An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early European farmers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu historické články, časopisecké články
Grantová podpora
R01 GM115656
NIGMS NIH HHS - United States
PubMed
35389750
PubMed Central
PMC9169634
DOI
10.1073/pnas.2106743119
Knihovny.cz E-zdroje
- Klíčová slova
- agriculture transition, health, paleogenomics, stature variation,
- MeSH
- dějiny starověku MeSH
- dítě MeSH
- dospělí MeSH
- genetická variace MeSH
- genomika MeSH
- kostra * anatomie a histologie MeSH
- lidé MeSH
- paleopatologie MeSH
- starobylá DNA MeSH
- tělesná výška * genetika MeSH
- zdraví * dějiny MeSH
- zemědělci * dějiny MeSH
- zemědělství * dějiny MeSH
- Check Tag
- dějiny starověku MeSH
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- starobylá DNA MeSH
Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared “predicted” genetic contributions to height from paleogenomic data and “achieved” adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.
Archeolodzy org Foundation Wrocław 50 316 Poland
Archeology Center of the University of Lisbon University of Lisbon Lisbon 1600 214 Portugal
Broad Institute of Harvard and Massachusetts Institute of Technology Cambridge MA 02142
Centre for Applied Bioanthropology Institute for Anthropological Research Zagreb 10000 Croatia
Departament d'Història i Història de l'Art Universitat Rovira i Virgili Tarragona 43003 Spain
Department of Anatomy Histology and Anthropology Vilnius University Vilnius 01513 Lithuania
Department of Anthropology Hungarian Natural History Museum Budapest 1083 Hungary
Department of Anthropology National Museum Prague 115 79 Czech Republic
Department of Anthropology Ohio State University Columbus OH 43210
Department of Anthropology Pennsylvania State University University Park PA 16802
Department of Archaeology Déri Múzeum Debrecen 4026 Hungary
Department of Archaeology Herman Ottó Museum Miskolc 3530 Hungary
Department of Archaeology Hungarian National Museum Budapest 1088 Hungary
Department of Archaeology István Dobó Castle Museum Eger 3300 Hungary
Department of Archaeology Satu Mare County Museum Satu Mare 440031 Romania
Department of Biological Anthropology Eötvös Loránd University Budapest 1053 Hungary
Department of Biology Pennsylvania State University University Park PA 16802
Department of Evolutionary Anthropology University of Vienna Vienna 1030 Austria
Department of Genetics Harvard Medical School Boston MA 02115
Department of Human Evolutionary Biology Harvard University Cambridge MA 02138
Department of Prehistory and Archaeology Universidad Autónoma de Madrid Madrid 28049 Spain
Department of Prehistory Universidad Complutense de Madrid Madrid 28040 Spain
Department of Scottish History and Archaeology National Museums Scotland Edinburgh EH1 1JF Scotland
HHMI Harvard Medical School Cambridge MA 02138
Huck Institutes of the Life Sciences Pennsylvania State University University Park PA 16802
Human Evolution and Archaeological Sciences University of Vienna Vienna 1030 Austria
Institut Català de Paleoecologia Humana i Evolució Social Tarragona 43007 Spain
Institute for Research and Learning in Archaeology and Bioarchaeology Columbus OH 43215
Institute of Archaeology and Museology Masaryk University Brno 602 00 Czech Republic
Institute of Archaeology University of Wrocław Wrocław 50 139 Poland
Institute of Latvian History University of Latvia Riga 1050 Latvia
Laboratoire d'archéozoologie Université de Neuchâtel Neuchâtel 2000 Switzerland
Olga Necrasov Center for Anthropological Research Romanian Academy Iasi Branch Iasi 700481 Romania
Orheiul Vechi Cultural Natural Reserve Orhei 3506 Republic of Moldova
Professional archaeologist Parla 28980 Spain
Soprintendenza Archeologia Belle Arti e Paesaggio Rome 00186 Italy
Zobrazit více v PubMed
Zeder M. A., The origins of agriculture in the Near East. Curr. Anthropol. 52, 221 (2011).
