• This record comes from PubMed

The presence of multiple parasitoids decreases host survival under warming, but parasitoid performance also decreases

. 2022 Mar 30 ; 289 (1971) : 20220121. [epub] 20220316

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Current global changes are reshaping ecological communities and modifying environmental conditions. We need to recognize the combined impact of these biotic and abiotic factors on species interactions, community dynamics and ecosystem functioning. Specifically, the strength of predator-prey interactions often depends on the presence of other natural enemies: it weakens with competition and interference or strengthens with facilitation. Such effects of multiple predators on prey are likely to be affected by changes in the abiotic environment, altering top-down control, a key structuring force in natural and agricultural ecosystems. Here, we investigated how warming alters the effects of multiple predators on prey suppression using a dynamic model coupled with empirical laboratory experiments with Drosophila-parasitoid communities. While multiple parasitoids enhanced top-down control under warming, parasitoid performance generally declined when another parasitoid was present owing to competitive interactions. This could reduce top-down control over multiple generations. Our study highlights the importance of accounting for interactive effects between abiotic and biotic factors to better predict community dynamics in a rapidly changing world and thus better preserve ecosystem functioning and services such as biological control.

See more in PubMed

Song C, Von Ahn S, Rohr RP, Saavedra S. 2020. Towards a probabilistic understanding about the context-dependency of species interactions. Trends Ecol. Evol. 35, 384-396. (10.1016/j.tree.2019.12.011) PubMed DOI

Davis AJ, Lawton JH, Shorrocks B, Jenkinson LS. 1998. Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J. Anim. Ecol. 67, 600-612. (10.1046/j.1365-2656.1998.00223.x) DOI

Rall BÖC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U. 2010. Temperature, predator-prey interaction strength and population stability. Glob. Chang. Biol. 16, 2145-2157. (10.1111/j.1365-2486.2009.02124.x) DOI

Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669. (10.1146/annurev.ecolsys.37.091305.110100) DOI

Thierry M, Hrček J, Lewis OT. 2019. Mechanisms structuring host–parasitoid networks in a global warming context: a review. Ecol. Entomol. 44, 581-592. (10.1111/een.12750) DOI

Hance T, van Baaren J, Vernon P, Boivin G. 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 52, 107-126. (10.1146/annurev.ento.52.110405.091333) PubMed DOI

Uszko W, Diehl S, Englund G, Amarasekare P. 2017. Effects of warming on predator–prey interactions: a resource-based approach and a theoretical synthesis. Ecol. Lett. 20, 513-523. (10.1111/ele.12755) PubMed DOI

Barton BT, Schmitz OJ. 2009. Experimental warming transforms multiple predator effects in a grassland food web. Ecol. Lett. 12, 1317-1325. (10.1111/j.1461-0248.2009.01386.x) PubMed DOI

Schmitz OJ, Barton BT. 2014. Climate change effects on behavioral and physiological ecology of predator-prey interactions: implications for conservation biological control. Biol. Control 75, 87-96. (10.1016/j.biocontrol.2013.10.001) DOI

Sentis A, Gémard C, Jaugeon B, Boukal DS. 2017. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions. Glob. Chang. Biol. 23, 2629-2640. (10.1111/gcb.13560) PubMed DOI

Cuthbert RN, Wasserman RJ, Dalu T, Briski E. 2021. Warming mediates intraspecific multiple predator effects from an invasive crustacean. Mar. Biol. 168, 35. (10.1007/s00227-021-03840-z) DOI

Schmitz OJ. 2007. Predator diversity and trophic interactions. Ecology 88, 2415-2426. (10.1890/06-0937.1) PubMed DOI

Sih A, Englund G, Wooster D. 1998. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350-355. (10.1016/S0169-5347(98)01437-2) PubMed DOI

Resetarits WJ, Bohenek JR, Pintar MR. 2021. Predator-specific responses and emergent multi-predator effects on oviposition site choice in grey treefrogs, Hyla chrysoscelis. Proc. R. Soc. B 288, 20210558. (10.1098/rspb.2021.0558) PubMed DOI PMC

Schmitz OJ. 2009. Effects of predator functional diversity on grassland ecosystem function. Ecology 90, 2339-2345. (10.1890/08-1919.1) PubMed DOI

Laubmeier AN, Rebarber R, Tenhumberg B. 2020. Towards understanding factors influencing the benefit of diversity in predator communities for prey suppression. Ecosphere 11, e03271. (10.1002/ecs2.3271) DOI

Soluk DA. 1993. Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74, 219-225. (10.2307/1939516) DOI

Tylianakis JM, Romo CM. 2010. Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl. Ecol. 11, 657-668. (10.1016/j.baae.2010.08.005) DOI

