Prevention of the foreign body response to implantable medical devices by inflammasome inhibition

. 2022 Mar 22 ; 119 (12) : e2115857119. [epub] 20220317

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35298334

Grantová podpora
Wellcome Trust - United Kingdom
MC_UU_00014/5 Medical Research Council - United Kingdom

SignificanceImplantable electronic medical devices (IEMDs) are used for some clinical applications, representing an exciting prospect for the transformative treatment of intractable conditions such Parkinson's disease, deafness, and paralysis. The use of IEMDs is limited at the moment because, over time, a foreign body reaction (FBR) develops at the device-neural interface such that ultimately the IEMD fails and needs to be removed. Here, we show that macrophage nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity drives the FBR in a nerve injury model yet integration of an NLRP3 inhibitor into the device prevents FBR while allowing full healing of damaged neural tissue to occur.

Bertarelli Foundation Chair in Neuroprosthetic Technology Laboratory for Soft Bioelectronics Interface Institute of Microengineering Institute of Bioengineering Centre for Neuroprosthetics Ecole Polytechnique Fédérale de Lausanne 1202 Geneva Switzerland

Centre for Reconstructive Neuroscience Institute for Experimental Medicine Czech Academy of Sciences 142 20 Prague 4 Czech Republic

Centre for Trophoblast Research University of Cambridge Cambridge CB2 3EG United Kingdom

Department of Genetics University of Cambridge Cambridge CB2 3EH United Kingdom

Department of Physiology Development and Neuroscience University of Cambridge Cambridge CB2 3DY United Kingdom

Department of Veterinary Medicine University of Cambridge Cambridge CB3 0ES United Kingdom

Division of Medicine University of Cambridge Cambridge CB2 0PY United Kingdom

Division of Neurosurgery Department of Clinical Neurosciences University of Cambridge Cambridge CB2 0PY United Kingdom

Electrical Engineering Division Department of Engineering University of Cambridge Cambridge CB3 0FA United Kingdom

Institute of Medical Physics and Microtissue Engineering Friedrich Alexander University Erlangen Nuremberg 91052 Erlangen Germany

John van Geest Centre for Brain Repair Department of Clinical Neurosciences University of Cambridge Cambridge CB2 0PY United Kingdom

Max Planck Zentrum für Physik und Medizin 91054 Erlangen Germany

School of Chemistry and Molecular Biosciences The University of Queensland St Lucia QLD 4072 Australia

Zobrazit více v PubMed

Salatino J. W., Ludwig K. A., Kozai T. D. Y., Purcell E. K., Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017). PubMed PMC

Spearman B. S., et al. , Tissue-engineered peripheral nerve interfaces. Adv. Funct. Mater. 28, 1701713 (2018). PubMed PMC

Hong G., Lieber C. M., Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019). PubMed PMC

Anderson J. M., Rodriguez A., Chang D. T., Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008). PubMed PMC

Kenneth Ward W., A review of the foreign-body response to subcutaneously-implanted devices: The role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes Sci. Technol. 2, 768–777 (2008). PubMed PMC

Henson P. M., The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J. Immunol. 107, 1535–1546 (1971). PubMed

Duffield J. S., Lupher M., Thannickal V. J., Wynn T. A., Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013). PubMed PMC

Zhu Z., Ding J., Shankowsky H. A., Tredget E. E., The molecular mechanism of hypertrophic scar. J. Cell Commun. Signal. 7, 239–252 (2013). PubMed PMC

Mond H. G., Helland J. R., Stokes K., Bornzin G. A., McVenes R., The electrode-tissue interface: The revolutionary role of steroid-elution. Pacing Clin. Electrophysiol. 37, 1232–1249 (2014). PubMed

Moshayedi P., et al. , The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014). PubMed

Carnicer-Lombarte A., et al. , Mechanical matching of implant to host minimises foreign body reaction. bioRxiv [Preprint] (2019). 10.1101/829648 (Accessed 10 March 2022). DOI

FitzGerald J. J., Suppression of scarring in peripheral nerve implants by drug elution. J. Neural Eng. 13, 026006 (2016). PubMed

Crisafulli U., et al. , Topical dexamethasone administration impairs protein synthesis and neuronal regeneration in the olfactory epithelium. Front. Mol. Neurosci. 11, 50 (2018). PubMed PMC

Bryant C. E., et al. , International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol. Rev. 67, 462–504 (2015). PubMed PMC

Malik A. F., et al. , Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response. Proc. Natl. Acad. Sci. U.S.A. 108, 20095–20100 (2011). PubMed PMC

Man S. M., et al. , Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc. Natl. Acad. Sci. U.S.A. 111, 7403–7408 (2014). PubMed PMC

Christo S., Bachhuka A., Diener K. R., Vasilev K., Hayball J. D., The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Sci. Rep. 6, 26207 (2016). PubMed PMC

Christo S. N., et al. , Inflammasome components ASC and AIM2 modulate the acute phase of biomaterial implant-induced foreign body responses. Sci. Rep. 6, 20635 (2016). PubMed PMC