Bar-Yosef O., Meadow R. H., “The origins of agriculture in the Near East” in Last Hunters, First Farmers: New Perspectives on the Prehistoric Transition to Agriculture, Price T. D., Gebauer A.-B., Eds. (School of American Research Press, 1995), pp. 39–94.
Pinhasi R., von Cramon-Taubadel N., Craniometric data supports demic diffusion model for the spread of agriculture into Europe. PLoS One 4, e6747 (2009). PubMed PMC
Bogucki P., The spread of early farming in Europe. Am. Sci. 84, 242–253 (1996).
Fort J., Demic and cultural diffusion propagated the Neolithic transition across different regions of Europe. J. R. Soc. Interface 12, 20150166 (2015). PubMed PMC
Gignoux C. R., Henn B. M., Mountain J. L., Rapid, global demographic expansions after the origins of agriculture. Proc. Natl. Acad. Sci. U.S.A. 108, 6044–6049 (2011). PubMed PMC
Smith B. D., The origins of agriculture in the Americas. Evol. Anthropol. 3, 174–184 (2005).
Page A. E., et al. , Reproductive trade-offs in extant hunter-gatherers suggest adaptive mechanism for the Neolithic expansion. Proc. Natl. Acad. Sci. U.S.A. 113, 4694–4699 (2016). PubMed PMC
Lambert P. M., Health vs. fitness: Competing themes in the origins and spread of agriculture? Curr. Anthropol. 50, 603–608 (2009). PubMed
Armelagos G. J., Goodman A. H., Jacobs K. H., The origins of agriculture: Population growth during a period of declining health. Popul. Environ. 13, 9–22 (1991).
Zimmermann A., Hilpert J., Wendt K. P., Estimations of population density for selected periods between the Neolithic and AD 1800. Hum. Biol. 81, 357–380 (2009). PubMed
Bocquet-Appel J.-P., The Neolithic demographic transition, population pressure and cultural change. Comp. Civilizations Rev. 58, 36–49 (2008).
Cohen M. N., Armelagos G. J., Paleopathology at the Origins of Agriculture, Cohen M. N., Armelagos G. J., Eds. (University Press of Florida, 1984).
Macintosh A. A., Pinhasi R., Stock J. T., Early life conditions and physiological stress following the transition to farming in Central/Southeast Europe: Skeletal growth impairment and 6000 years of gradual recovery. PLoS One 11, e0148468 (2016). PubMed PMC
Bennike P., Alexandersen V., “Population plasticity in southern Scandinavia: From oysters and fish to gruel and meat” in Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Cohen M. N., Crane-Kramer G., Eds. (University Press of Florida, 2007), pp. 130–148.
Smith P., Horwitz L., “Ancestors and inheritors: A bioanthropological perspective on the transition to agropastoralism in the Southern Levant” in Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Cohen M. N., Crane-Kramer G., Eds. (University Press of Florida, 2007), pp. 207–222.
Larsen C. S., The agricultural revolution as environmental catastrophe: Implications for health and lifestyle in the Holocene. Quat. Int. 150, 12–20 (2006).
Larsen C. S., Biological changes in human populations with agriculture. Annu. Rev. Anthropol. 24, 185–213 (1995).
Steckel R. H., Rose J. C., Eds., The Backbone of History: Health and Nutrition in the Western Hemisphere (Cambridge University Press, 2002).
Pinhasi R., Stock J. T., Human Bioarchaeology of the Transition to Agriculture, Pinhasi R., Stock J., Eds. (John Wiley & Sons, 2011).
Stuart-Macadam P., “Anemia in Roman Britain: Poundbury Camp” in Health in Past Societies. Biocultural Interpretations of Human Skeletal Remains in Archaeological Contexts, Bush H., Zvelebil M., Eds. (BAR International Series, Tempus Reparatum, Oxford, United Kingdom, 1991), vol. 567, pp. 101–113.
