Primary donor triplet states of Photosystem I and II studied by Q-band pulse ENDOR spectroscopy
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO:60077344
Institutional support
CZ.02.2.69/0.0/0.0/18_053/0016982
MEMOVA project, EU Oper. Progr. Research, Development, Education
PubMed
35290567
PubMed Central
PMC9424170
DOI
10.1007/s11120-022-00905-y
PII: 10.1007/s11120-022-00905-y
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorophyll triplet state, ENDOR, P680, P700, Spin density distribution, Triplet EPR,
- MeSH
- chlorofyl a MeSH
- elektronová paramagnetická rezonance MeSH
- fotosyntéza MeSH
- fotosystém I (proteinový komplex) * MeSH
- protony * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- fotosystém I (proteinový komplex) * MeSH
- protony * MeSH
The photoexcited triplet state of the "primary donors" in the two photosystems of oxygenic photosynthesis has been investigated by means of electron-nuclear double resonance (ENDOR) at Q-band (34 GHz). The data obtained represent the first set of 1H hyperfine coupling tensors of the 3P700 triplet state in PSI and expand the existing data set for 3P680. We achieved an extensive assignment of the observed electron-nuclear hyperfine coupling constants (hfcs) corresponding to the methine α-protons and the methyl group β-protons of the chlorophyll (Chl) macrocycle. The data clearly confirm that in both photosystems the primary donor triplet is located on one specific monomeric Chl at cryogenic temperature. In comparison to previous transient ENDOR and pulse ENDOR experiments at standard X-band (9-10 GHz), the pulse Q-band ENDOR spectra demonstrate both improved signal-to-noise ratio and increased resolution. The observed ENDOR spectra for 3P700 and 3P680 differ in terms of the intensity loss of lines from specific methyl group protons, which is explained by hindered methyl group rotation produced by binding site effects. Contact analysis of the methyl groups in the PSI crystal structure in combination with the ENDOR analysis of 3P700 suggests that the triplet is located on the Chl a' (PA) in PSI. The results also provide additional evidence for the localization of 3P680 on the accessory ChlD1 in PSII.
Zobrazit více v PubMed
Acharya K, Zazubovich V, Reppert M, Jankowiak R. Primary electron donor(s) in isolated reaction center of Photosystem II from Chlamydomonas reinhardtii. J Phys Chem B. 2012;116:4860–4870. doi: 10.1021/jp302849d. PubMed DOI
Agostini A, Palm DM, Schmitt F-J, Albertini M, Di Valentin M, Paulsen H, Carbonera D. An unusual role for the phytyl chains in the photoprotection of the chlorophylls bound to water-soluble chlorophyll-binding proteins. Sci Rep. 2017;7:7504. doi: 10.1038/s41598-017-07874-6. PubMed DOI PMC
Agostini A, Dal Farra MG, Paulsen H, Polimeno A, Orian L, Di Valentin M, Carbonera D. Similarity and specificity of chlorophyll b triplet state in comparison to chlorophyll a as revealed by EPR/ENDOR and DFT calculations. J Phys Chem B. 2019;123:8232–8239. doi: 10.1021/acs.jpcb.9b07912. PubMed DOI
Agostini A, Meneghin E, Gewehr L, Pedron D, Palm DM, Carbonera D, Paulsen H, Jaenicke E, Collini E. How water-mediated hydrogen bonds affect chlorophyll a/b selectivity in water-soluble chlorophyll protein. Sci Rep. 2019;9:18255. doi: 10.1038/s41598-019-54520-4. PubMed DOI PMC
Agostini A, Palm DM, Paulsen H, Di Valentin M, Carbonera D. Electron nuclear double resonance of the chlorophyll triplet state in the water-soluble chlorophyll protein from Brassica oleracea: investigation of the effect of the binding site on the hyperfine couplings. Appl Magn Reson. 2020;51:925–937. doi: 10.1007/s00723-020-01251-9. DOI
Angerhofer A. Chlorophyll triplets and radical pairs. In: Scheer H, editor. Chlorophylls. Boca Raton: CRC Press; 1991. pp. 945–991.