Thierry M, Pardikes NA, Lue CH, Lewis OT, Hrček J. 2021. Experimental warming influences species abundances in a Drosophila host community through direct effects on species performance rather than altered competition and parasitism. PLoS ONE 16, e0245029. (10.1371/journal.pone.0245029) PubMed DOI PMC

Kéfi S, Berlow EL, Wieters EA, Joppa LN, Wood SA, Brose U, Navarrete SA. 2015. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291-303. (10.1890/13-1424.1) PubMed DOI

Wootton JT. 1997. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45-64. (10.1890/0012-9615(1997)067[0045:EATOPC]2.0.CO;2) DOI

Thierry M, Pardikes NA, Ximénez-Embún MG, Proudhom G, Hrček J. 2021. Multiple parasitoid species enhance top-down control, but parasitoid performance is context-dependent. bioRxiv, 2021.07.16.452484. (10.1101/2021.07.16.452484) PubMed DOI

Godfray HCJ. 2013. Parasitoids. In Encyclopedia of biodiversity (ed. Levin SA), pp. 674-682. San Diego, CA: Academic Press.

Carton Y, Poirié M, Nappi AJ. 2008. Insect immune resistance to parasitoids. Insect Sci. 15, 67-87. (10.1111/j.1744-7917.2008.00188.x) DOI

Harvey JA, Poelman EH, Tanaka T. 2013. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333-351. (10.1146/annurev-ento-120811-153622) PubMed DOI

McCoy MW, Stier AC, Osenberg CW. 2012. Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecol. Lett. 15, 1449-1456. (10.1111/ele.12005) PubMed DOI

Sentis A, Boukal DS. 2018. On the use of functional responses to quantify emergent multiple predator effects. Sci. Rep. 8, 1-12. (10.1038/s41598-018-30244-9) PubMed DOI PMC

Jeffs CT, et al. 2021. Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila - parasitoid communities. Ecography (Cop) 44, 403-413. (10.1111/ecog.05390) DOI

Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668-6672. (10.1073/pnas.0709472105) PubMed DOI PMC

Kellermann V, Overgaard J, Hoffmann AA, Fløjgaard C, Svenning J-C, Loeschcke V. 2012. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16 228-16 233. (10.1073/pnas.1207553109) PubMed DOI PMC

Overgaard J, Kearney MR, Hoffmann AA. 2014. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Chang. Biol. 20, 1738-1750. (10.1111/gcb.12521) PubMed DOI

Lue C-H, et al. 2021. DROP: molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437-2454. (10.1111/1755-0998.13435) PubMed DOI

Nouhaud P, Mallard F, Poupardin R, Barghi N, Schlötterer C. 2018. High-throughput fecundity measurements in Drosophila. Sci. Rep. 8, 4469. (10.1038/s41598-018-22777-w) PubMed DOI PMC

IPCC . 2014. Climate change 2014: synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Pachauri RK, Meyer LA), p. 151. Geneva, Switzerland: IPCC. See http://www.ipcc.ch.

MacLean HJ, Sørensen JG, Kristensen TN, Loeschcke V, Beedholm K, Kellermann V, Overgaard J. 2019. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Phil. Trans. R. Soc. B 374, 20180548. (10.1098/rstb.2018.0548) PubMed DOI PMC

Rosenbaum B, Rall BC. 2018. Fitting functional responses: direct parameter estimation by simulating differential equations. Methods Ecol. Evol. 9, 2076-2090. (10.1111/2041-210X.13039) DOI

Sohlström EH, Archer LC, Gallo B, Jochum M, Kordas RL, Rall BC, Rosenbaum B, O'Gorman EJ. 2021. Thermal acclimation increases the stability of a predator-prey interaction in warmer environments. Glob. Chang. Biol. 15715, 3765-3778. (10.1111/gcb.15715) PubMed DOI

Holling CS. 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385-398. (10.4039/Ent91385-7) DOI

Fernández-Arhex V, Corley JC. 2003. The functional response of parasitoids and its implications for biological control. Biocontrol Sci. Technol. 13, 403-413. (10.1080/0958315031000104523) DOI

Carton Y, Kitano H. 1981. Evolutionary relationships to parasitism by seven species of the Drosophila melanogaster subgroup. Biol. J. Linn. Soc. 16, 227-241. (10.1111/j.1095-8312.1981.tb01849.x) DOI

Boulétreau M, Wajnberg E. 1986. Comparative responses of two sympatric parasitoid cynipids to the genetic and epigenetic variations of the larvae of their host, Drosophila melanogaster. Entomol. Exp. Appl. 41, 107-114. (10.1111/j.1570-7458.1986.tb00516.x) DOI

Hartig F. 2020. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3, 3. See https://cran.r-project.org/web/packages/DHARMa.