Stuart-Macadam P., Porotic hyperostosis: Representative of a childhood condition. Am. J. Phys. Anthropol. 66, 391–398 (1985). PubMed
Rivera F., Mirazón Lahr M., New evidence suggesting a dissociated etiology for cribra orbitalia and porotic hyperostosis. Am. J. Phys. Anthropol. 164, 76–96 (2017). PubMed
Walker P. L., Bathurst R. R., Richman R., Gjerdrum T., Andrushko V. A., The causes of porotic hyperostosis and cribra orbitalia: A reappraisal of the iron-deficiency-anemia hypothesis. Am. J. Phys. Anthropol. 139, 109–125 (2009). PubMed
Wapler U., Crubézy E., Schultz M., Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan. Am. J. Phys. Anthropol. 123, 333–339 (2004). PubMed
Brickley M. B., Cribra orbitalia and porotic hyperostosis: A biological approach to diagnosis. Am. J. Phys. Anthropol. 167, 896–902 (2018). PubMed
Goodman A. H., Armelagos G. J., Rose J. C., Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Hum. Biol. 52, 515–528 (1980). PubMed
Goodman A. H., Rose J. C., “Dental enamel hypoplasias as indicators of nutritional status” in Advances in Dental Anthropology, Kelley M., Larsen C. S., Eds. (Wiley-Liss Inc., 1991), pp. 279–293.
Ash A., et al. , Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Sci. Rep. 6, 29458 (2016). PubMed PMC
Holder S., Miliauskienė Ž., Jankauskas R., Dupras T., An integrative approach to studying plasticity in growth disruption and outcomes: A bioarchaeological case study of Napoleonic soldiers. Am. J. Hum. Biol. 33, e23457 (2020). PubMed
Dabbs G. R., Health status among prehistoric Eskimos from Point Hope, Alaska. Am. J. Phys. Anthropol. 146, 94–103 (2011). PubMed
Eshed V., Gopher A., Pinhasi R., Hershkovitz I., Paleopathology and the origin of agriculture in the Levant. Am. J. Phys. Anthropol. 143, 121–133 (2010). PubMed
Starling A. P., Stock J. T., Dental indicators of health and stress in early Egyptian and Nubian agriculturalists: A difficult transition and gradual recovery. Am. J. Phys. Anthropol. 134, 520–528 (2007). PubMed
Zakrzewski S. R., Variation in ancient Egyptian stature and body proportions. Am. J. Phys. Anthropol. 121, 219–229 (2003). PubMed
Formicola V., Giannecchini M., Evolutionary trends of stature in upper Paleolithic and Mesolithic Europe. J. Hum. Evol. 36, 319–333 (1999). PubMed
Holt B. M., Formicola V., Hunters of the Ice Age: The biology of Upper Paleolithic people. Am. J. Phys. Anthropol. 137 (suppl. 47), 70–99 (2008). PubMed
Hoppa R. D., Saunders S. R., Human Growth in the Past: Studies from Bones and Teeth, Hoppa R. D., Saunders S. R., Eds. (Cambridge University Press, 1999).
Neves W., Wesolowski V., “Economy, nutrition, and disease in prehistoric coastal Brazil: A case study from the state of Santa Catarina” in The Backbone of History: Health and Nutrition in the Western Hemisphere, Steckel R., Rose J. C., Eds. (Cambridge University Press, 2002), pp. 376–400.
Vercellotti G., et al. , Exploring the multidimensionality of stature variation in the past through comparisons of archaeological and living populations. Am. J. Phys. Anthropol. 155, 229–242 (2014). PubMed PMC
Eveleth P. B., Tanner J. M., Worldwide Variation in Human Growth (Cambridge University Press, ed. 2, 1991).
