The presence of multiple parasitoids decreases host survival under warming, but parasitoid performance also decreases
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35291840
PubMed Central
PMC8924747
DOI
10.1098/rspb.2022.0121
Knihovny.cz E-resources
- Keywords
- biodiversity-ecosystem functioning, functional response, global change, host–parasitoid networks, multiple predator effects, temperature,
- MeSH
- Ecosystem * MeSH
- Food Chain MeSH
- Agriculture * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Current global changes are reshaping ecological communities and modifying environmental conditions. We need to recognize the combined impact of these biotic and abiotic factors on species interactions, community dynamics and ecosystem functioning. Specifically, the strength of predator-prey interactions often depends on the presence of other natural enemies: it weakens with competition and interference or strengthens with facilitation. Such effects of multiple predators on prey are likely to be affected by changes in the abiotic environment, altering top-down control, a key structuring force in natural and agricultural ecosystems. Here, we investigated how warming alters the effects of multiple predators on prey suppression using a dynamic model coupled with empirical laboratory experiments with Drosophila-parasitoid communities. While multiple parasitoids enhanced top-down control under warming, parasitoid performance generally declined when another parasitoid was present owing to competitive interactions. This could reduce top-down control over multiple generations. Our study highlights the importance of accounting for interactive effects between abiotic and biotic factors to better predict community dynamics in a rapidly changing world and thus better preserve ecosystem functioning and services such as biological control.
Faculty of Science University of South Bohemia Branisovska 31 37005 Czech Republic
Institute of Biodiversity Friedrich Schiller University Jena Dornburger Str 159 07743 Jena Germany
See more in PubMed
Song C, Von Ahn S, Rohr RP, Saavedra S. 2020. Towards a probabilistic understanding about the context-dependency of species interactions. Trends Ecol. Evol. 35, 384-396. (10.1016/j.tree.2019.12.011) PubMed DOI
Davis AJ, Lawton JH, Shorrocks B, Jenkinson LS. 1998. Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J. Anim. Ecol. 67, 600-612. (10.1046/j.1365-2656.1998.00223.x) DOI
Rall BÖC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U. 2010. Temperature, predator-prey interaction strength and population stability. Glob. Chang. Biol. 16, 2145-2157. (10.1111/j.1365-2486.2009.02124.x) DOI
Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669. (10.1146/annurev.ecolsys.37.091305.110100) DOI
Thierry M, Hrček J, Lewis OT. 2019. Mechanisms structuring host–parasitoid networks in a global warming context: a review. Ecol. Entomol. 44, 581-592. (10.1111/een.12750) DOI
Hance T, van Baaren J, Vernon P, Boivin G. 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 52, 107-126. (10.1146/annurev.ento.52.110405.091333) PubMed DOI
Uszko W, Diehl S, Englund G, Amarasekare P. 2017. Effects of warming on predator–prey interactions: a resource-based approach and a theoretical synthesis. Ecol. Lett. 20, 513-523. (10.1111/ele.12755) PubMed DOI
Barton BT, Schmitz OJ. 2009. Experimental warming transforms multiple predator effects in a grassland food web. Ecol. Lett. 12, 1317-1325. (10.1111/j.1461-0248.2009.01386.x) PubMed DOI
Schmitz OJ, Barton BT. 2014. Climate change effects on behavioral and physiological ecology of predator-prey interactions: implications for conservation biological control. Biol. Control 75, 87-96. (10.1016/j.biocontrol.2013.10.001) DOI
Sentis A, Gémard C, Jaugeon B, Boukal DS. 2017. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions. Glob. Chang. Biol. 23, 2629-2640. (10.1111/gcb.13560) PubMed DOI
Cuthbert RN, Wasserman RJ, Dalu T, Briski E. 2021. Warming mediates intraspecific multiple predator effects from an invasive crustacean. Mar. Biol. 168, 35. (10.1007/s00227-021-03840-z) DOI
Schmitz OJ. 2007. Predator diversity and trophic interactions. Ecology 88, 2415-2426. (10.1890/06-0937.1) PubMed DOI
Sih A, Englund G, Wooster D. 1998. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350-355. (10.1016/S0169-5347(98)01437-2) PubMed DOI
Resetarits WJ, Bohenek JR, Pintar MR. 2021. Predator-specific responses and emergent multi-predator effects on oviposition site choice in grey treefrogs, Hyla chrysoscelis. Proc. R. Soc. B 288, 20210558. (10.1098/rspb.2021.0558) PubMed DOI PMC
Schmitz OJ. 2009. Effects of predator functional diversity on grassland ecosystem function. Ecology 90, 2339-2345. (10.1890/08-1919.1) PubMed DOI
Laubmeier AN, Rebarber R, Tenhumberg B. 2020. Towards understanding factors influencing the benefit of diversity in predator communities for prey suppression. Ecosphere 11, e03271. (10.1002/ecs2.3271) DOI
Soluk DA. 1993. Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74, 219-225. (10.2307/1939516) DOI
Tylianakis JM, Romo CM. 2010. Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl. Ecol. 11, 657-668. (10.1016/j.baae.2010.08.005) DOI
Thierry M, Pardikes NA, Lue CH, Lewis OT, Hrček J. 2021. Experimental warming influences species abundances in a Drosophila host community through direct effects on species performance rather than altered competition and parasitism. PLoS ONE 16, e0245029. (10.1371/journal.pone.0245029) PubMed DOI PMC
Kéfi S, Berlow EL, Wieters EA, Joppa LN, Wood SA, Brose U, Navarrete SA. 2015. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291-303. (10.1890/13-1424.1) PubMed DOI
Wootton JT. 1997. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45-64. (10.1890/0012-9615(1997)067[0045:EATOPC]2.0.CO;2) DOI
Thierry M, Pardikes NA, Ximénez-Embún MG, Proudhom G, Hrček J. 2021. Multiple parasitoid species enhance top-down control, but parasitoid performance is context-dependent. bioRxiv, 2021.07.16.452484. (10.1101/2021.07.16.452484) PubMed DOI
Godfray HCJ. 2013. Parasitoids. In Encyclopedia of biodiversity (ed. Levin SA), pp. 674-682. San Diego, CA: Academic Press.
