An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early European farmers

. 2022 Apr 12 ; 119 (15) : e2106743119. [epub] 20220406

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu historické články, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35389750

Grantová podpora
R01 GM115656 NIGMS NIH HHS - United States

Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared “predicted” genetic contributions to height from paleogenomic data and “achieved” adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.

Archeolodzy org Foundation Wrocław 50 316 Poland

Archeology Center of the University of Lisbon University of Lisbon Lisbon 1600 214 Portugal

Broad Institute of Harvard and Massachusetts Institute of Technology Cambridge MA 02142

Buffalo Human Evolutionary Morphology Lab Department of Anthropology University at Buffalo Buffalo NY 14261 0026

Centre for Applied Bioanthropology Institute for Anthropological Research Zagreb 10000 Croatia

Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra 3000 456 Portugal

Departament d'Història i Història de l'Art Universitat Rovira i Virgili Tarragona 43003 Spain

Department of Anatomy Histology and Anthropology Vilnius University Vilnius 01513 Lithuania

Department of Anthropology Hungarian Natural History Museum Budapest 1083 Hungary

Department of Anthropology National Museum Prague 115 79 Czech Republic

Department of Anthropology Ohio State University Columbus OH 43210

Department of Anthropology Pennsylvania State University University Park PA 16802

Department of Archaeology Déri Múzeum Debrecen 4026 Hungary

Department of Archaeology Herman Ottó Museum Miskolc 3530 Hungary

Department of Archaeology Hungarian National Museum Budapest 1088 Hungary

Department of Archaeology István Dobó Castle Museum Eger 3300 Hungary

Department of Archaeology Satu Mare County Museum Satu Mare 440031 Romania

Department of Art Studies and Archaeology Maritime Cultures Research Institute Vrije Univeristeit Brussels Brussels 1050 Belgium

Department of Biological Anthropology Eötvös Loránd University Budapest 1053 Hungary

Department of Biology Pennsylvania State University University Park PA 16802

Department of Chemistry Analytical Environmental and Geo Chemistry Research Unit Vrije Univeristeit Brussels Brussels 1050 Belgium

Department of Evolutionary Anthropology University of Vienna Vienna 1030 Austria

Department of Genetics Harvard Medical School Boston MA 02115

Department of Genetics Human Genetics Institute of New Jersey Rutgers The State University of New Jersey New Brunswick NJ 08854

Department of Human Evolutionary Biology Harvard University Cambridge MA 02138

Department of Physical Anthropology Peter the Great Museum of Anthropology and Ethnography Russian Academy of Sciences St Petersburg 199034 Russia

Department of Prehistory and Archaeology Universidad Autónoma de Madrid Madrid 28049 Spain

Department of Prehistory Universidad Complutense de Madrid Madrid 28040 Spain

Department of Scottish History and Archaeology National Museums Scotland Edinburgh EH1 1JF Scotland

Department of Vegetation Ecology Institute of Botany of the Czech Academy of Sciences Průhonice 252 43 Czech Republic

Deutsche Forschungsgemeinschaft Center for Advanced Studies University of Tübingen Tübingen 72074 Germany

HHMI Harvard Medical School Cambridge MA 02138

Huck Institutes of the Life Sciences Pennsylvania State University University Park PA 16802

Human Evolution and Archaeological Sciences University of Vienna Vienna 1030 Austria

Institut Català de Paleoecologia Humana i Evolució Social Tarragona 43007 Spain

Institute for Research and Learning in Archaeology and Bioarchaeology Columbus OH 43215

Institute for Scientific Archaeology Working Group Palaeoanthropology University of Tübingen Tübingen 72074 Germany

Institute of Archaeology and Museology Masaryk University Brno 602 00 Czech Republic

Institute of Archaeology Research Centre for the Humanities Eötvös Loránd Research Network Budapest 1097 Hungary