Eveleth P. B., “Population differences in growth: Environmental and genetic factors” in Human Growth, Falkner F., Tanner J. M., Eds. (Springer, 1979), pp. 373–394.
Tanner J. M., “Introduction: Growth in height as a mirror of the standard of living.” in Stature, Living Standards, and Economic Development: Essays in Anthropometric History, Komlos J., Ed. (Chicago Press, Chicago, IL, 1994), pp. 1–6.
Steckel R. H., Stature and the standard of living. J. Econ. Lit. 33, 1903–1940 (1995).
Ruff C. B., et al. , Stature and body mass estimation from skeletal remains in the European Holocene. Am. J. Phys. Anthropol. 148, 601–617 (2012). PubMed
Raxter M. H., Ruff C. B., Auerbach B. M., Technical note: Revised fully stature estimation technique. Am. J. Phys. Anthropol. 133, 817–818 (2007). PubMed
Vercellotti G., Agnew A. M., Justus H. M., Sciulli P. W., Stature estimation in an early medieval (XI-XII c.) Polish population: Testing the accuracy of regression equations in a bioarcheological sample. Am. J. Phys. Anthropol. 140, 135–142 (2009). PubMed
Formicola V., Franceschi M., Regression equations for estimating stature from long bones of early holocene European samples. Am. J. Phys. Anthropol. 100, 83–88 (1996). PubMed
Sladek V., et al. , “Central European human postcranial variation” in Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century, Ruff C. B., Ed. (Wiley-Blackwell, 2018), pp. 315–354.
Hermanussen M., Stature of early Europeans. Hormones (Athens) 2, 175–178 (2003). PubMed
Piontek J., Vančata V., Transition to agriculture in Europe: Evolutionary trends in body size and body shape. Ecol. Asp. Past Hum. Settlements Eur. Bienn. Books EAA 2, 61–92 (2002).
Goodman A. H., Lallo J. W., Armelagos G. J., Rose J. C., “Health change at Dickson Mounds, Illinois (A.D. 950–1300).” in Paleopathology at the Origins of Agriculture, Cohen M. N., Armelagos G. J., Eds. (Academic Press, 1984), pp. 271–306.
Walker P. L., Thornton R., “Health, nutrition, and demographic change in native California” in The Backbone of History: Health and Nutrition in the Western Hemisphere, Steckel R. H., Rose J. C., Eds. (Cambridge University Press, 2002), pp. 506–523.
Lambert P. M., Health in prehistoric populations of the Santa Barbara Channel Islands. Am. Antiq. 58, 509–522 (1993).
Temple D. H., Patterns of systemic stress during the agricultural transition in prehistoric Japan. Am. J. Phys. Anthropol. 142, 112–124 (2010). PubMed
Pechenkina E. A., Benfer R. A. Jr., Zhijun W., Diet and health changes at the end of the Chinese neolithic: The Yangshao/Longshan transition in Shaanxi province. Am. J. Phys. Anthropol. 117, 15–36 (2002). PubMed
Angel J. L., “Health as a crucial factor in the changes from hunting to developed farming in the eastern Mediterranean” in Paleopathology at the Origins of Agriculture, Armelagos G. J., Cohen M. N., Eds. (Academic Press, 1984), pp. 51–74.
Meiklejohn C., Key P., “Socioeconomic change and patterns of pathology and variation in the Mesolithic and Neolithic of Western Europe: Some suggestions” in Paleopathology at the Origins of Agriculture, Cohen M. N., Armelagos G. J., Eds. (University Press of Florida, 1984), pp. 75–100.
Cox S. L., Ruff C. B., Maier R. M., Mathieson I., Genetic contributions to variation in human stature in prehistoric Europe. Proc. Natl. Acad. Sci. U.S.A. 116, 21484–21492 (2019). PubMed PMC
Meiklejohn C., Zvelebil M., “Health status of European populations at the agricultural transition and the implications for the adoption of farming” in Health in Past Populations, Bush H., Zvelebil M., Eds. (Oxford, 1991), pp. 129–144.