Carton Y, Poirié M, Nappi AJ. 2008. Insect immune resistance to parasitoids. Insect Sci. 15, 67-87. (10.1111/j.1744-7917.2008.00188.x) DOI
Harvey JA, Poelman EH, Tanaka T. 2013. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333-351. (10.1146/annurev-ento-120811-153622) PubMed DOI
McCoy MW, Stier AC, Osenberg CW. 2012. Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecol. Lett. 15, 1449-1456. (10.1111/ele.12005) PubMed DOI
Sentis A, Boukal DS. 2018. On the use of functional responses to quantify emergent multiple predator effects. Sci. Rep. 8, 1-12. (10.1038/s41598-018-30244-9) PubMed DOI PMC
Jeffs CT, et al. 2021. Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila - parasitoid communities. Ecography (Cop) 44, 403-413. (10.1111/ecog.05390) DOI
Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668-6672. (10.1073/pnas.0709472105) PubMed DOI PMC
Kellermann V, Overgaard J, Hoffmann AA, Fløjgaard C, Svenning J-C, Loeschcke V. 2012. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16 228-16 233. (10.1073/pnas.1207553109) PubMed DOI PMC
Overgaard J, Kearney MR, Hoffmann AA. 2014. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Chang. Biol. 20, 1738-1750. (10.1111/gcb.12521) PubMed DOI
Lue C-H, et al. 2021. DROP: molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437-2454. (10.1111/1755-0998.13435) PubMed DOI
Nouhaud P, Mallard F, Poupardin R, Barghi N, Schlötterer C. 2018. High-throughput fecundity measurements in Drosophila. Sci. Rep. 8, 4469. (10.1038/s41598-018-22777-w) PubMed DOI PMC
IPCC . 2014. Climate change 2014: synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Pachauri RK, Meyer LA), p. 151. Geneva, Switzerland: IPCC. See http://www.ipcc.ch.
MacLean HJ, Sørensen JG, Kristensen TN, Loeschcke V, Beedholm K, Kellermann V, Overgaard J. 2019. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Phil. Trans. R. Soc. B 374, 20180548. (10.1098/rstb.2018.0548) PubMed DOI PMC
Rosenbaum B, Rall BC. 2018. Fitting functional responses: direct parameter estimation by simulating differential equations. Methods Ecol. Evol. 9, 2076-2090. (10.1111/2041-210X.13039) DOI
Sohlström EH, Archer LC, Gallo B, Jochum M, Kordas RL, Rall BC, Rosenbaum B, O'Gorman EJ. 2021. Thermal acclimation increases the stability of a predator-prey interaction in warmer environments. Glob. Chang. Biol. 15715, 3765-3778. (10.1111/gcb.15715) PubMed DOI
Holling CS. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385-398. (10.4039/Ent91385-7) DOI
Fernández-Arhex V, Corley JC. 2003. The functional response of parasitoids and its implications for biological control. Biocontrol Sci. Technol. 13, 403-413. (10.1080/0958315031000104523) DOI
Carton Y, Kitano H. 1981. Evolutionary relationships to parasitism by seven species of the Drosophila melanogaster subgroup. Biol. J. Linn. Soc. 16, 227-241. (10.1111/j.1095-8312.1981.tb01849.x) DOI
Boulétreau M, Wajnberg E. 1986. Comparative responses of two sympatric parasitoid cynipids to the genetic and epigenetic variations of the larvae of their host, Drosophila melanogaster. Entomol. Exp. Appl. 41, 107-114. (10.1111/j.1570-7458.1986.tb00516.x) DOI
Hartig F. 2020. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3, 3. See https://cran.r-project.org/web/packages/DHARMa.