Institute of Archaeology University of Wrocław Wrocław 50 139 Poland

Institute of Latvian History University of Latvia Riga 1050 Latvia

Laboratoire d'archéozoologie Université de Neuchâtel Neuchâtel 2000 Switzerland

Olga Necrasov Center for Anthropological Research Romanian Academy Iasi Branch Iasi 700481 Romania

Orheiul Vechi Cultural Natural Reserve Orhei 3506 Republic of Moldova

Professional archaeologist Parla 28980 Spain

Research Centre for Anthropology and Health Department of Life Sciences University of Coimbra Coimbra 3000 456 Portugal

Soprintendenza Archeologia Belle Arti e Paesaggio Rome 00186 Italy

The Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean Boston MA 02115

Zobrazit více v PubMed

Zeder M. A., The origins of agriculture in the Near East. Curr. Anthropol. 52, 221 (2011).

Bar-Yosef O., Meadow R. H., “The origins of agriculture in the Near East” in Last Hunters, First Farmers: New Perspectives on the Prehistoric Transition to Agriculture, Price T. D., Gebauer A.-B., Eds. (School of American Research Press, 1995), pp. 39–94.

Pinhasi R., von Cramon-Taubadel N., Craniometric data supports demic diffusion model for the spread of agriculture into Europe. PLoS One 4, e6747 (2009). PubMed PMC

Bogucki P., The spread of early farming in Europe. Am. Sci. 84, 242–253 (1996).

Fort J., Demic and cultural diffusion propagated the Neolithic transition across different regions of Europe. J. R. Soc. Interface 12, 20150166 (2015). PubMed PMC

Gignoux C. R., Henn B. M., Mountain J. L., Rapid, global demographic expansions after the origins of agriculture. Proc. Natl. Acad. Sci. U.S.A. 108, 6044–6049 (2011). PubMed PMC

Smith B. D., The origins of agriculture in the Americas. Evol. Anthropol. 3, 174–184 (2005).

Page A. E., et al. , Reproductive trade-offs in extant hunter-gatherers suggest adaptive mechanism for the Neolithic expansion. Proc. Natl. Acad. Sci. U.S.A. 113, 4694–4699 (2016). PubMed PMC

Lambert P. M., Health vs. fitness: Competing themes in the origins and spread of agriculture? Curr. Anthropol. 50, 603–608 (2009). PubMed

Armelagos G. J., Goodman A. H., Jacobs K. H., The origins of agriculture: Population growth during a period of declining health. Popul. Environ. 13, 9–22 (1991).

Zimmermann A., Hilpert J., Wendt K. P., Estimations of population density for selected periods between the Neolithic and AD 1800. Hum. Biol. 81, 357–380 (2009). PubMed

Bocquet-Appel J.-P., The Neolithic demographic transition, population pressure and cultural change. Comp. Civilizations Rev. 58, 36–49 (2008).

Cohen M. N., Armelagos G. J., Paleopathology at the Origins of Agriculture, Cohen M. N., Armelagos G. J., Eds. (University Press of Florida, 1984).

Macintosh A. A., Pinhasi R., Stock J. T., Early life conditions and physiological stress following the transition to farming in Central/Southeast Europe: Skeletal growth impairment and 6000 years of gradual recovery. PLoS One 11, e0148468 (2016). PubMed PMC

Bennike P., Alexandersen V., “Population plasticity in southern Scandinavia: From oysters and fish to gruel and meat” in Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Cohen M. N., Crane-Kramer G., Eds. (University Press of Florida, 2007), pp. 130–148.

Smith P., Horwitz L., “Ancestors and inheritors: A bioanthropological perspective on the transition to agropastoralism in the Southern Levant” in Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Cohen M. N., Crane-Kramer G., Eds. (University Press of Florida, 2007), pp. 207–222.

Larsen C. S., The agricultural revolution as environmental catastrophe: Implications for health and lifestyle in the Holocene. Quat. Int. 150, 12–20 (2006).

Larsen C. S., Biological changes in human populations with agriculture. Annu. Rev. Anthropol. 24, 185–213 (1995).