Lango Allen H., et al. , Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010). PubMed PMC
Silventoinen K., Determinants of variation in adult body height. J. Biosoc. Sci. 35, 263–285 (2003). PubMed
Yang J., et al. , Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010). PubMed PMC
Stulp G., Barrett L., Evolutionary perspectives on human height variation. Biol. Rev. Camb. Philos. Soc. 91, 206–234 (2016). PubMed
Mathieson I., et al. , Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). PubMed PMC
Martiniano R., et al. , The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017). PubMed PMC
Olalde I., et al. , The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018). PubMed PMC
Brace S., et al. , Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019). PubMed PMC
Mathieson I., et al. , The genomic history of southeastern Europe. Nature 555, 197–203 (2018). PubMed PMC
Haak W., et al. , Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). PubMed PMC
Larsen C. S., et al. , Bioarchaeology of Neolithic Çatalhöyük reveals fundamental transitions in health, mobility, and lifestyle in early farmers. Proc. Natl. Acad. Sci. U.S.A. 116, 12615–12623 (2019). PubMed PMC
Holt B. M., Mobility in Upper Paleolithic and Mesolithic Europe: Evidence from the lower limb. Am. J. Phys. Anthropol. 122, 200–215 (2003). PubMed
Larsen C. S., Hutchinson D. L., Stojanowski C. M., “Health and lifestyle in Georgia and Florida: Agricultural origins and intensification in regional perspective” in Ancient Health: Skeletal Indicators of Economic and Political Intensification, Cohen M. N., Crane-Kramer G. M. M., Eds. (University Press of Florida, 2007), pp. 20–34.
Cardoso H. F. V., Gomes J. E. A., Trends in adult stature of peoples who inhabited the modern Portuguese territory from the Mesolithic to the late 20th century. Int. J. Osteoarchaeol. 19, 711–725 (2009).
Roberts C. A., Cox M., “The impact of economic intensification and social complexity on human health in Britain from 6000 BP (Neolithic) and the introduction of farming to the mid-nineteenth century AD” in Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification, Cohen M. N., Crane-Kramer G. M. M., Eds. (University Press of Florida, 2007), pp. 149–163.
Hui R., D’Atanasio E., Cassidy L. M., Scheib C. L., Kivisild T., Evaluating genotype imputation pipeline for ultra-low coverage ancient genomes. Sci. Rep. 10, 18542 (2020). PubMed PMC
Gelabert P., Olalde I., de-Dios T., Civit S., Lalueza-Fox C., Malaria was a weak selective force in ancient Europeans. Sci. Rep. 7, 1377 (2017). PubMed PMC
Bycroft C., et al. , The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). PubMed PMC
Briggs A. W., et al. , Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87–e87 (2010). PubMed PMC
Briggs A. W., et al. , Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U.S.A. 104, 14616–14621 (2007). PubMed PMC
Dabney J., Meyer M., Pääbo S., Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013). PubMed PMC
Mostafavi H., et al. , Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020). PubMed PMC
Duncan L., et al. , Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 1–9 (2019). PubMed PMC
Zaidi A. A., Mathieson I., Demographic history mediates the effect of stratification on polygenic scores. eLife 9, e61548 (2020). PubMed PMC
Cox S. L., et al. , Predicting skeletal stature using ancient DNA. Am. J. Biol. Anthropol. 177, 162–174 (2022).
