.
Jiménez-Arias D, Morales-Sierra S, Borges AA, Díaz DD. 2020. Biostimulant nanoencapsulation: the new keystone to fight hunger. Journal of Agricultural and Food Chemistry 68: 7083-7085.
Jin HB, Feura ES, Schoenfisch MH. 2021. Theranostic activity of nitric oxide-releasing carbon quantum dots. Bioconjugate Chemistry 32: 367-375.
Kohatsu MY, Lange CN, Pelegrino MT, Pieretti JC, Tortella G, Rubilar O, Batista BL, Seabra AB, Jesus TA. 2021. Foliar spraying of biogenic CuO nanoparticles protects the defence system and photosynthetic pigments of lettuce (Lactuca sativa). Journal of Cleaner Production 324: 129264.
Kolbert Z, Barroso JB, Brouquisse R, Corpas FJ, Gupta KJ, Lindermayr C, Loake GJ, Palma JM, Petřivalský M, Wendehenne D et al. 2019. A forty year journey: the generation and roles of NO in plants. Nitric Oxide 93: 53-70.
Kolbert Z, Lindermayr C, Loake GJ. 2021. The role of nitric oxide in plant biology: current insights and future perspectives. Journal of Experimental Botany 72: 777-780.
Kumaraswamy RV, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, Saharan V. 2018. Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules 113: 494-506.
Laxalt AM, Beligni MV, Lamattina L. 1997. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. European Journal of Plant Pathology 103: 643-651.
Leshem YY, Haramaty E. 1996. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. Journal of Plant Physiology 148: 258-263.
Liang W, Xie Z, Cheng J, Xiao D, Xiong Q, Wang Q, Zhao J, Gui W. 2021. A light-triggered pH-responsive metal-organic framework for smart delivery of fungicide to control Sclerotinia diseases of oilseed rape. ACS Nano 15: 6987-6997.
Lopes-Oliveira PJ, Gomes DG, Pelegrino MT, Bianchini E, Pimenta JA, Stolf-Moreira R, Seabra AB, Oliveira HC. 2019. Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery. Scientific Reports 9: 17371.
Low LE, Teh KC, Siva SP, Chew IML, Mwangi WW, Chew CL, Goh B, Chan ES, Tey BT. 2021. Lignin nanoparticles: the next green nanoreinforcer with wide opportunity. Environmental Nanotechnology, Monitoring & Management 15: 100398.
Lowry GV, Avellan A, Gilbertson LM. 2019. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology 14: 517-522.
Ma Y, Fu L, Hussain Z, Huang D, Zhu S. 2019. Enhancement of storability and antioxidant systems of sweet cherry fruit by nitric oxide-releasing chitosan nanoparticles (GSNO-CS NPs). Food Chemistry 285: 10-21.
Malerba M, Cerana R. 2018. Recent advances of chitosan applications in plants. Polymers 10: 18.
Marvasi M. 2017. Potential use and perspectives of nitric oxide donors in agriculture. Journal of the Science of Food and Agriculture 97: 1065-1072.
Mata-Pérez C, Sánchez-Calvo B, Begara-Morales JC, Carreras A, Padilla MN, Melguizo M, Valderrama R, Corpas FJ, Barroso JB. 2016. Nitro-linolenic acid is a nitric oxide donor. Nitric Oxide 57: 57-63.
McKinlay AC, Eubank JF, Wuttke S, Xiao B, Wheatley PS, Bazin P, Lavalley JC, Daturi M, Vimont A, Weireld GD et al. 2013. Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal−organic frameworks. Chemistry of Materials 25: 1592-1599.
Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB. 2016. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61: 10-19.
Pascoli M, Lopes-Oliveira PJ, Fraceto LF, Seabra AB, Oliveira HC. 2018. State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview. Energy Ecology and Environment 3: 137-148.
Pelegrino MT, Kohatsu MY, Seabra AB, Monteiro LR, Gomes DG, Oliveira HC, Rolim WR, Jesus TA, Batista BL, Lange CN. 2020. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment 192: 232.
Pelegrino MT, Pieretti JC, Lange C, Kohatsu MY, Freire BM, Batista BL, Fincheira P, Tortella GR, Rubilar O, Seabra AB. 2021. Foliar spray application of nanoparticles (NPs) and S-nitrosoglutathione enhances productivity, physiological and biochemical parameters of lettuce plants. Journal of Chemical Technology and Biotechnology 96: 2185-2196.
Pereira AES, Oliveira HC, Fraceto LF, Santaella C. 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11: 267.
Pieretti JC, Gonçalves MC, Nakazato G, Santos de Souza AC, Boudier A, Seabra AB. 2021. Multifunctional hybrid nanoplatform based on Fe3O4@Ag NPs for nitric oxide delivery: development, characterization, therapeutic efficacy, and hemocompatibility. Journal of Materials Science: Materials in Medicine 32: 23.
