Preparation of Smart Surfaces Based on PNaSS@PEDOT Microspheres: Testing of E. coli Detection

. 2022 Apr 05 ; 22 (7) : . [epub] 20220405

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35408397

Grantová podpora
NU20-06-00424 Czech Health Research Council

The main task of the research is to acquire fundamental knowledge about the effect of polymer structure on the physicochemical properties of films. A novel meta-material that can be used in manufacturing sensor layers was developed as a model. At the first stage, poly(sodium 4-styrenesulfonate) (PNaSS) cross-linked microspheres are synthesized (which are based on strong polyelectrolytes containing sulfo groups in each monomer unit), and at the second stage, PNaSS@PEDOT microspheres are formed. The poly(3,4-ethylenedioxythiophene) (PEDOT) shell was obtained by the acid-assisted self-polymerization of the monomer; this process is biologically safe and thus suitable for biomedical applications. The suitability of electrochemical impedance spectroscopy for E. coli detection was tested; it was revealed that the attached bacterial wall was destroyed upon application of constant oxidation potential (higher than 0.5 V), which makes the PNaSS@PEDOT microsphere particles promising materials for the development of antifouling coatings. Furthermore, under open-circuit conditions, the walls of E. coli bacteria were not destroyed, which opens up the possibility of employing such meta-materials as sensor films. Scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle, and wide-angle X-ray diffraction methods were applied in order to characterize the PNaSS@PEDOT films.

Zobrazit více v PubMed

Wei T., Yu Q., Zhan W., Chen H. A Smart Antibacterial Surface for the On-Demand Killing and Releasing of Bacteria. Adv. Healthc. Mater. 2016;5:449–456. doi: 10.1002/adhm.201500700. PubMed DOI

Kaur R., Liu S. Antibacterial surface design—Contact kill. Prog. Surf. Sci. 2016;91:136–153. doi: 10.1016/j.progsurf.2016.09.001. DOI

Banerjee I., Pangule R.C., Kane R. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011;23:690–718. doi: 10.1002/adma.201001215. PubMed DOI

Lin P.-H., Li B.-R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst. 2020;145:1110–1120. doi: 10.1039/C9AN02017A. PubMed DOI

Wu J.-G., Chen J.-H., Liu K.-T., Luo S.-C. Engineering Antifouling Conducting Polymers for Modern Biomedical Applications. ACS Appl. Mater. Interfaces. 2019;11:21294–21307. doi: 10.1021/acsami.9b04924. PubMed DOI

Monzó J., Insua I., Fernandez-Trillo F., Rodriguez P. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens. Analyst. 2015;140:7116–7128. doi: 10.1039/C5AN01330E. PubMed DOI

Sahika Inal S., Rivnay J., Suiu A.-O., Malliaras G.G., McCulloch I. Conjugated Polymers in Bioelectronics. Acc. Chem. Res. 2018;51:1368–1376. doi: 10.1021/acs.accounts.7b00624. PubMed DOI

Gu H., Ren D. Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances. Front. Chem. Sci. Eng. 2014;8:20–33. doi: 10.1007/s11705-014-1412-3. DOI

Gómez R., Bashir R., Bhunia A.K. Microscale electronic detection of bacterial metabolism. Sens. Actuators B Chem. 2002;86:198–208. doi: 10.1016/S0925-4005(02)00175-2. DOI

Dijk G., Rutz A.L., Malliaras G.G. Stability of PEDOT:PSS-coated gold electrodes in cell culture conditions. Adv. Mater. Technol. 2020;5:1900662. doi: 10.1002/admt.201900662. DOI

Donahue M.J., Sanchez-Sanchez A., Inal S., Qu J., Owens R.M., Mecerreyes D., Malliaras G.G., Martin D.C. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R Rep. 2020;140:100546. doi: 10.1016/j.mser.2020.100546. DOI

Cao B., Lee C.-J., Zeng Z., Cheng F., Xu F., Cong H., Cheng G. Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties. Chem. Sci. 2016;7:1976–1981. doi: 10.1039/C5SC03887A. PubMed DOI PMC

Gkoupidenis P., Koutsouras D.A., Malliaras G.G. Neuromorphic device arthitectures with global connectivity through electrolyte gating. Nat. Commun. 2017;8:15448. doi: 10.1038/ncomms15448. PubMed DOI PMC

Daniels J.S., Pourmand N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis. 2007;19:1239–1257. doi: 10.1002/elan.200603855. PubMed DOI PMC

Bahadır E.B., Sezgintür M.K. A review on impedimetric biosensors. Artif. Cell. Nanomed. Biotechnol. 2016;44:248–262. doi: 10.3109/21691401.2014.942456. PubMed DOI