Steckel R. H., Rose J. C., Eds., The Backbone of History: Health and Nutrition in the Western Hemisphere (Cambridge University Press, 2002).

Pinhasi R., Stock J. T., Human Bioarchaeology of the Transition to Agriculture, Pinhasi R., Stock J., Eds. (John Wiley & Sons, 2011).

Stuart-Macadam P., “Anemia in Roman Britain: Poundbury Camp” in Health in Past Societies. Biocultural Interpretations of Human Skeletal Remains in Archaeological Contexts, Bush H., Zvelebil M., Eds. (BAR International Series, Tempus Reparatum, Oxford, United Kingdom, 1991), vol. 567, pp. 101–113.

Stuart-Macadam P., Porotic hyperostosis: Representative of a childhood condition. Am. J. Phys. Anthropol. 66, 391–398 (1985). PubMed

Rivera F., Mirazón Lahr M., New evidence suggesting a dissociated etiology for cribra orbitalia and porotic hyperostosis. Am. J. Phys. Anthropol. 164, 76–96 (2017). PubMed

Walker P. L., Bathurst R. R., Richman R., Gjerdrum T., Andrushko V. A., The causes of porotic hyperostosis and cribra orbitalia: A reappraisal of the iron-deficiency-anemia hypothesis. Am. J. Phys. Anthropol. 139, 109–125 (2009). PubMed

Wapler U., Crubézy E., Schultz M., Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan. Am. J. Phys. Anthropol. 123, 333–339 (2004). PubMed

Brickley M. B., Cribra orbitalia and porotic hyperostosis: A biological approach to diagnosis. Am. J. Phys. Anthropol. 167, 896–902 (2018). PubMed

Goodman A. H., Armelagos G. J., Rose J. C., Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Hum. Biol. 52, 515–528 (1980). PubMed

Goodman A. H., Rose J. C., “Dental enamel hypoplasias as indicators of nutritional status” in Advances in Dental Anthropology, Kelley M., Larsen C. S., Eds. (Wiley-Liss Inc., 1991), pp. 279–293.

Ash A., et al. , Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Sci. Rep. 6, 29458 (2016). PubMed PMC

Holder S., Miliauskienė Ž., Jankauskas R., Dupras T., An integrative approach to studying plasticity in growth disruption and outcomes: A bioarchaeological case study of Napoleonic soldiers. Am. J. Hum. Biol. 33, e23457 (2020). PubMed

Dabbs G. R., Health status among prehistoric Eskimos from Point Hope, Alaska. Am. J. Phys. Anthropol. 146, 94–103 (2011). PubMed

Eshed V., Gopher A., Pinhasi R., Hershkovitz I., Paleopathology and the origin of agriculture in the Levant. Am. J. Phys. Anthropol. 143, 121–133 (2010). PubMed

Starling A. P., Stock J. T., Dental indicators of health and stress in early Egyptian and Nubian agriculturalists: A difficult transition and gradual recovery. Am. J. Phys. Anthropol. 134, 520–528 (2007). PubMed

Zakrzewski S. R., Variation in ancient Egyptian stature and body proportions. Am. J. Phys. Anthropol. 121, 219–229 (2003). PubMed

Formicola V., Giannecchini M., Evolutionary trends of stature in upper Paleolithic and Mesolithic Europe. J. Hum. Evol. 36, 319–333 (1999). PubMed

Holt B. M., Formicola V., Hunters of the Ice Age: The biology of Upper Paleolithic people. Am. J. Phys. Anthropol. 137 (suppl. 47), 70–99 (2008). PubMed

Hoppa R. D., Saunders S. R., Human Growth in the Past: Studies from Bones and Teeth, Hoppa R. D., Saunders S. R., Eds. (Cambridge University Press, 1999).

Neves W., Wesolowski V., “Economy, nutrition, and disease in prehistoric coastal Brazil: A case study from the state of Santa Catarina” in The Backbone of History: Health and Nutrition in the Western Hemisphere, Steckel R., Rose J. C., Eds. (Cambridge University Press, 2002), pp. 376–400.