Barbon A, Dal Farra MG, Ciuti S, Albertini M, Bolzonello L, Orian L, Di Valentin M. Comprehensive investigation of the triplet state electronic structure of free-base 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin by a combined advanced EPR and theoretical approach. J Chem Phys. 2020;152:034201. doi: 10.1063/1.5131753. PubMed DOI
Bednarczyk D, Dym O, Prabahar V, Peleg Y, Pike DH, Noy D. Chlorophyll fine tuning of chlorophyll spectra by protein-induced ring deformation. Angew Chem Int Ed. 2016;55:1–6. doi: 10.1002/anie.201512001. PubMed DOI PMC
Bolzonello L, Albertini M, Collini E, Di Valentin M. Delocalized triplet state in porphyrin J-aggregates revealed by EPR spectroscopy. Phys Chem Chem Phys. 2017;19:27173–27177. doi: 10.1039/C7CP02968C. PubMed DOI
Bonnerjea J, Evans MCW. Identification of multiple components in the intermediary electron carrier complex of photosystem I. FEBS Lett. 1982;148:313–316. doi: 10.1016/0014-5793(82)80831-4. DOI
Bosch MK, Proskuryakov II, Gast P, Hoff AJ. Time-resolved EPR study of the primary donor triplet in D1–D2-cyt b559 complexes of Photosystem II: temperature dependence of spin–lattice relaxation. J Phys Chem. 1996;100:2384–2390. doi: 10.1021/jp951334r. DOI
Breton J. Fourier transform infrared spectroscopy of primary electron donors in type I photosynthetic reaction centers. Biochim Biophys Acta Bioenerg. 2001;1507:180–193. doi: 10.1016/S0005-2728(01)00206-7. PubMed DOI
Breton J. FTIR studies of the primary electron donor, P700. In: Golbeck JH, editor. Photosystem I. Advances in photosynthesis and respiration. Dordrecht: Springer; 2006. pp. 271–289.
Brettel K. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta Bioenerg. 1997;1318:322–373. doi: 10.1016/S0005-2728(96)00112-0. DOI
Budil DE, Thurnauer MC. The chlorophyll triplet state as a probe of structure and function in photosynthesis. Biochim Biophys Acta Bioenerg. 1991;1057:1–41. doi: 10.1016/S0005-2728(05)80081-7. PubMed DOI
Carbonera D, Giacometti G, Agostini G. A well resolved ODMR triplet minus singlet spectrum of P680 from PSII particles. FEBS Lett. 1994;343:200–204. doi: 10.1016/0014-5793(94)80555-5. PubMed DOI
Carbonera D, Collareta P, Giacometti G. The P700 triplet state in an intact environment detected by ODMR. A well resolved triplet minus singlet spectrum. Biochim Biophys Acta Bioenerg. 1997;1322:115–128. doi: 10.1016/S0005-2728(97)00068-6. DOI
Carbonera D, Agostini A, Di Valentin M, Gerotto C, Basso S, Giacometti GM, Morosinotto T. Photoprotective sites in the violaxanthin–chlorophyll a binding protein (VCP) from Nannochloropsis gaditana. Biochim Biophys Acta Bioenerg. 2014;1837:1235–1246. doi: 10.1016/j.bbabio.2014.03.014. PubMed DOI
Carbonera D, Di Valentin M, Spezia R, Mezzetti A. The unique photophysical properties of the Peridinin-Chlorophyll-a-Protein. Curr Protein Pept Sci. 2014;15:332–350. doi: 10.2174/1389203715666140327111139. PubMed DOI PMC
Cardona T, Shao S, Nixon PJ. Enhancing photosynthesis in plants: the light reactions. Essays Biochem. 2018;62(1):85–94. doi: 10.1042/EBC20170015. PubMed DOI PMC
Carrington A, McLachlan AD. Introduction to magnetic resonance with applications to chemistry and chemical physics. New York: Harper & Row; 1969.