Nadeau S., et al. , Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: Implications for neuropathic pain. J. Neurosci. 31, 12533–12542 (2011). PubMed PMC

Musick K. M., Chew D. J., Fawcett J. W., Lacour S. P., “PDMS microchannel regenerative peripheral nerve interface” in

Chew D. J., et al. , A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Sci. Transl. Med. 5, 210ra155 (2013). PubMed

Musick K. M., et al. , Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait. Sci. Rep. 5, 14363 (2015). PubMed PMC

FitzGerald J. J., et al. , A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo. J. Neural Eng. 9, 016010 (2012). PubMed

Scheib J., Höke A., Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 9, 668–676 (2013). PubMed

Christo S. N., Diener K. R., Bachhuka A., Vasilev K., Hayball J. D., Innate immunity and biomaterials at the nexus: Friends or foes. BioMed Res. Int. 2015, 342304 (2015). PubMed PMC

Chung L., Maestas D. R. Jr., Housseau F., Elisseeff J. H., Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 114, 184–192 (2017). PubMed

Wood M. D., Kemp S. W., Weber C., Borschel G. H., Gordon T., Outcome measures of peripheral nerve regeneration. Ann. Anat. 193, 321–333 (2011). PubMed

Gong T., Szustakowski J. D., DeconRNASeq: A statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-seq data. Bioinformatics 29, 1083–1085 (2013). PubMed

Wynn T. A., Chawla A., Pollard J. W., Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013). PubMed PMC

Hinz B., et al. , The myofibroblast: One function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007). PubMed PMC

Coll R. C., et al. , A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015). PubMed PMC

Chauhan D., Vande Walle L., Lamkanfi M., Therapeutic modulation of inflammasome pathways. Immunol. Rev. 297, 123–138 (2020). PubMed PMC

Veiseh O., et al. , Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015). PubMed PMC

Doloff J. C., et al. , Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017). PubMed PMC

Dondossola E., et al. , Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2016). PubMed PMC

Shokouhi B., et al. , The role of multiple Toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials 31, 5759–5771 (2010). PubMed

Vasilijić S., et al. , Dendritic cells acquire tolerogenic properties at the site of sterile granulomatous inflammation. Cell. Immunol. 233, 148–157 (2005). PubMed

Keselowsky B. G., Lewis J. S., Dendritic cells in the host response to implanted materials. Semin. Immunol. 29, 33–40 (2017). PubMed PMC

Kou P. M., Babensee J. E., Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J. Biomed. Mater. Res. A 96, 239–260 (2011). PubMed

Ataide M. A., et al. , Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 10, e1003885 (2014). PubMed PMC

Man S. M., et al. , PubMed PMC

Favor O. K., Pestka J. J., Bates M. A., Lee K. S. S., Centrality of myeloid-lineage phagocytes in particle-triggered inflammation and autoimmunity. Front. Toxicol. 3, 777768 (2021). PubMed PMC

Lotti F., Ranieri F., Vadalà G., Zollo L., Di Pino G., Invasive intraneural interfaces: Foreign body reaction issues. Front. Neurosci. 11, 497 (2017). PubMed PMC

Chen N., Luo B., Yang I. H., Thakor N. V., Ramakrishna S., Biofunctionalized platforms towards long-term neural interface. Curr. Opin. Biomed. Eng. 6, 81–91 (2018).

van Putten S. M., Wübben M., Hennink W. E., van Luyn M. J., Harmsen M. C., The downmodulation of the foreign body reaction by cytomegalovirus encoded interleukin-10. Biomaterials 30, 730–735 (2009). PubMed

Heo D. N., et al. , Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomater. 39, 25–33 (2016). PubMed

Bauder A. R., Ferguson T. A., Reproducible mouse sciatic nerve crush and subsequent assessment of regeneration by whole mount muscle analysis. J. Vis. Exp. (60), 3606 (2012). PubMed PMC

Dobin A., et al. , STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC

Ewels P., Krueger F., Käller M., Andrews S., Cluster Flow: A user-friendly bioinformatics workflow tool. F1000 Res. 5, 2824 (2016). PubMed PMC

Ewels P., Magnusson M., Lundin S., Käller M., MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016). PubMed PMC

Anders S., Pyl P. T., Huber W., HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). PubMed PMC

Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed

García-Alcalde F., et al. , Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics 28, 2678–2679 (2012). PubMed

Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC

Conway J. R., Lex A., Gehlenborg N., UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017). PubMed PMC

Chen Z. Y., et al. , Inference of immune cell composition on the expression profiles of mouse tissue. Sci. Rep. 7, 40508 (2017). PubMed PMC

Bustin S. A., et al. , The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009). PubMed

Gambarotta G., et al. , Identification and validation of suitable housekeeping genes for normalizing quantitative real-time PCR assays in injured peripheral nerves. PLoS One 9, e105601 (2014). PubMed PMC

Ydens E., et al. , Nlrp6 promotes recovery after peripheral nerve injury independently of inflammasomes. J. Neuroinflammation 12, 143 (2015). PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...