Vercellotti G., et al. , Exploring the multidimensionality of stature variation in the past through comparisons of archaeological and living populations. Am. J. Phys. Anthropol. 155, 229–242 (2014). PubMed PMC

Eveleth P. B., Tanner J. M., Worldwide Variation in Human Growth (Cambridge University Press, ed. 2, 1991).

Eveleth P. B., “Population differences in growth: Environmental and genetic factors” in Human Growth, Falkner F., Tanner J. M., Eds. (Springer, 1979), pp. 373–394.

Tanner J. M., “Introduction: Growth in height as a mirror of the standard of living.” in Stature, Living Standards, and Economic Development: Essays in Anthropometric History, Komlos J., Ed. (Chicago Press, Chicago, IL, 1994), pp. 1–6.

Steckel R. H., Stature and the standard of living. J. Econ. Lit. 33, 1903–1940 (1995).

Ruff C. B., et al. , Stature and body mass estimation from skeletal remains in the European Holocene. Am. J. Phys. Anthropol. 148, 601–617 (2012). PubMed

Raxter M. H., Ruff C. B., Auerbach B. M., Technical note: Revised fully stature estimation technique. Am. J. Phys. Anthropol. 133, 817–818 (2007). PubMed

Vercellotti G., Agnew A. M., Justus H. M., Sciulli P. W., Stature estimation in an early medieval (XI-XII c.) Polish population: Testing the accuracy of regression equations in a bioarcheological sample. Am. J. Phys. Anthropol. 140, 135–142 (2009). PubMed

Formicola V., Franceschi M., Regression equations for estimating stature from long bones of early holocene European samples. Am. J. Phys. Anthropol. 100, 83–88 (1996). PubMed

Sladek V., et al. , “Central European human postcranial variation” in Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century, Ruff C. B., Ed. (Wiley-Blackwell, 2018), pp. 315–354.

Hermanussen M., Stature of early Europeans. Hormones (Athens) 2, 175–178 (2003). PubMed

Piontek J., Vančata V., Transition to agriculture in Europe: Evolutionary trends in body size and body shape. Ecol. Asp. Past Hum. Settlements Eur. Bienn. Books EAA 2, 61–92 (2002).

Goodman A. H., Lallo J. W., Armelagos G. J., Rose J. C., “Health change at Dickson Mounds, Illinois (A.D. 950–1300).” in Paleopathology at the Origins of Agriculture, Cohen M. N., Armelagos G. J., Eds. (Academic Press, 1984), pp. 271–306.

Walker P. L., Thornton R., “Health, nutrition, and demographic change in native California” in The Backbone of History: Health and Nutrition in the Western Hemisphere, Steckel R. H., Rose J. C., Eds. (Cambridge University Press, 2002), pp. 506–523.

Lambert P. M., Health in prehistoric populations of the Santa Barbara Channel Islands. Am. Antiq. 58, 509–522 (1993).

Temple D. H., Patterns of systemic stress during the agricultural transition in prehistoric Japan. Am. J. Phys. Anthropol. 142, 112–124 (2010). PubMed

Pechenkina E. A., Benfer R. A. Jr., Zhijun W., Diet and health changes at the end of the Chinese neolithic: The Yangshao/Longshan transition in Shaanxi province. Am. J. Phys. Anthropol. 117, 15–36 (2002). PubMed

Angel J. L., “Health as a crucial factor in the changes from hunting to developed farming in the eastern Mediterranean” in Paleopathology at the Origins of Agriculture, Armelagos G. J., Cohen M. N., Eds. (Academic Press, 1984), pp. 51–74.

Meiklejohn C., Key P., “Socioeconomic change and patterns of pathology and variation in the Mesolithic and Neolithic of Western Europe: Some suggestions” in Paleopathology at the Origins of Agriculture, Cohen M. N., Armelagos G. J., Eds. (University Press of Florida, 1984), pp. 75–100.

