Prevention of the foreign body response to implantable medical devices by inflammasome inhibition
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
MC_UU_00014/5
Medical Research Council - United Kingdom
PubMed
35298334
PubMed Central
PMC8944905
DOI
10.1073/pnas.2115857119
Knihovny.cz E-zdroje
- Klíčová slova
- MCC950, NLRP3 inflammasome, foreign body reaction, neural interfaces,
- MeSH
- cizí tělesa * MeSH
- inflamasomy * MeSH
- lidé MeSH
- makrofágy MeSH
- protein NLRP3 MeSH
- protézy a implantáty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inflamasomy * MeSH
- protein NLRP3 MeSH
SignificanceImplantable electronic medical devices (IEMDs) are used for some clinical applications, representing an exciting prospect for the transformative treatment of intractable conditions such Parkinson's disease, deafness, and paralysis. The use of IEMDs is limited at the moment because, over time, a foreign body reaction (FBR) develops at the device-neural interface such that ultimately the IEMD fails and needs to be removed. Here, we show that macrophage nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity drives the FBR in a nerve injury model yet integration of an NLRP3 inhibitor into the device prevents FBR while allowing full healing of damaged neural tissue to occur.
Centre for Trophoblast Research University of Cambridge Cambridge CB2 3EG United Kingdom
Department of Genetics University of Cambridge Cambridge CB2 3EH United Kingdom
Department of Veterinary Medicine University of Cambridge Cambridge CB3 0ES United Kingdom
Division of Medicine University of Cambridge Cambridge CB2 0PY United Kingdom
Max Planck Zentrum für Physik und Medizin 91054 Erlangen Germany
Zobrazit více v PubMed
Salatino J. W., Ludwig K. A., Kozai T. D. Y., Purcell E. K., Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017). PubMed PMC
Spearman B. S., et al. , Tissue-engineered peripheral nerve interfaces. Adv. Funct. Mater. 28, 1701713 (2018). PubMed PMC
Hong G., Lieber C. M., Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019). PubMed PMC
Anderson J. M., Rodriguez A., Chang D. T., Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008). PubMed PMC
Kenneth Ward W., A review of the foreign-body response to subcutaneously-implanted devices: The role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes Sci. Technol. 2, 768–777 (2008). PubMed PMC
Henson P. M., The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J. Immunol. 107, 1535–1546 (1971). PubMed
Duffield J. S., Lupher M., Thannickal V. J., Wynn T. A., Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013). PubMed PMC
Zhu Z., Ding J., Shankowsky H. A., Tredget E. E., The molecular mechanism of hypertrophic scar. J. Cell Commun. Signal. 7, 239–252 (2013). PubMed PMC
Mond H. G., Helland J. R., Stokes K., Bornzin G. A., McVenes R., The electrode-tissue interface: The revolutionary role of steroid-elution. Pacing Clin. Electrophysiol. 37, 1232–1249 (2014). PubMed
Moshayedi P., et al. , The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014). PubMed
Carnicer-Lombarte A., et al. , Mechanical matching of implant to host minimises foreign body reaction. bioRxiv [Preprint] (2019). 10.1101/829648 (Accessed 10 March 2022). DOI
FitzGerald J. J., Suppression of scarring in peripheral nerve implants by drug elution. J. Neural Eng. 13, 026006 (2016). PubMed
Crisafulli U., et al. , Topical dexamethasone administration impairs protein synthesis and neuronal regeneration in the olfactory epithelium. Front. Mol. Neurosci. 11, 50 (2018). PubMed PMC
Bryant C. E., et al. , International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol. Rev. 67, 462–504 (2015). PubMed PMC
Malik A. F., et al. , Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response. Proc. Natl. Acad. Sci. U.S.A. 108, 20095–20100 (2011). PubMed PMC
Man S. M., et al. , Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc. Natl. Acad. Sci. U.S.A. 111, 7403–7408 (2014). PubMed PMC
Christo S., Bachhuka A., Diener K. R., Vasilev K., Hayball J. D., The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Sci. Rep. 6, 26207 (2016). PubMed PMC
Christo S. N., et al. , Inflammasome components ASC and AIM2 modulate the acute phase of biomaterial implant-induced foreign body responses. Sci. Rep. 6, 20635 (2016). PubMed PMC
Nadeau S., et al. , Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: Implications for neuropathic pain. J. Neurosci. 31, 12533–12542 (2011). PubMed PMC
Musick K. M., Chew D. J., Fawcett J. W., Lacour S. P., “PDMS microchannel regenerative peripheral nerve interface” in
Chew D. J., et al. , A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Sci. Transl. Med. 5, 210ra155 (2013). PubMed