Cherepanov DA, Shelaev IV, Gostev FE, Aybush AV, Mamedov MD, Shuvalov VA, Semenov AY, Nadtochenko VA. Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I. Photosynth Res. 2020;146:55–73. doi: 10.1007/s11120-020-00731-0. PubMed DOI
Cupellini L, Jurinovich S, Prandi IG, Caprasecca S, Mennucci B. Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations. Phys Chem Chem Phys. 2016;18:11288–11296. doi: 10.1039/C6CP01437B. PubMed DOI
Davies ER. A new pulse endor technique. Phys Lett A. 1974;47:1–2. doi: 10.1016/0375-9601(74)90078-4. DOI
Dekker JP, Van Grondelle R. Primary charge separation in Photosystem II. Photosynth Res. 2000;63:195–208. doi: 10.1023/A:1006468024245. PubMed DOI
Di Valentin M, Carbonera D. The fine tuning of carotenoid–chlorophyll interactions in light-harvesting complexes: an important requisite to guarantee efficient photoprotection via triplet–triplet energy transfer in the complex balance of the energy transfer processes. J Phys B at Mol Opt Phys. 2017;50:162001. doi: 10.1088/1361-6455/aa7dd4. DOI
Di Valentin M, Kay C, Giacometti G, Möbius K. A time-resolved electron nuclear double resonance study of the photoexcited triplet state of P680 in isolated reaction centers of photosystem II. Chem Phys Lett. 1996;248:434–441. doi: 10.1016/0009-2614(95)01347-4. DOI
Di Valentin M, Biasibetti F, Ceola S, Carbonera D. Identification of the sites of chlorophyll triplet quenching in relation to the structure of LHC-II from higher plants. Evidence from EPR spectroscopy. J Phys Chem B. 2009;113:13071–13078. doi: 10.1021/jp904012j. PubMed DOI
Di Valentin M, Salvadori E, Agostini G, Biasibetti F, Ceola S, Hiller R, Giacometti GM, Carbonera D. Triplet–triplet energy transfer in the major intrinsic light-harvesting complex of Amphidinium carterae as revealed by ODMR and EPR spectroscopies. Biochim Biophys Acta Bioenerg. 2010;1797:1759–1767. doi: 10.1016/j.bbabio.2010.06.011. PubMed DOI
Di Valentin M, Büchel C, Giacometti GM, Carbonera D. Chlorophyll triplet quenching by fucoxanthin in the fucoxanthin-chlorophyll protein from the diatom Cyclotella meneghiniana. Biochem Biophys Res Commun. 2012;427:637–641. doi: 10.1016/j.bbrc.2012.09.113. PubMed DOI
Di Valentin M, Meneghin E, Orian L, Polimeno A, Büchel C, Salvadori E, Kay CWM, Carbonera D. Triplet–triplet energy transfer in fucoxanthin-chlorophyll protein from diatom Cyclotella meneghiniana: Insights into the structure of the complex. Biochim Biophys Acta Bioenerg. 2013;1827:1226–1234. doi: 10.1016/j.bbabio.2013.07.003. PubMed DOI
Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ, Chisholm DA. Site-directed mutations at D1-His198 and D2-His197 of Photosystem II in Synechocystis PCC 6803: Sites of primary charge separation and cation and triplet stabilization. Biochemistry. 2001;40:9265–9281. doi: 10.1021/bi010121r. PubMed DOI
Duan H-G, Prokhorenko VI, Wientjes E, Croce R, Thorwart M, Miller RJD. Primary charge separation in the Photosystem II reaction center revealed by a global analysis of the two-dimensional electronic spectra. Sci Rep. 2017;7:12347. doi: 10.1038/s41598-017-12564-4. PubMed DOI PMC
Durrant JR, Klug DR, Kwa SL, van Grondelle R, Porter G, Dekker JP. A multimer model for P680, the primary electron donor of photosystem II. Proc Natl Acad Sci USA. 1995;92:4798–4802. doi: 10.1073/pnas.92.11.4798. PubMed DOI PMC
Epel B, Gromov I, Stoll S, Schweiger A, Goldfarb D. Spectrometer manager: a versatile control software for pulse EPR spectrometers. Concepts Magn Reson Part B Magn Reson Eng. 2005;26B:36–45. doi: 10.1002/cmr.b.20037. DOI
Feher G, Hoff AJ, Isaacson RA, Ackerson LC. ENDOR experiments on chlorophyll and bacteriochlorophyll in vitro and in the photosynthetic unit. Ann N Y Acad Sci. 1975;244:239–259. doi: 10.1111/j.1749-6632.1975.tb41534.x. PubMed DOI
Feikema WO, Gast P, Klenina IB, Proskuryakov II. EPR characterisation of the triplet state in photosystem II reaction centers with singly reduced primary acceptor QA. Biochim Biophys Acta Bioenerg. 2005;1709:105–112. doi: 10.1016/j.bbabio.2005.07.004. PubMed DOI
Frank HA, Cogdell RJ. Carotenoids in photosynthesis. Photochem Photobiol. 1996;63:257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x. PubMed DOI