Cox S. L., Ruff C. B., Maier R. M., Mathieson I., Genetic contributions to variation in human stature in prehistoric Europe. Proc. Natl. Acad. Sci. U.S.A. 116, 21484–21492 (2019). PubMed PMC

Meiklejohn C., Zvelebil M., “Health status of European populations at the agricultural transition and the implications for the adoption of farming” in Health in Past Populations, Bush H., Zvelebil M., Eds. (Oxford, 1991), pp. 129–144.

Lango Allen H., et al. , Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010). PubMed PMC

Silventoinen K., Determinants of variation in adult body height. J. Biosoc. Sci. 35, 263–285 (2003). PubMed

Yang J., et al. , Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010). PubMed PMC

Stulp G., Barrett L., Evolutionary perspectives on human height variation. Biol. Rev. Camb. Philos. Soc. 91, 206–234 (2016). PubMed

Mathieson I., et al. , Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). PubMed PMC

Martiniano R., et al. , The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017). PubMed PMC

Olalde I., et al. , The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018). PubMed PMC

Brace S., et al. , Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019). PubMed PMC

Mathieson I., et al. , The genomic history of southeastern Europe. Nature 555, 197–203 (2018). PubMed PMC

Haak W., et al. , Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). PubMed PMC

Larsen C. S., et al. , Bioarchaeology of Neolithic Çatalhöyük reveals fundamental transitions in health, mobility, and lifestyle in early farmers. Proc. Natl. Acad. Sci. U.S.A. 116, 12615–12623 (2019). PubMed PMC

Holt B. M., Mobility in Upper Paleolithic and Mesolithic Europe: Evidence from the lower limb. Am. J. Phys. Anthropol. 122, 200–215 (2003). PubMed

Larsen C. S., Hutchinson D. L., Stojanowski C. M., “Health and lifestyle in Georgia and Florida: Agricultural origins and intensification in regional perspective” in Ancient Health: Skeletal Indicators of Economic and Political Intensification, Cohen M. N., Crane-Kramer G. M. M., Eds. (University Press of Florida, 2007), pp. 20–34.

Cardoso H. F. V., Gomes J. E. A., Trends in adult stature of peoples who inhabited the modern Portuguese territory from the Mesolithic to the late 20th century. Int. J. Osteoarchaeol. 19, 711–725 (2009).

Roberts C. A., Cox M., “The impact of economic intensification and social complexity on human health in Britain from 6000 BP (Neolithic) and the introduction of farming to the mid-nineteenth century AD” in Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Cohen M. N., Crane-Kramer G. M. M., Eds. (University Press of Florida, 2007), pp. 149–163.

Hui R., D’Atanasio E., Cassidy L. M., Scheib C. L., Kivisild T., Evaluating genotype imputation pipeline for ultra-low coverage ancient genomes. Sci. Rep. 10, 18542 (2020). PubMed PMC

Gelabert P., Olalde I., de-Dios T., Civit S., Lalueza-Fox C., Malaria was a weak selective force in ancient Europeans. Sci. Rep. 7, 1377 (2017). PubMed PMC

Bycroft C., et al. , The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). PubMed PMC

Briggs A. W., et al. , Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87–e87 (2010). PubMed PMC

Briggs A. W., et al. , Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U.S.A. 104, 14616–14621 (2007). PubMed PMC

Dabney J., Meyer M., Pääbo S., Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013). PubMed PMC

Mostafavi H., et al. , Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020). PubMed PMC

Duncan L., et al. , Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 1–9 (2019). PubMed PMC

Zaidi A. A., Mathieson I., Demographic history mediates the effect of stratification on polygenic scores. eLife 9, e61548 (2020). PubMed PMC

Cox S. L., et al. , Predicting skeletal stature using ancient DNA. Am. J. Biol. Anthropol. 177, 162–174 (2022).

