Preparation of Smart Surfaces Based on PNaSS@PEDOT Microspheres: Testing of E. coli Detection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-06-00424
Czech Health Research Council
PubMed
35408397
PubMed Central
PMC9003540
DOI
10.3390/s22072784
PII: s22072784
Knihovny.cz E-zdroje
- Klíčová slova
- PEDOT, PNaSS, impedance, microspheres, smart surface,
- MeSH
- bicyklické sloučeniny heterocyklické chemie MeSH
- Escherichia coli * MeSH
- mikrosféry MeSH
- polymery * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bicyklické sloučeniny heterocyklické MeSH
- poly(3,4-ethylene dioxythiophene) MeSH Prohlížeč
- polymery * MeSH
The main task of the research is to acquire fundamental knowledge about the effect of polymer structure on the physicochemical properties of films. A novel meta-material that can be used in manufacturing sensor layers was developed as a model. At the first stage, poly(sodium 4-styrenesulfonate) (PNaSS) cross-linked microspheres are synthesized (which are based on strong polyelectrolytes containing sulfo groups in each monomer unit), and at the second stage, PNaSS@PEDOT microspheres are formed. The poly(3,4-ethylenedioxythiophene) (PEDOT) shell was obtained by the acid-assisted self-polymerization of the monomer; this process is biologically safe and thus suitable for biomedical applications. The suitability of electrochemical impedance spectroscopy for E. coli detection was tested; it was revealed that the attached bacterial wall was destroyed upon application of constant oxidation potential (higher than 0.5 V), which makes the PNaSS@PEDOT microsphere particles promising materials for the development of antifouling coatings. Furthermore, under open-circuit conditions, the walls of E. coli bacteria were not destroyed, which opens up the possibility of employing such meta-materials as sensor films. Scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle, and wide-angle X-ray diffraction methods were applied in order to characterize the PNaSS@PEDOT films.
Zobrazit více v PubMed
Wei T., Yu Q., Zhan W., Chen H. A Smart Antibacterial Surface for the On-Demand Killing and Releasing of Bacteria. Adv. Healthc. Mater. 2016;5:449–456. doi: 10.1002/adhm.201500700. PubMed DOI
Kaur R., Liu S. Antibacterial surface design—Contact kill. Prog. Surf. Sci. 2016;91:136–153. doi: 10.1016/j.progsurf.2016.09.001. DOI
Banerjee I., Pangule R.C., Kane R. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011;23:690–718. doi: 10.1002/adma.201001215. PubMed DOI
Lin P.-H., Li B.-R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst. 2020;145:1110–1120. doi: 10.1039/C9AN02017A. PubMed DOI
Wu J.-G., Chen J.-H., Liu K.-T., Luo S.-C. Engineering Antifouling Conducting Polymers for Modern Biomedical Applications. ACS Appl. Mater. Interfaces. 2019;11:21294–21307. doi: 10.1021/acsami.9b04924. PubMed DOI
Monzó J., Insua I., Fernandez-Trillo F., Rodriguez P. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens. Analyst. 2015;140:7116–7128. doi: 10.1039/C5AN01330E. PubMed DOI
Sahika Inal S., Rivnay J., Suiu A.-O., Malliaras G.G., McCulloch I. Conjugated Polymers in Bioelectronics. Acc. Chem. Res. 2018;51:1368–1376. doi: 10.1021/acs.accounts.7b00624. PubMed DOI
Gu H., Ren D. Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances. Front. Chem. Sci. Eng. 2014;8:20–33. doi: 10.1007/s11705-014-1412-3. DOI
Gómez R., Bashir R., Bhunia A.K. Microscale electronic detection of bacterial metabolism. Sens. Actuators B Chem. 2002;86:198–208. doi: 10.1016/S0925-4005(02)00175-2. DOI
Dijk G., Rutz A.L., Malliaras G.G. Stability of PEDOT:PSS-coated gold electrodes in cell culture conditions. Adv. Mater. Technol. 2020;5:1900662. doi: 10.1002/admt.201900662. DOI
Donahue M.J., Sanchez-Sanchez A., Inal S., Qu J., Owens R.M., Mecerreyes D., Malliaras G.G., Martin D.C. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R Rep. 2020;140:100546. doi: 10.1016/j.mser.2020.100546. DOI
Cao B., Lee C.-J., Zeng Z., Cheng F., Xu F., Cong H., Cheng G. Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties. Chem. Sci. 2016;7:1976–1981. doi: 10.1039/C5SC03887A. PubMed DOI PMC
Gkoupidenis P., Koutsouras D.A., Malliaras G.G. Neuromorphic device arthitectures with global connectivity through electrolyte gating. Nat. Commun. 2017;8:15448. doi: 10.1038/ncomms15448. PubMed DOI PMC
Daniels J.S., Pourmand N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis. 2007;19:1239–1257. doi: 10.1002/elan.200603855. PubMed DOI PMC
Bahadır E.B., Sezgintür M.K. A review on impedimetric biosensors. Artif. Cell. Nanomed. Biotechnol. 2016;44:248–262. doi: 10.3109/21691401.2014.942456. PubMed DOI
Varshney M., Li Y., Srinivasan B., Tung S. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sens. Actuators B. 2007;128:99–107. doi: 10.1016/j.snb.2007.03.045. DOI