Frank HA, McLean MB, Sauer K. Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles. Proc Natl Acad Sci USA. 1979;76:5124–5128. doi: 10.1073/pnas.76.10.5124. PubMed DOI PMC
Frankemöller L, Kamlowski A, Krüger U, van der Est A, Stehlik D (1998) A transient EPR study of the temperature and orientation dependence of the spectrum of 3P680 in Photosystem II. In: Ziessow D, Lubitz W, Lendzian F (eds) Magnetic resonance and related phenomena, proceedings of the joint 29th AMPERE—13th ISMAR international conference. Technische Universität, Berlin, pp 939–949
Fromme P, Witt HT. Improved isolation and crystallization of photosystem I for structural analysis. Biochim Biophys Acta Bioenerg. 1998;1365:175–184. doi: 10.1016/S0005-2728(98)00059-0. DOI
Fromme P, Jordan P, Krauß N. Structure of photosystem I. Biochim Biophys Acta Bioenerg. 2001;1507:5–31. doi: 10.1016/S0005-2728(01)00195-5. PubMed DOI
Gast P, Swarthoff T, Ebskamp FCR, Hoff AJ. Evidence for a new early acceptor in Photosystem I of plants. An ESR investigation of reaction center triplet yield and of the reduced intermediary acceptors. Biochim Biophys Acta Bioenerg. 1983;722:163–175. doi: 10.1016/0005-2728(83)90170-6. DOI
Gemperle C, Schweiger A. Pulsed electron-nuclear double resonance methodology. Chem Rev. 1991;91:1481–1505. doi: 10.1021/cr00007a011. DOI
Gordy W. Theory and applications of electron spin resonance. New York: Wiley; 1980.
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding light on primary donors in photosynthetic reaction centers. Front Microbiol. 2021;12:735666. doi: 10.3389/fmicb.2021.735666. PubMed DOI PMC
Harmer JR. Hyperfine Spectroscopy—ENDOR. eMagRes. 2016;5:1493–1514. doi: 10.1002/9780470034590.emrstm1515. DOI
Heller C, McConnell HM. Radiation damage in organic crystals. II. Electron spin resonance of (CO2H)CH2CH(CO2H) in β-succinic acid. J Chem Phys. 1960;32:1535–1539. doi: 10.1063/1.1730955. DOI
Hoffman BM, DeRose VJ, Doan PE, Gurbiel RJ, Houseman ALP, Telser J. Metalloenzyme active-site structure and function through multifrequency CW and pulsed ENDOR. In: Berliner LJ, Reuben J, editors. EMR of paramagnetic molecules. New York: Springer; 1993. pp. 151–218.
Horigome D, Satoh H, Itoh N, Mitsunaga K, Oonishi I, Nakagawa A, Uchida A. Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. J Biol Chem. 2007;282:6525–6531. doi: 10.1074/jbc.M609458200. PubMed DOI
Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature. 2001;411:909–917. doi: 10.1038/35082000. PubMed DOI
Kamlowski A, Frankemöller L, van der Est A, Stehlik D, Holzwart AR. Evidence for delocalization of the triplet state 3P680 in the D1D2cytb559-complex of photosystem II. Berichte Der Bunsengesellschaft Für Phys Chemie. 1996;100:2045–2051. doi: 10.1002/bbpc.19961001221. DOI
Kammel M, Kern J, Lubitz W, Bittl R. Photosystem II single crystals studied by transient EPR: the light-induced triplet state. Biochim Biophys Acta Bioenerg. 2003;1605:47–54. doi: 10.1016/S0005-2728(03)00063-X. PubMed DOI
Kawamori A, Ono T-A, Ishii A, Nakazawa S, Hara H, Tomo T, Minagawa J, Bittl R, Dzuba SA. The functional sites of chlorophylls in D1 and D2 subunits of Photosystem II identified by pulsed EPR. Photosynth Res. 2005;84:187–192. doi: 10.1007/s11120-005-1000-y. PubMed DOI
Kay CWM, Di Valentin M, Möbius K. A time-resolved Electron Nuclear Double Resonance (ENDOR) study of the photoexcited triplet state of free-base tetraphenylporphyrin. Sol Energy Mater Sol Cells. 1995;38:111–118. doi: 10.1016/0927-0248(94)00219-3. DOI
Keable SM, Kölsch A, Simon PS, Dasgupta M, Chatterjee R, Subramanian SK, Hussein R, Ibrahim M, Kim I-S, Bogacz I, Makita H, Pham CC, Fuller FD, Gul S, Paley D, Lassalle L, Sutherlin KD, Bhowmick A, et al. Room temperature XFEL crystallography reveals asymmetry in the vicinity of the two phylloquinones in photosystem I. Sci Rep. 2021;11:21787. doi: 10.1038/s41598-021-00236-3. PubMed DOI PMC
Kemple MD. ENDOR of triplet state systems in solids. In: Dorio M, Freed J, editors. Multiple electron resonance spectroscopy. Boston: Springer; 1979. pp. 409–436.