Wang D., et al. , Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: Principal-component analysis vs. multidimensional scaling. BMC Proc. 3 (suppl. 7), S109 (2009). PubMed PMC

Irving-Pease E. K., Muktupavela R., Dannemann M., Racimo F., Quantitative human paleogenetics: What can ancient DNA tell us about complex trait evolution? Front. Genet. 12, 703541 (2021). PubMed PMC

Mummert A., Esche E., Robinson J., Armelagos G. J., Stature and robusticity during the agricultural transition: Evidence from the bioarchaeological record. Econ. Hum. Biol. 9, 284–301 (2011). PubMed

Larsen C. S., “Foraging to farming transition: Global health impacts, trends, and variation” in Encyclopedia of Global Archaeology, Smith C., Ed. (Springer, New York, NY, 2014), pp. 2818–2824.

Milner G. R., Early agriculture’s toll on human health. Proc. Natl. Acad. Sci. U.S.A. 116, 13721–13723 (2019). PubMed PMC

Barker G., Richards M. B., Foraging–farming transitions in Island Southeast Asia. J. Archaeol. Method Theory 20, 256–280 (2013).

Lander F., Russell T., The archaeological evidence for the appearance of pastoralism and farming in southern Africa. PLoS One 13, e0198941 (2018). PubMed PMC

Fuller D. Q., Kingwell-Banham E. J., Lucas L., Murphy C., Stevens C., Comparing pathways to agriculture. Archaeol. Int. 18, 61–66 (2015).

Cameron M. E., The Riet River sites: Positioning regional diversity in the introduction of domesticated livestock to southern Africa. J. Archaeol. Sci. Rep. 23, 72–79 (2019).

Rosenstock E., et al. , Human stature in the Near East and Europe ca. 10,000–1000 BC: Its spatiotemporal development in a Bayesian errors-in-variables model. Archaeol. Anthropol. Sci. 11, 5657–5690 (2019).

Niskanen M., Ruff C. B., Holt B., Sladek V., Berner M., “Temporal and geographic variation in body size and shape of Europeans from the Late Pleistocene to recent times” in Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century, Ruff C. B., Ed. (John Wiley & Sons, 2018), pp. 49–90.

De La Vega F. M., Bustamante C. D., Polygenic risk scores: A biased prediction? Genome Med. 10, 100 (2018). PubMed PMC

Martin A. R., et al. , Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019). PubMed PMC

Sohail M., et al. , Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife 8, e39702 (2019). PubMed PMC

Berg J. J., et al. , Reduced signal for polygenic adaptation of height in UK Biobank. eLife 8, e39725 (2019). PubMed PMC

Bitarello B. D., Mathieson I., Polygenic scores for height in admixed populations. G3 (Bethesda) 10, 4027–4036 (2020). PubMed PMC

Refoyo-Martínez A., et al. , How robust are cross-population signatures of polygenic adaptation in humans? Peer Community J. 1, e22 (2021).

Yair S., Coop G., Population differentiation of polygenic score predictions under stabilizing selection. bioRxiv [Preprint] (2022). 10.1101/2021.09.10.459833 (Accessed 10 February 2022). PubMed PMC

Berens A. J., Cooper T. L., Lachance J., The genomic health of ancient hominins. Hum. Biol. 89, 7–19 (2017). PubMed

González-Fortes G., et al. , Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801–1810.e10 (2017). PubMed PMC

Cassidy L. M., et al. , Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl. Acad. Sci. U.S.A. 113, 368–373 (2016). PubMed PMC

Jones E. R., et al. , The Neolithic transition in the Baltic was not driven by admixture with early European farmers. Curr. Biol. 27, 576–582 (2017). PubMed PMC

Skoglund P., et al. , Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014). PubMed

Lipson M., et al. , Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017). PubMed PMC

Mittnik A., et al. , The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018). PubMed PMC

Allentoft M. E., et al. , Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). PubMed

Keller A., et al. , New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698 (2012). PubMed

Seguin-Orlando A., et al. , Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014). PubMed

Sikora M., et al. , Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017). PubMed

Fu Q., et al. , The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). PubMed PMC

Lazaridis I., et al. , Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014). PubMed PMC