Wang D., et al. , Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: Principal-component analysis vs. multidimensional scaling. BMC Proc. 3 (suppl. 7), S109 (2009). PubMed PMC
Irving-Pease E. K., Muktupavela R., Dannemann M., Racimo F., Quantitative human paleogenetics: What can ancient DNA tell us about complex trait evolution? Front. Genet. 12, 703541 (2021). PubMed PMC
Mummert A., Esche E., Robinson J., Armelagos G. J., Stature and robusticity during the agricultural transition: Evidence from the bioarchaeological record. Econ. Hum. Biol. 9, 284–301 (2011). PubMed
Larsen C. S., “Foraging to farming transition: Global health impacts, trends, and variation” in Encyclopedia of Global Archaeology, Smith C., Ed. (Springer, New York, NY, 2014), pp. 2818–2824.
Milner G. R., Early agriculture’s toll on human health. Proc. Natl. Acad. Sci. U.S.A. 116, 13721–13723 (2019). PubMed PMC
Barker G., Richards M. B., Foraging–farming transitions in Island Southeast Asia. J. Archaeol. Method Theory 20, 256–280 (2013).
Lander F., Russell T., The archaeological evidence for the appearance of pastoralism and farming in southern Africa. PLoS One 13, e0198941 (2018). PubMed PMC
Fuller D. Q., Kingwell-Banham E. J., Lucas L., Murphy C., Stevens C., Comparing pathways to agriculture. Archaeol. Int. 18, 61–66 (2015).
Cameron M. E., The Riet River sites: Positioning regional diversity in the introduction of domesticated livestock to southern Africa. J. Archaeol. Sci. Rep. 23, 72–79 (2019).
Rosenstock E., et al. , Human stature in the Near East and Europe ca. 10,000–1000 BC: Its spatiotemporal development in a Bayesian errors-in-variables model. Archaeol. Anthropol. Sci. 11, 5657–5690 (2019).
Niskanen M., Ruff C. B., Holt B., Sladek V., Berner M., “Temporal and geographic variation in body size and shape of Europeans from the Late Pleistocene to recent times” in Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century, Ruff C. B., Ed. (John Wiley & Sons, 2018), pp. 49–90.
De La Vega F. M., Bustamante C. D., Polygenic risk scores: A biased prediction? Genome Med. 10, 100 (2018). PubMed PMC
Martin A. R., et al. , Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019). PubMed PMC
Sohail M., et al. , Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife 8, e39702 (2019). PubMed PMC
Berg J. J., et al. , Reduced signal for polygenic adaptation of height in UK Biobank. eLife 8, e39725 (2019). PubMed PMC
Bitarello B. D., Mathieson I., Polygenic scores for height in admixed populations. G3 (Bethesda) 10, 4027–4036 (2020). PubMed PMC
Refoyo-Martínez A., et al. , How robust are cross-population signatures of polygenic adaptation in humans? Peer Community J. 1, e22 (2021).
Yair S., Coop G., Population differentiation of polygenic score predictions under stabilizing selection. bioRxiv [Preprint] (2022). 10.1101/2021.09.10.459833 (Accessed 10 February 2022). PubMed PMC
Berens A. J., Cooper T. L., Lachance J., The genomic health of ancient hominins. Hum. Biol. 89, 7–19 (2017). PubMed
González-Fortes G., et al. , Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801–1810.e10 (2017). PubMed PMC
Cassidy L. M., et al. , Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl. Acad. Sci. U.S.A. 113, 368–373 (2016). PubMed PMC
Jones E. R., et al. , The Neolithic transition in the Baltic was not driven by admixture with early European farmers. Curr. Biol. 27, 576–582 (2017). PubMed PMC
Skoglund P., et al. , Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014). PubMed
Lipson M., et al. , Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017). PubMed PMC
Mittnik A., et al. , The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018). PubMed PMC
Allentoft M. E., et al. , Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). PubMed
Keller A., et al. , New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698 (2012). PubMed
Seguin-Orlando A., et al. , Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014). PubMed
Sikora M., et al. , Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017). PubMed
Fu Q., et al. , The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). PubMed PMC
Lazaridis I., et al. , Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014). PubMed PMC
Olalde I., et al. , Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014). PubMed PMC
Sikora M., et al. , The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019). PubMed PMC
Marcus J. H., et al. , Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939 (2020). PubMed PMC
Furtwängler A., et al. , Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1–11 (2020). PubMed PMC
Rivollat M., et al. , Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020). PubMed PMC
Jones E. R., et al. , Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 10.1038/ncomms9912 (2015). PubMed DOI PMC
Freilich S., et al. , Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Sci. Rep. 11, 16729 (2021). PubMed PMC
Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Renaud G., Stenzel U., Kelso J., leeHom: Adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141–e141 (2014). PubMed PMC
Jónsson H., Ginolhac A., Schubert M., Johnson P. L. F., Orlando L., mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013). PubMed PMC