Krabben L, Schlodder E, Jordan R, Carbonera D, Giacometti G, Lee H, Webber AN, Lubitz W. Influence of the axial ligands on the spectral properties of P700 of Photosystem I: a study of site-directed mutants. Biochemistry. 2000;39:13012–13025. doi: 10.1021/bi001200q. PubMed DOI
Krausz E, Cox N, Årsköld SP. Spectral characteristics of PS II reaction centres: as isolated preparations and when integral to PS II core complexes. Photosynth Res. 2008;98:207–217. doi: 10.1007/s11120-008-9328-8. PubMed DOI
Krieger-Liszkay A. Singlet oxygen production in photosynthesis. J Exp Bot. 2004;56:337–346. doi: 10.1093/jxb/erh237. PubMed DOI
Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res. 2008;98:551–564. doi: 10.1007/s11120-008-9349-3. PubMed DOI
Kulik L, Lubitz W. Electron-nuclear double resonance. Photosynth Res. 2009;102:391–401. doi: 10.1007/s11120-009-9401-y. PubMed DOI PMC
Lendzian F, Bittl R, Lubitz W. Pulsed ENDOR of the photoexcited triplet states of bacteriochlorophyll a and of the primary donor P-865 in reaction centers of Rhodobacter sphaeroides R-26. Photosynth Res. 1998;55:189–197. doi: 10.1023/A:1006030221445. DOI
Lendzian F, Bittl R, Telfer A, Lubitz W. Hyperfine structure of the photoexcited triplet state 3P680 in plant PS II reaction centres as determined by pulse ENDOR spectroscopy. Biochim Biophys Acta Bioenerg. 2003;1605:35–46. doi: 10.1016/S0005-2728(03)00062-8. PubMed DOI
Lubitz W. EPR and ENDOR studies of Chlorophyll cation and anion radicals. In: Scheer H, editor. Chlorophylls. Boca Raton: CRC Press; 1991. pp. 903–944.
Lubitz W. Pulse EPR and ENDOR studies of light-induced radicals and triplet states in photosystem II of oxygenic photosynthesis. Phys Chem Chem Phys. 2002;4:5539–5545. doi: 10.1039/B206551G. DOI
Lubitz W. EPR studies of the primary electron donor P700 in photosystem I. In: Golbeck JH, editor. Photosystem I. Advances in photosynthesis and respiration. Dordrecht: Springer; 2006. pp. 245–269.
Lubitz W, Lendzian F, Bittl R. Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res. 2002;35:313–320. doi: 10.1021/ar000084g. PubMed DOI
Lubitz W, Chrysina M, Cox N. Water oxidation in photosystem II. Photosynth Res. 2019;142:105–125. doi: 10.1007/s11120-019-00648-3. PubMed DOI PMC
Mamedov M, Govindjee NV, Semenov A. Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res. 2015;125:51–63. doi: 10.1007/s11120-015-0088-y. PubMed DOI
Marchanka A (2009) Triplet states in bacterial reaction centers of Rhodobacter sphaeroides and related systems. Dissertation, Heinrich-Heine-Universität Düsseldorf
Marchanka A, Lubitz W, van Gastel M. Spin density distribution of the excited triplet state of bacteriochlorophylls. Pulsed ENDOR and DFT studies. J Phys Chem B. 2009;113:6917–6927. doi: 10.1021/jp8111364. PubMed DOI
Marchanka A, Lubitz W, Plato M, van Gastel M. Comparative ENDOR study at 34 GHz of the triplet state of the primary donor in bacterial reaction centers of Rb. sphaeroides and Bl. viridis. Photosynth Res. 2014;120:99–111. doi: 10.1007/s11120-012-9786-x. PubMed DOI
Mazor Y, Borovikova A, Caspy I, Nelson N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat Plants. 2017;3:17014. doi: 10.1038/nplants.2017.14. PubMed DOI
McConnell HM, Heller C, Cole T, Fessenden RW. Radiation damage in organic crystals. I. CH(COOH)2 in malonic acid 1. J Am Chem Soc. 1960;82:766–775. doi: 10.1021/ja01489a002. DOI
Möbius K, Savitsky A. High-field EPR spectroscopy on proteins and their model systems. Cambridge: Royal Society of Chemistry; 2008.