Lüdecke D, Makowski D, Waggoner P. 2019. Performance: assessment of regression models performance. See https://cran.r-project.org/package=performance.

Lenth RV, Singman H, Love J, Buerkner P, Herve M. 2018. Emmeans: estimated marginal means, aka least-squares means. R package version 1(1),3. See https://cran.r-project.org/web/packages/emmeans.

Soetaert K, Petzoldt T. 2010. Inverse modelling, sensitivity and monte carlo analysis in R using package FME. J. Stat. Softw. 33, 1-28. (10.18637/jss.v033.i03) PubMed DOI

Team RC. 2017. R: the R project for statistical computing. See https://www.r-project.org.

Drieu R, Rusch A. 2017. Conserving species-rich predator assemblages strengthens natural pest control in a climate warming context. Agric. For. Entomol. 19, 52-59. (10.1111/afe.12180) DOI

Macfadyen S, Craze PG, Polaszek A, van Achterberg K, Memmott J. 2011. Parasitoid diversity reduces the variability in pest control services across time on farms. Proc. R. Soc. B 278, 3387-3394. (10.1098/rspb.2010.2673) PubMed DOI PMC

Cebolla R, Urbaneja A, van Baaren J, Tena A. 2018. Negative effect of global warming on biological control is mitigated by direct competition between sympatric parasitoids. Biol. Control 122, 60-66. (10.1016/j.biocontrol.2018.04.006) DOI

Pepi A, McMunn M. 2021. Predator diversity and thermal niche complementarity attenuate indirect effects of warming on prey survival. Am. Nat. 198, 33-43. (10.1086/714590) PubMed DOI

Lang B, Rall BC, Brose U. 2012. Warming effects on consumption and intraspecific interference competition depend on predator metabolism. J. Anim. Ecol. 81, 516-523. (10.1111/j.1365-2656.2011.01931.x) PubMed DOI

Ives AR, Cardinale BJ, Snyder WE. 2005. A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecol. Lett. 8, 102-116. (10.1111/j.1461-0248.2004.00698.x) DOI

Abarca M, Spahn R. 2021. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67-74. (10.1016/j.cois.2021.04.008) PubMed DOI

Renner SS, Zohner CM. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165-182. (10.1146/annurev-ecolsys-110617-062535) DOI

Delava E, Fleury F, Gibert P. 2016. Effects of daily fluctuating temperatures on the Drosophila–Leptopilina boulardi parasitoid association. J. Therm. Biol. 60, 95-102. (10.1016/j.jtherbio.2016.06.012) PubMed DOI

Lampropoulos PD, Perdikis DC, Fantinou AA. 2013. Are multiple predator effects directed by prey availability? Basic Appl. Ecol. 14, 605-613. (10.1016/j.baae.2013.08.004) DOI

Griffin JN, Toscano BJ, Griffen BD, Silliman BR. 2015. Does relative abundance modify multiple predator effects? Basic Appl. Ecol. 16, 641-651. (10.1016/j.baae.2015.05.003) DOI

Finke DL, Snyder WE. 2008. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488-1490. (10.1126/science.1160854) PubMed DOI

Krey KL, et al. 2021. Prey and predator biodiversity mediate aphid consumption by generalists. Biol. Control 160, 104650. (10.1016/j.biocontrol.2021.104650) DOI

Greenop A, Woodcock BA, Wilby A, Cook SM, Pywell RF. 2018. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771-1782. (10.1002/ecy.2378) PubMed DOI PMC

Chesson P. 1991. A need for niches? Trends Ecol. Evol. 6, 26-28. (10.1016/0169-5347(91)90144-M) PubMed DOI

Griffin JN, Byrnes JEK, Cardinale BJ. 2013. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180-2187. (10.1890/13-0179.1) PubMed DOI

Denoth M, Frid L, Myers JH. 2002. Multiple agents in biological control: improving the odds? Biol. Control 24, 20-30. (10.1016/S1049-9644(02)00002-6) DOI

Myers JH, Higgins C, Kovacs E. 1989. How many insect species are necessary for the biological control of insects? Environ. Entomol. 18, 541-547. (10.1093/ee/18.4.541) DOI

Pardikes N, Revilla T, Lue CH, Mélanie T, Soutos-Villaros D, Hrcek J. 2021. Community context modifies response of host-parasitoid interactions to phenological mismatch under warming. Authorea (10.22541/au.162454818.82806593/v1) DOI

Kéfi S, et al. 2012. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291-300. (10.1111/j.1461-0248.2011.01732.x) PubMed DOI

See more in PubMed

figshare
10.6084/m9.figshare.c.5877640

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...