H. Li, Seqtk. https://github.com/lh3/seqtk. Accessed 8 May 2018.
Gamba C., et al. , Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014). PubMed PMC
Li H., et al. ; 1000 Genome Project Data Processing Subgroup, The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). PubMed PMC
Broad Institute, Picard. http://broadinstitute.github.io/picard. Accessed 14 May 2018.
McKenna A., et al. , The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). PubMed PMC
S. Marciniak, aDNA_osteo_height. GitHub. https://github.com/smmarciniak/aDNA_osteo_height. Deposited 31 March 2021.
Auton A., et al. ; 1000 Genomes Project Consortium, A global reference for human genetic variation. Nature 526, 68–74 (2015). PubMed PMC
Günther T., Nettelblad C., The presence and impact of reference bias on population genomic studies of prehistoric human populations. PLoS Genet. 15, e1008302 (2019). PubMed PMC
Browning S. R., Browning B. L., Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007). PubMed PMC
1000 Genomes Project, Phase 3 dataset. https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. Accessed 6 June 2018.
R. Hui, pmd_filter.py. https://github.com/ryhui/imputation-pipeline/blob/master/pmd_filter.py. Accessed 1 November 2020.
1000 Genomes Project, Phase 3 reference panel (version 5a). http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/. Accessed 6 June 2018.
HapMap, genomic maps. http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/. Accessed 6 June 2018.
Cingolani P., et al. , A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). PubMed PMC
Neale Lab, GWAS of the UK Biobank, round 2. http://www.nealelab.is/uk-biobank. Accessed 8 May 2019.
D. Howrigan, Details and considerations of the UK Biobank GWAS. Neale Lab Blog, 20 September 2017. http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas. Accessed 5 July 2018.
Purcell S., et al. , PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). PubMed PMC
Marees A. T., et al. , A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 27, e1608 (2018). PubMed PMC
Buikstra J. E., Ubelaker D. H., Standards for Data Collection from Human Skeletal Remains (Arkansas Archeological Survey Research Series (Arkansas Archeological Survey, 1994).
Ruff C., Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century (Wiley-Blackwell, 2018).
Serrulla Rech F., Sanin Matias M., Forensic anthropological report of Elba. Cadernos do Laboratorio Xeolóxico de Laxe. Revista de Xeoloxía Galega e do Hercínico Peninsular 39, 35–72 (2017).
Goode K., Rey K., ggResidpanel: Panels and interactive versions of diagnostic plots using 'ggplot2.' R Package Version 0.3.0. https://cran.r-project.org/web/packages/ggResidpanel/index.html. Accessed 10 December 2020.
Patterson N., Price A. L., Reich D., Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006). PubMed PMC
Price A. L., et al. , Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006). PubMed
Li Q., Yu K., Improved correction for population stratification in genome-wide association studies by identifying hidden population structures. Genet. Epidemiol. 32, 215–226 (2008). PubMed
Tzeng J., Lu H. H.-S., Li W.-H., Multidimensional scaling for large genomic data sets. BMC Bioinformatics 9, 179 (2008). PubMed PMC
Borg I., Groenen P. J. F., Modern Multidimensional Scaling: Theory and Applications (Springer, ed. 2, 2005).