Varshney M., Li Y., Srinivasan B., Tung S. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sens. Actuators B. 2007;128:99–107. doi: 10.1016/j.snb.2007.03.045. DOI

Xu Y., Xie X., Duan Y., Wang L., Cheng Z., Cheng J. A review of impedance measurements of whole cells. Biosens. Bioelectron. 2016;77:824–836. doi: 10.1016/j.bios.2015.10.027. PubMed DOI

Koutsouras D.A., Gkoupidenis P., Stolz C., Subramanian V., Malliaras G.G., Martin D.C. Impedance spectroscopy of spin-cast and electrochemically deposited pedot:pss films on microfabricated electrodes with various areas. ChemElectroChem. 2017;4:2321–2327. doi: 10.1002/celc.201700297. DOI

Furst A.L., Francis M.B. Impedance-based detection of bacteria. Chem. Rev. 2019;119:700–726. doi: 10.1021/acs.chemrev.8b00381. PubMed DOI

Settu K., Chen C.-J., Liu J.-T., Chen C.-L., Tsai J.-Z. Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Biosens. Bioelectron. 2015;66:244–250. doi: 10.1016/j.bios.2014.11.027. PubMed DOI

Brosel-Oliu S., Abramova N., Uria N., Bratov A. Impedimetric transducers based on interdigitated electrode arrays for bacterial detection—A review. Anal. Chim. Acta. 2019;1088:1–19. doi: 10.1016/j.aca.2019.09.026. PubMed DOI

Berggren M., Malliaras G.G. How conducting polymer electrodes operate. Science. 2019;364:233–234. doi: 10.1126/science.aaw9295. PubMed DOI

Van de Burgt Y., Lubberman E., Fuller E.J., Keene S.T., Faria G.C., Agarwal S., Marinella M.J., Alec T.A., Salleo A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 2017;16:414–418. doi: 10.1038/nmat4856. PubMed DOI

Skládal P. Piezoelectric biosensors. Trac-Trends Anal. Chem. 2016;79:127–133. doi: 10.1016/j.trac.2015.12.009. DOI

Hopkins J., Fidanovski K., Lauto A., Mawad D. All-organic semiconductors for electrochemical biosensors: An overview of recent progress in material design. Front. Bioeng. Biotechnol. 2019;7:237. doi: 10.3389/fbioe.2019.00237. PubMed DOI PMC

Wan A.M.-D., Inal S., Williams T., Wang K., Leleux P., Estevez L., Giannelis E.P., Fischbach C., Malliaras G.G., Gourdon D. 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B. 2015;3:5040–5048. doi: 10.1039/C5TB00390C. PubMed DOI PMC

Ista L.K., Mendez S., Lopez G.P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling. 2010;26:111–118. doi: 10.1080/08927010903383455. PubMed DOI

Puttaswamy S., Lee B.-D., Amighi B., Chakraborty S., Sengupta S. Novel electrical method for the rapid determination of minimum inhibitory concentration (MIC) and assay of bactericidal/bacteriostatic activity. J. Biosens. Bioelectron. S. 2012;2:003. doi: 10.4172/2155-6210.S2-003. DOI

Wei T., Tang Z., Yu Q., Chen H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces. 2017;9:37511–37523. doi: 10.1021/acsami.7b13565. PubMed DOI

Ista L.K., Pérez-Luna V.K., López G.P. Surface-grafted, environmentally sensitive polymers for biofilm release. Appl. Environ. Microbiol. 1999;65:1603–1609. doi: 10.1128/AEM.65.4.1603-1609.1999. PubMed DOI PMC

Ogata A.F., Edgar J.M., Majumdar S., Briggs J.S., Patterson S.V., Tan M.X., Kudlacek S.T., Schneider C.A., Weiss G.A., Penner R.M. Virus-Enabled Biosensor for Human Serum Albumin. Anal. Chem. 2017;89:1373–1381. doi: 10.1021/acs.analchem.6b04840. PubMed DOI PMC

Chen Y., Luo S.-C. Synergistic effects of ions and surface potentials on antifouling poly(3,4-ethylenedioxythiophene): Comparison of oligo(ethylene glycol) and phosphorylcholine. Langmuir. 2019;35:1199–1210. doi: 10.1021/acs.langmuir.8b02122. PubMed DOI

Kim M., Iezzi R., Shim B.S., Martin D.C. Impedimetric biosensors for detecting vascular endothelial growth factor (VEGF) based on poly(3,4-ethylene dioxythiophene) (PEDOT)/Gold nanoparticle (Au NP) composites. Front. Chem. 2019;7:234. doi: 10.3389/fchem.2019.00234. PubMed DOI PMC