Olalde I., et al. , Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014). PubMed PMC

Sikora M., et al. , The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019). PubMed PMC

Marcus J. H., et al. , Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939 (2020). PubMed PMC

Furtwängler A., et al. , Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1–11 (2020). PubMed PMC

Rivollat M., et al. , Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020). PubMed PMC

Jones E. R., et al. , Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 10.1038/ncomms9912 (2015). PubMed DOI PMC

Freilich S., et al. , Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Sci. Rep. 11, 16729 (2021). PubMed PMC

Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC

Renaud G., Stenzel U., Kelso J., leeHom: Adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141–e141 (2014). PubMed PMC

Jónsson H., Ginolhac A., Schubert M., Johnson P. L. F., Orlando L., mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013). PubMed PMC

H. Li, Seqtk. https://github.com/lh3/seqtk. Accessed 8 May 2018.

Gamba C., et al. , Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014). PubMed PMC

Li H., et al. ; 1000 Genome Project Data Processing Subgroup, The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed PMC

Broad Institute, Picard. http://broadinstitute.github.io/picard. Accessed 14 May 2018.

McKenna A., et al. , The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). PubMed PMC

S. Marciniak, aDNA_osteo_height. GitHub. https://github.com/smmarciniak/aDNA_osteo_height. Deposited 31 March 2021.

Auton A., et al. ; 1000 Genomes Project Consortium, A global reference for human genetic variation. Nature 526, 68–74 (2015). PubMed PMC

Günther T., Nettelblad C., The presence and impact of reference bias on population genomic studies of prehistoric human populations. PLoS Genet. 15, e1008302 (2019). PubMed PMC

Browning S. R., Browning B. L., Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007). PubMed PMC

1000 Genomes Project, Phase 3 dataset. https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. Accessed 6 June 2018.

R. Hui, pmd_filter.py. https://github.com/ryhui/imputation-pipeline/blob/master/pmd_filter.py. Accessed 1 November 2020.

1000 Genomes Project, Phase 3 reference panel (version 5a). http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/. Accessed 6 June 2018.

HapMap, genomic maps. http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/. Accessed 6 June 2018.

Cingolani P., et al. , A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). PubMed PMC

Neale Lab, GWAS of the UK Biobank, round 2. http://www.nealelab.is/uk-biobank. Accessed 8 May 2019.

D. Howrigan, Details and considerations of the UK Biobank GWAS. Neale Lab Blog, 20 September 2017. http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas. Accessed 5 July 2018.

Purcell S., et al. , PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). PubMed PMC

Marees A. T., et al. , A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 27, e1608 (2018). PubMed PMC

Buikstra J. E., Ubelaker D. H., Standards for Data Collection from Human Skeletal Remains (Arkansas Archeological Survey Research Series (Arkansas Archeological Survey, 1994).

Ruff C., Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century (Wiley-Blackwell, 2018).

Serrulla Rech F., Sanin Matias M., Forensic anthropological report of Elba. Cadernos do Laboratorio Xeolóxico de Laxe. Revista de Xeoloxía Galega e do Hercínico Peninsular 39, 35–72 (2017).

Goode K., Rey K., ggResidpanel: Panels and interactive versions of diagnostic plots using 'ggplot2.' R Package Version 0.3.0. https://cran.r-project.org/web/packages/ggResidpanel/index.html. Accessed 10 December 2020.

Patterson N., Price A. L., Reich D., Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006). PubMed PMC

Price A. L., et al. , Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006). PubMed

Li Q., Yu K., Improved correction for population stratification in genome-wide association studies by identifying hidden population structures. Genet. Epidemiol. 32, 215–226 (2008). PubMed

Tzeng J., Lu H. H.-S., Li W.-H., Multidimensional scaling for large genomic data sets. BMC Bioinformatics 9, 179 (2008). PubMed PMC

Borg I., Groenen P. J. F., Modern Multidimensional Scaling: Theory and Applications (Springer, ed. 2, 2005).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...