Musick K. M., et al. , Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait. Sci. Rep. 5, 14363 (2015). PubMed PMC
FitzGerald J. J., et al. , A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo. J. Neural Eng. 9, 016010 (2012). PubMed
Scheib J., Höke A., Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 9, 668–676 (2013). PubMed
Christo S. N., Diener K. R., Bachhuka A., Vasilev K., Hayball J. D., Innate immunity and biomaterials at the nexus: Friends or foes. BioMed Res. Int. 2015, 342304 (2015). PubMed PMC
Chung L., Maestas D. R. Jr., Housseau F., Elisseeff J. H., Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 114, 184–192 (2017). PubMed
Wood M. D., Kemp S. W., Weber C., Borschel G. H., Gordon T., Outcome measures of peripheral nerve regeneration. Ann. Anat. 193, 321–333 (2011). PubMed
Gong T., Szustakowski J. D., DeconRNASeq: A statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-seq data. Bioinformatics 29, 1083–1085 (2013). PubMed
Wynn T. A., Chawla A., Pollard J. W., Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013). PubMed PMC
Hinz B., et al. , The myofibroblast: One function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007). PubMed PMC
Coll R. C., et al. , A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015). PubMed PMC
Chauhan D., Vande Walle L., Lamkanfi M., Therapeutic modulation of inflammasome pathways. Immunol. Rev. 297, 123–138 (2020). PubMed PMC
Veiseh O., et al. , Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015). PubMed PMC
Doloff J. C., et al. , Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017). PubMed PMC
Dondossola E., et al. , Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2016). PubMed PMC
Shokouhi B., et al. , The role of multiple Toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials 31, 5759–5771 (2010). PubMed
Vasilijić S., et al. , Dendritic cells acquire tolerogenic properties at the site of sterile granulomatous inflammation. Cell. Immunol. 233, 148–157 (2005). PubMed
Keselowsky B. G., Lewis J. S., Dendritic cells in the host response to implanted materials. Semin. Immunol. 29, 33–40 (2017). PubMed PMC
Kou P. M., Babensee J. E., Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J. Biomed. Mater. Res. A 96, 239–260 (2011). PubMed
Ataide M. A., et al. , Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 10, e1003885 (2014). PubMed PMC
Man S. M., et al. , PubMed PMC
Favor O. K., Pestka J. J., Bates M. A., Lee K. S. S., Centrality of myeloid-lineage phagocytes in particle-triggered inflammation and autoimmunity. Front. Toxicol. 3, 777768 (2021). PubMed PMC
Lotti F., Ranieri F., Vadalà G., Zollo L., Di Pino G., Invasive intraneural interfaces: Foreign body reaction issues. Front. Neurosci. 11, 497 (2017). PubMed PMC
Chen N., Luo B., Yang I. H., Thakor N. V., Ramakrishna S., Biofunctionalized platforms towards long-term neural interface. Curr. Opin. Biomed. Eng. 6, 81–91 (2018).
van Putten S. M., Wübben M., Hennink W. E., van Luyn M. J., Harmsen M. C., The downmodulation of the foreign body reaction by cytomegalovirus encoded interleukin-10. Biomaterials 30, 730–735 (2009). PubMed
Heo D. N., et al. , Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomater. 39, 25–33 (2016). PubMed
Bauder A. R., Ferguson T. A., Reproducible mouse sciatic nerve crush and subsequent assessment of regeneration by whole mount muscle analysis. J. Vis. Exp. (60), 3606 (2012). PubMed PMC
Dobin A., et al. , STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC
Ewels P., Krueger F., Käller M., Andrews S., Cluster Flow: A user-friendly bioinformatics workflow tool. F1000 Res. 5, 2824 (2016). PubMed PMC
Ewels P., Magnusson M., Lundin S., Käller M., MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016). PubMed PMC
Anders S., Pyl P. T., Huber W., HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). PubMed PMC
Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). PubMed
García-Alcalde F., et al. , Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics 28, 2678–2679 (2012). PubMed
Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Conway J. R., Lex A., Gehlenborg N., UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017). PubMed PMC
Chen Z. Y., et al. , Inference of immune cell composition on the expression profiles of mouse tissue. Sci. Rep. 7, 40508 (2017). PubMed PMC
Bustin S. A., et al. , The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009). PubMed
Gambarotta G., et al. , Identification and validation of suitable housekeeping genes for normalizing quantitative real-time PCR assays in injured peripheral nerves. PLoS One 9, e105601 (2014). PubMed PMC
Ydens E., et al. , Nlrp6 promotes recovery after peripheral nerve injury independently of inflammasomes. J. Neuroinflammation 12, 143 (2015). PubMed PMC