Pieretti JC, Pelegrino MT, Nascimento MHM, Tortella GR, Rubilar O, Seabra AB. 2020. Small molecules for great solutions: can nitric oxide-releasing nanomaterials overcome drug resistance in chemotherapy? Biochemical Pharmacology 176: 113740.
Pissolato MD, Silveira NM, Prataviera PJC, Machado EC, Seabra AB, Pelegrino MT, Sodek L, Ribeiro RV. 2020. Enhanced nitric oxide synthesis through nitrate supply improves drought tolerance of sugarcane plants. Frontiers in Plant Science 11: 970.
Santos MC, Seabra AB, Pelegrino MT, Haddad PS. 2016. Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery. Applied Surface Science 367: 26-35.
Seabra AB, Durán N. 2010. Nitric oxide-releasing vehicles for biomedical applications. Journal of Materials Chemistry 20: 1624-1637.
Seabra AB, Oliveira HC. 2016. How nitric oxide donors can protect plants in a changing environment: what we know so far and perspectives. AIMS Molecular Science 3: 692-718.
Seabra AB, Pelegrino MT, Lopes-Oliveira PJ, Gomes DG, Oliveira HC. 2022. Overview of nitric oxide homeostasis: strategies for altering the levels of this signaling molecule in plants. In: Singh VP, Singh S, Tripathi DK, Romero-Puertas MC, Sandalio LM, eds. Nitric oxide in plant biology: an ancient molecule with emerging roles. London, UK: Academic Press, 183-203.
Seabra AB, Rai M, Durán N. 2014. Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: a mini review. Journal of Plant Biochemistry and Biotechnology 23: 1-10.
Silveira NM, Prataviera PJC, Pieretti JC, Seabra AB, Almeida RL, Machado EC, Ribeiro RV. 2021a. Chitosan-encapsulated nitric oxide donors enhance physiological recovery of sugarcane plants after water deficit. Environmental and Experimental Botany 190: 104593.
Silveira NM, Ribeiro RV, de Morais SF, de Souza SC, da Silva SF, Seabra AB, Hancock JT, Machado EC. 2021b. Leaf arginine spraying improves leaf gas exchange under water deficit and root antioxidant responses during the recovery period. Plant Physiology and Biochemistry 162: 315-326.
Silveira NM, Seabra AB, Marcos FCC, Pelegrino MT, Machado EC, Ribeiro RV. 2019. Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide 84: 38-44.
Sodano V. 2018. Nano-food regulatory issues in the European union. AIP Conference Proceedings 1990: 020018.
Sola-Leyva A, Jabalera Y, Chico-Lozano MA, Carrasco-Jiménez MP, Iglesias GR, Jiménez-López C. 2020. Reactive oxygen species (ROS) production in HepG2 cancer cell line through the application of localized alternating magnetic field. Journal of Materials Chemistry B 8: 7667-7676.
Suchyta DJ, Schoenfisch MH. 2015. Encapsulation of N-diazeniumdiolates within liposomes for enhanced nitric oxide donor stability and delivery. Molecular Pharmaceutics 12: 3569-3574.
Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X. 2021. Molecular functions of nitric oxide and its potential applications in horticultural crops. Horticulture Research 8: 71.
Takeshita V, Sousa BT, Preisler AC, Carvalho LB, Pereira AES, Tornisielo VL, Dalazen G, Oliveira HC, Fraceto LF. 2021. Foliar absorption and field herbicidal studies of atrazine-loaded polymeric nanoparticles. Journal of Hazardous Materials 418: 126350.
Tanum J, Jeong H, Heo J, Choi M, Park K, Hong J. 2019. Assembly of graphene oxide multilayer film for stable and sustained release of nitric oxide gas. Applied Surface Science 486: 452-459.
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, Seabra AB. 2020. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of Hazardous Materials 390: 121974.
Umbreen S, Lubega J, Cui B, Pan Q, Jiang J, Loake GJ. 2018. Specificity in nitric oxide signalling. Journal of Experimental Botany 69: 3439-3448.
Urzedo AL, Gonçalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB. 2020. Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications. Materials Science and Engineering C - Materials for Biological Applications 112: 110933.
Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman HU, Ashraf I, Sanaullah M. 2020. Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the Total Environment 721: 137778.
Zhang Y, Fu L, Li S, Yan J, Sun M, Giraldo JP, Matyjaszewski K, Tilton RD, Lowry GV. 2021. Star polymer size, charge content, and hydrophobicity affect their leaf uptake and translocation in plants. Environmental Science and Technology 55: 10758-10768.
Progress in Plant Nitric Oxide Studies: Implications for Phytopathology and Plant Protection