Lüdecke D, Makowski D, Waggoner P. 2019. Performance: assessment of regression models performance. See https://cran.r-project.org/package=performance.
Lenth RV, Singman H, Love J, Buerkner P, Herve M. 2018. Emmeans: estimated marginal means, aka least-squares means. R package version 1(1),3. See https://cran.r-project.org/web/packages/emmeans.
Soetaert K, Petzoldt T. 2010. Inverse modelling, sensitivity and monte carlo analysis in R using package FME. J. Stat. Softw. 33, 1-28. (10.18637/jss.v033.i03) PubMed DOI
Team RC. 2017. R: the R project for statistical computing. See https://www.r-project.org.
Drieu R, Rusch A. 2017. Conserving species-rich predator assemblages strengthens natural pest control in a climate warming context. Agric. For. Entomol. 19, 52-59. (10.1111/afe.12180) DOI
Macfadyen S, Craze PG, Polaszek A, van Achterberg K, Memmott J. 2011. Parasitoid diversity reduces the variability in pest control services across time on farms. Proc. R. Soc. B 278, 3387-3394. (10.1098/rspb.2010.2673) PubMed DOI PMC
Cebolla R, Urbaneja A, van Baaren J, Tena A. 2018. Negative effect of global warming on biological control is mitigated by direct competition between sympatric parasitoids. Biol. Control 122, 60-66. (10.1016/j.biocontrol.2018.04.006) DOI
Pepi A, McMunn M. 2021. Predator diversity and thermal niche complementarity attenuate indirect effects of warming on prey survival. Am. Nat. 198, 33-43. (10.1086/714590) PubMed DOI
Lang B, Rall BC, Brose U. 2012. Warming effects on consumption and intraspecific interference competition depend on predator metabolism. J. Anim. Ecol. 81, 516-523. (10.1111/j.1365-2656.2011.01931.x) PubMed DOI
Ives AR, Cardinale BJ, Snyder WE. 2005. A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecol. Lett. 8, 102-116. (10.1111/j.1461-0248.2004.00698.x) DOI
Abarca M, Spahn R. 2021. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67-74. (10.1016/j.cois.2021.04.008) PubMed DOI
Renner SS, Zohner CM. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165-182. (10.1146/annurev-ecolsys-110617-062535) DOI
Delava E, Fleury F, Gibert P. 2016. Effects of daily fluctuating temperatures on the Drosophila–Leptopilina boulardi parasitoid association. J. Therm. Biol. 60, 95-102. (10.1016/j.jtherbio.2016.06.012) PubMed DOI
Lampropoulos PD, Perdikis DC, Fantinou AA. 2013. Are multiple predator effects directed by prey availability? Basic Appl. Ecol. 14, 605-613. (10.1016/j.baae.2013.08.004) DOI
Griffin JN, Toscano BJ, Griffen BD, Silliman BR. 2015. Does relative abundance modify multiple predator effects? Basic Appl. Ecol. 16, 641-651. (10.1016/j.baae.2015.05.003) DOI
Finke DL, Snyder WE. 2008. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488-1490. (10.1126/science.1160854) PubMed DOI
Krey KL, et al. 2021. Prey and predator biodiversity mediate aphid consumption by generalists. Biol. Control 160, 104650. (10.1016/j.biocontrol.2021.104650) DOI
Greenop A, Woodcock BA, Wilby A, Cook SM, Pywell RF. 2018. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771-1782. (10.1002/ecy.2378) PubMed DOI PMC
Chesson P. 1991. A need for niches? Trends Ecol. Evol. 6, 26-28. (10.1016/0169-5347(91)90144-M) PubMed DOI
Griffin JN, Byrnes JEK, Cardinale BJ. 2013. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180-2187. (10.1890/13-0179.1) PubMed DOI
Denoth M, Frid L, Myers JH. 2002. Multiple agents in biological control: improving the odds? Biol. Control 24, 20-30. (10.1016/S1049-9644(02)00002-6) DOI
Myers JH, Higgins C, Kovacs E. 1989. How many insect species are necessary for the biological control of insects? Environ. Entomol. 18, 541-547. (10.1093/ee/18.4.541) DOI
Pardikes N, Revilla T, Lue CH, Mélanie T, Soutos-Villaros D, Hrcek J. 2021. Community context modifies response of host-parasitoid interactions to phenological mismatch under warming. Authorea (10.22541/au.162454818.82806593/v1) DOI
Kéfi S, et al. 2012. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291-300. (10.1111/j.1461-0248.2011.01732.x) PubMed DOI
figshare
10.6084/m9.figshare.c.5877640