Müh F, Lendzian F, Roy M, Williams JC, Allen JP, Lubitz W. Pigment–protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor. J Phys Chem B. 2002;106:3226–3236. doi: 10.1021/jp0131119. DOI
Müller MG, Niklas J, Lubitz W, Holzwarth AR. Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. Biophys J. 2003;85:3899–3922. doi: 10.1016/S0006-3495(03)74804-8. PubMed DOI PMC
Müller MG, Slavov C, Luthra R, Redding KE, Holzwarth AR. Independent initiation of primary electron transfer in the two branches of the Photosystem I reaction center. Proc Natl Acad Sci U S A. 2010;107:4123–4128. doi: 10.1073/pnas.0905407107. PubMed DOI PMC
Nanba O, Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987;84:109–112. doi: 10.1073/pnas.84.1.109. PubMed DOI PMC
Niklas J (2007) Investigation of the electron donor P700 and the electron acceptor A1 in Photosystem I of oxygenic photosynthesis using EPR spectroscopy. Dissertation, Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften
Niklas J, Schulte T, Prakash S, van Gastel M, Hofmann E, Lubitz W. Spin-density distribution of the carotenoid triplet state in the peridinin-chlorophyll-protein antenna. A Q-band pulse electron-nuclear double resonance and density functional theory study. J Am Chem Soc. 2007;129:15442–15443. doi: 10.1021/ja077225v. PubMed DOI
Niklas J, Epel B, Antonkine ML, Sinnecker S, Pandelia M-E, Lubitz W. Electronic structure of the quinone radical anion A1•− of photosystem I investigated by advanced pulse EPR and ENDOR techniques. J Phys Chem B. 2009;113:10367–10379. doi: 10.1021/jp901890z. PubMed DOI
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. Recent advances in understanding the assembly and repair of photosystem II. Ann Bot. 2010;106:1–16. doi: 10.1093/aob/mcq059. PubMed DOI PMC
Nowaczyk MM, Hebeler R, Schlodder E, Meyer HE, Warscheid B, Rögner M. Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of Photosystem II. Plant Cell. 2006;18:3121–3131. doi: 10.1105/tpc.106.042671. PubMed DOI PMC
Okamura MY, Satoh K, Isaacson RA, Feher G. Evidence of the primary charge separation in the D1/D2 complex of Photosystem II from spinach: EPR of the triplet state. Prog Photosynth Res. 1987;1:379–381.
Okubo T, Tomo T, Sugiura M, Noguchi T. Perturbation of the structure of P680 and the charge distribution on its radical cation in isolated reaction center complexes of Photosystem II as revealed by Fourier Transform Infrared Spectroscopy. Biochemistry. 2007;46:4390–4397. doi: 10.1021/bi700157n. PubMed DOI
Pashenko SV, Proskuryakov II, Germano M, van Gorkom HJ, Gast P. Triplet state in photosystem II reaction centers as studied by 130 GHz EPR. Chem Phys. 2003;294:439–449. doi: 10.1016/S0301-0104(03)00324-0. DOI
Poluektov OG, Utschig LM, Schlesselman SL, Lakshmi KV, Brudvig GW, Kothe G, Thurnauer MC. Electronic structure of the P700 special pair from high-frequency electron paramagnetic resonance spectroscopy. J Phys Chem B. 2002;106:8911–8916. doi: 10.1021/jp021465+. DOI
Poluektov OG, Paschenko SV, Utschig LM, Lakshmi KV, Thurnauer MC. Bidirectional electron transfer in Photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy. J Am Chem Soc. 2005;127:11910–11911. doi: 10.1021/ja053315t. PubMed DOI
Prokhorenko VI, Holzwarth AR. Primary processes and structure of the Photosystem II reaction center: a photon echo study. J Phys Chem B. 2000;104:11563–11578. doi: 10.1021/jp002323n. DOI
Qin X, Suga M, Kuang T, Shen J-R. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science. 2015;348:989–995. doi: 10.1126/science.aab0214. PubMed DOI
Rautter J, Lendzian F, Schulz C, Fetsch A, Kuhn M, Lin X, Williams JC, Allen JP, Lubitz W. ENDOR studies of the primary donor cation radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Biochemistry. 1995;34:8130–8143. doi: 10.1021/bi00025a020. PubMed DOI