Sappia L.D., Tuninetti J.S., Ceolín M., Knoll W., Rafti M., Azzaroni O. MOF@PEDOT composite films for impedimetric pesticide sensors. Glob. Chall. 2020;4:1900076. doi: 10.1002/gch2.201900076. PubMed DOI PMC

Alia M.A., Jianga H., Mahal N.K., Weber R.J., Kumar R., Castellano M.J., Dong L. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuators B. 2017;239:1289–1299. doi: 10.1016/j.snb.2016.09.101. DOI

Echabaane M., Rouis A., Mahjoub M.A., Bonnamour I., Ouada H.B. Impedimetric sensing proprieties of ITO electrodes functionalized with PEDOT:PSS/Azo-calix[4]arene for the detection of Al3+ ions under light excitation. J. Electron. Mater. 2017;46:418–424. doi: 10.1007/s11664-016-4838-1. DOI

Erathodiyil N., Chan H.-M., Wu H., Ying J.Y. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater. Today. 2020;38:84–98. doi: 10.1016/j.mattod.2020.03.024. DOI

Encinas N., Yang C.-Y., Geyer F., Kaltbeitzel A., Baumli P., Reinholz J., Mailänder V., Butt H.-J., Vollmer D. Submicrometer-sized roughness suppresses bacteria adhesion. ACS Appl. Mater. Interfaces. 2020;12:21192–21200. doi: 10.1021/acsami.9b22621. PubMed DOI PMC

Yu Q., Li X., Zhang Y., Yuan L., Zhao T., Chen H. The synergistic effects of stimuli-responsive polymers with nano- structured surfaces: Wettability and protein adsorption. RSC Adv. 2011;1:262–269. doi: 10.1039/c1ra00201e. DOI

Yu Q., Chen H., Zhang Y., Yuan L., Zhao T., Li X., Wang H. pH-reversible, high-capacity binding of proteins on a substrate with nanostructure. Langmuir. 2010;26:17812–17815. doi: 10.1021/la103647s. PubMed DOI

Kim S., Yu D., Kim T., Shin K., Yoon J. Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy. Electrochim. Acta. 2012;82:126–131. doi: 10.1016/j.electacta.2012.05.131. DOI

Shevchenko N., Tomsik E., Laishevkina S., Iakobson O., Pankova G. Cross-linked polyelectrolyte microspheres: Preparation and new insights into electro-surface properties. Soft Matter. 2021;17:2290–2301. doi: 10.1039/D0SM02147D. PubMed DOI

Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov I., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L. Method of preparation of soluble PEDOT: Self-polymerization of EDOT without oxidant at room temperature. Macromol. Chem. Phys. 2020;221:2000219. doi: 10.1002/macp.202000219. DOI

Ivanko I., Mahun A., Kobera L., Černochová Z., Pavlova E., Toman P., Pientka Z., Štěpánek P., Tomšík E. Synergy between the assembly of individual PEDOT chains and their interaction with light. Macromolecules. 2021;54:10321–10330. doi: 10.1021/acs.macromol.1c01975. DOI

Ivanko I., Svoboda J., Lukesova M., Sedenkova I., Tomsik E. Hydrogen bonding as a tool to control chain structure of PEDOT: Electrochemical synthesis in the presence of different electrolytes. Macromolecules. 2020;53:2464–2473. doi: 10.1021/acs.macromol.9b02627. DOI

Khan M.S.I., Oh S.-W., Kim Y.-J. Power of Scanning electron microscopy and energy dispersive X-ray analysis in rapid microbial detection and identification at the single cell level. Sci. Rep. 2020;10:2368. doi: 10.1038/s41598-020-59448-8. PubMed DOI PMC

Buianova E.S., editor. The Impedance Spectroscopy. The Theory and Application. Ural University Publishing House; Yekaterinburg, Russia: 2017.

Yang W., Zhao W., Liu Y., Hu H., Pei X., Wu Y., Zhou F. The effect of wetting property on anti-fouling/foul-release performance under quasi-static/hydrodynamic conditions. Prog. Org. Coat. 2016;95:64–71. doi: 10.1016/j.porgcoat.2016.02.018. DOI

Rehel K., Linossier I., Le Norcy T., Fay F., Obando C.Z., Hellio C. A new method for evaluation of antifouling activity of molecules against microalgal biofilms using confocal laser scanning microscopy-microfluidic flow-cells. Int. Biodeterior. Biodegrad. 2019;139:54–61.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...