Reijerse E, Lendzian F, Isaacson R, Lubitz W. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation. J Magn Reson. 2012;214:237–243. doi: 10.1016/j.jmr.2011.11.011. PubMed DOI
Richert S, Tait CE, Timmel CR. Delocalisation of photoexcited triplet states probed by transient EPR and hyperfine spectroscopy. J Magn Reson. 2017;280:103–116. doi: 10.1016/j.jmr.2017.01.005. PubMed DOI
Rutherford AW, Sétif P. Orientation of P700, the primary electron donor of Photosystem I. Biochim Biophys Acta Bioenerg. 1990;1019:128–132. doi: 10.1016/0005-2728(90)90133-O. DOI
Salvadori E, Di Valentin M, Kay CWM, Pedone A, Barone V, Carbonera D. The electronic structure of the lutein triplet state in plant light-harvesting complex II. Phys Chem Chem Phys. 2012;14:12238. doi: 10.1039/c2cp40877e. PubMed DOI
Santabarbara S, Bordignon E, Jennings RC, Carbonera D. Chlorophyll triplet states associated with Photosystem II of thylakoids. Biochemistry. 2002;41:8184–8194. doi: 10.1021/bi0201163. PubMed DOI
Santabarbara S, Agostini G, Casazza AP, Syme CD, Heathcote P, Böhles F, Evans MCW, Jennings RC, Carbonera D. Chlorophyll triplet states associated with Photosystem I and Photosystem II in thylakoids of the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenerg. 2007;1767:88–105. doi: 10.1016/j.bbabio.2006.10.007. PubMed DOI
Savikhin S, Jankowiak R. Mechanism of primary charge separation in photosynthetic reaction centers. In: Golbeck JH, van der Est A, editors. The biophysics of photosynthesis. New York: Springer; 2014. pp. 193–240.
Schulz C, Müh F, Beyer A, Jordan R, Schlodder E, Lubitz W. Investigation of Rhodobacter sphaeroides reaction center mutants with changed ligands to the primary donor. In: Garab G, editor. Photosynthesis: mechanisms and effects. Dordrecht: Springer; 1998. pp. 767–770.
Schweiger A, Jeschke G. Principles of pulse electron paramagnetic resonance. Oxford: Oxford University Press; 2001.
Setif P, Bottin H. Identification of electron-transfer reactions involving the acceptor A1 of photosystem I at room temperature. Biochemistry. 1989;28:2689–2697. doi: 10.1021/bi00432a049. DOI
Shelaev IV, Gostev FE, Mamedov MD, Sarkisov OM, Nadtochenko VA, Shuvalov VA, Semenov AY. Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochim Biophys Acta Bioenerg. 2010;1797:1410–1420. doi: 10.1016/j.bbabio.2010.02.026. PubMed DOI
Sheng X, Watanabe A, Li A, Kim E, Song C, Murata K, Song D, Minagawa J, Liu Z. Structural insight into light harvesting for photosystem II in green algae. Nat Plants. 2019;5:1320–1330. doi: 10.1038/s41477-019-0543-4. PubMed DOI
Sieckmann I (1993) Untersuchung von funktionalen Molekülen im ladungsgetrennten Zustand des Photosystem I mit zeitauflösender Elektronenspinresonanz-Spektroskopie. Dissertation, Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften
Sieckmann I, Brettel K, Bock C, van der Est A, Stehlik D. Transient electron paramagnetic resonance of the triplet state of P700 in photosystem I: evidence for triplet delocalization at room temperature. Biochemistry. 1993;32:4842–4847. doi: 10.1021/bi00069a020. PubMed DOI
Sinnecker S, Lubitz W. Probing the electronic structure of bacteriochlorophyll radical ions—a theoretical study of the effect of substituents on hyperfine parameters. Photochem Photobiol. 2017;93:755–761. doi: 10.1111/php.12724. PubMed DOI
Su X, Ma J, Pan X, Zhao X, Chang W, Liu Z, Zhang X, Li M. Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex. Nat Plants. 2019;5:273–281. doi: 10.1038/s41477-019-0380-5. PubMed DOI
Tait CE, Neuhaus P, Anderson HL, Timmel CR. Triplet state delocalization in a conjugated porphyrin dimer probed by transient electron paramagnetic resonance techniques. J Am Chem Soc. 2015;137:6670–6679. doi: 10.1021/jacs.5b03249. PubMed DOI PMC
Takegawa Y, Nakamura M, Nakamura S, Noguchi T, Sellés J, Rutherford AW, Boussac A, Sugiura M. New insights on ChlD1 function in Photosystem II from site-directed mutants of D1/T179 in Thermosynechococcus elongatus. Biochim Biophys Acta Bioenerg. 2019;1860:297–309. doi: 10.1016/j.bbabio.2019.01.008. PubMed DOI
Telfer A. What is β–carotene doing in the photosystem II reaction centre? Philos Trans R Soc London Ser B Biol Sci. 2002;357:1431–1440. doi: 10.1098/rstb.2002.1139. PubMed DOI PMC
Telfer A, Barber J, Evans MCW. Oxidation-reduction potential dependence of reaction centre triplet formation in the isolated D1/D2/cytochrome b-559 photosystem II complex. FEBS Lett. 1988;232:209–213. doi: 10.1016/0014-5793(88)80418-6. DOI
Umena Y, Kawakami K, Shen J-R, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473:55–60. doi: 10.1038/nature09913. PubMed DOI
van Leeuwen PJ, Nieveen MC, van de Meent EJ, Dekker JP, van Gorkom HJ. Rapid and simple isolation of pure photosystem II core and reaction center particles from spinach. Photosynth Res. 1991;28:149–153. doi: 10.1007/BF00054128. PubMed DOI
van Mieghem FJE, Satoh K, Rutherford AW. A chlorophyll tilted 30° relative to the membrane in the Photosystem II reaction centre. Biochim Biophys Acta Bioenerg. 1991;1058:379–385. doi: 10.1016/S0005-2728(05)80134-3. DOI
Vrieze J, Hoff AJ. The orientation of the triplet axes with respect to the optical transition moments in (bacterio) chlorophylls. Chem Phys Lett. 1995;237:493–501. doi: 10.1016/0009-2614(95)00354-7. DOI
Vrieze J, Gast P, Hoff AJ. Structure of the Reaction Center of Photosystem I of plants. An investigation with linear-dichroic absorbance-detected magnetic resonance. J Phys Chem. 1996;100:9960–9967. doi: 10.1021/jp9524789. DOI
Webber AN, Lubitz W. P700: the primary electron donor of photosystem I. Biochim Biophys Acta Bioenerg. 2001;1507:61–79. doi: 10.1016/S0005-2728(01)00198-0. PubMed DOI
Weber S. Transient EPR. In: Goldfarb D, Stoll S, editors. EPR Spectroscopy: Fundamentals and Methods. New York: Wiley; 2018. pp. 195–214.
Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D, Kohler S, Labahn A, Lubitz W. Hydrogen bonding to P700: site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry. 2002;41:8557–8569. doi: 10.1021/bi025822i. PubMed DOI
Witt H, Bordignon E, Carbonera D, Dekker JP, Karapetyan N, Teutloff C, Webber A, Lubitz W, Schlodder E. Species-specific differences of the spectroscopic properties of P700: analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. J Biol Chem. 2003;278:46760–46771. doi: 10.1074/jbc.M304776200. PubMed DOI
Xu C, Pi X, Huang Y, Han G, Chen X, Qin X, Huang G, Zhao S, Yang Y, Kuang T, Wang W, Sui S-F, Shen J-R. Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. Nat Commun. 2020;11:5081. doi: 10.1038/s41467-020-18867-x. PubMed DOI PMC
Young AJ, Britton G, Cogdell RJ (1999) The photochemistry of carotenoids. In: Govindjee (ed) Advances in photosyntheis, vol 8. Springer, Dordrecht
Zabelin AA, Neverov KV, Krasnovsky AA, Shkuropatova VA, Shuvalov VA, Shkuropatov AY. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: application of phosphorescence measurements and Fourier transform infrared spectroscopy. Biochim Biophys Acta Bioenerg. 2016;1857:782–788. doi: 10.1016/j.bbabio.2016.03.029. PubMed DOI
Zech SG, Kurreck J, Renger G, Lubitz W, Bittl R. Determination of the distance between YZox⋅ and QA−⋅ in photosystem II by pulsed EPR spectroscopy on light-induced radical pairs. FEBS Lett. 1999;442:79–82. doi: 10.1016/S0014-5793(98)01628-7. PubMed DOI