Xu Y., Xie X., Duan Y., Wang L., Cheng Z., Cheng J. A review of impedance measurements of whole cells. Biosens. Bioelectron. 2016;77:824–836. doi: 10.1016/j.bios.2015.10.027. PubMed DOI
Koutsouras D.A., Gkoupidenis P., Stolz C., Subramanian V., Malliaras G.G., Martin D.C. Impedance spectroscopy of spin-cast and electrochemically deposited pedot:pss films on microfabricated electrodes with various areas. ChemElectroChem. 2017;4:2321–2327. doi: 10.1002/celc.201700297. DOI
Furst A.L., Francis M.B. Impedance-based detection of bacteria. Chem. Rev. 2019;119:700–726. doi: 10.1021/acs.chemrev.8b00381. PubMed DOI
Settu K., Chen C.-J., Liu J.-T., Chen C.-L., Tsai J.-Z. Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Biosens. Bioelectron. 2015;66:244–250. doi: 10.1016/j.bios.2014.11.027. PubMed DOI
Brosel-Oliu S., Abramova N., Uria N., Bratov A. Impedimetric transducers based on interdigitated electrode arrays for bacterial detection—A review. Anal. Chim. Acta. 2019;1088:1–19. doi: 10.1016/j.aca.2019.09.026. PubMed DOI
Berggren M., Malliaras G.G. How conducting polymer electrodes operate. Science. 2019;364:233–234. doi: 10.1126/science.aaw9295. PubMed DOI
Van de Burgt Y., Lubberman E., Fuller E.J., Keene S.T., Faria G.C., Agarwal S., Marinella M.J., Alec T.A., Salleo A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 2017;16:414–418. doi: 10.1038/nmat4856. PubMed DOI
Skládal P. Piezoelectric biosensors. Trac-Trends Anal. Chem. 2016;79:127–133. doi: 10.1016/j.trac.2015.12.009. DOI
Hopkins J., Fidanovski K., Lauto A., Mawad D. All-organic semiconductors for electrochemical biosensors: An overview of recent progress in material design. Front. Bioeng. Biotechnol. 2019;7:237. doi: 10.3389/fbioe.2019.00237. PubMed DOI PMC
Wan A.M.-D., Inal S., Williams T., Wang K., Leleux P., Estevez L., Giannelis E.P., Fischbach C., Malliaras G.G., Gourdon D. 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B. 2015;3:5040–5048. doi: 10.1039/C5TB00390C. PubMed DOI PMC
Ista L.K., Mendez S., Lopez G.P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling. 2010;26:111–118. doi: 10.1080/08927010903383455. PubMed DOI
Puttaswamy S., Lee B.-D., Amighi B., Chakraborty S., Sengupta S. Novel electrical method for the rapid determination of minimum inhibitory concentration (MIC) and assay of bactericidal/bacteriostatic activity. J. Biosens. Bioelectron. S. 2012;2:003. doi: 10.4172/2155-6210.S2-003. DOI
Wei T., Tang Z., Yu Q., Chen H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces. 2017;9:37511–37523. doi: 10.1021/acsami.7b13565. PubMed DOI
Ista L.K., Pérez-Luna V.K., López G.P. Surface-grafted, environmentally sensitive polymers for biofilm release. Appl. Environ. Microbiol. 1999;65:1603–1609. doi: 10.1128/AEM.65.4.1603-1609.1999. PubMed DOI PMC
Ogata A.F., Edgar J.M., Majumdar S., Briggs J.S., Patterson S.V., Tan M.X., Kudlacek S.T., Schneider C.A., Weiss G.A., Penner R.M. Virus-Enabled Biosensor for Human Serum Albumin. Anal. Chem. 2017;89:1373–1381. doi: 10.1021/acs.analchem.6b04840. PubMed DOI PMC
Chen Y., Luo S.-C. Synergistic effects of ions and surface potentials on antifouling poly(3,4-ethylenedioxythiophene): Comparison of oligo(ethylene glycol) and phosphorylcholine. Langmuir. 2019;35:1199–1210. doi: 10.1021/acs.langmuir.8b02122. PubMed DOI
Kim M., Iezzi R., Shim B.S., Martin D.C. Impedimetric biosensors for detecting vascular endothelial growth factor (VEGF) based on poly(3,4-ethylene dioxythiophene) (PEDOT)/Gold nanoparticle (Au NP) composites. Front. Chem. 2019;7:234. doi: 10.3389/fchem.2019.00234. PubMed DOI PMC
Sappia L.D., Tuninetti J.S., Ceolín M., Knoll W., Rafti M., Azzaroni O. MOF@PEDOT composite films for impedimetric pesticide sensors. Glob. Chall. 2020;4:1900076. doi: 10.1002/gch2.201900076. PubMed DOI PMC
Alia M.A., Jianga H., Mahal N.K., Weber R.J., Kumar R., Castellano M.J., Dong L. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuators B. 2017;239:1289–1299. doi: 10.1016/j.snb.2016.09.101. DOI
Echabaane M., Rouis A., Mahjoub M.A., Bonnamour I., Ouada H.B. Impedimetric sensing proprieties of ITO electrodes functionalized with PEDOT:PSS/Azo-calix[4]arene for the detection of Al3+ ions under light excitation. J. Electron. Mater. 2017;46:418–424. doi: 10.1007/s11664-016-4838-1. DOI
Erathodiyil N., Chan H.-M., Wu H., Ying J.Y. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater. Today. 2020;38:84–98. doi: 10.1016/j.mattod.2020.03.024. DOI
Encinas N., Yang C.-Y., Geyer F., Kaltbeitzel A., Baumli P., Reinholz J., Mailänder V., Butt H.-J., Vollmer D. Submicrometer-sized roughness suppresses bacteria adhesion. ACS Appl. Mater. Interfaces. 2020;12:21192–21200. doi: 10.1021/acsami.9b22621. PubMed DOI PMC
Yu Q., Li X., Zhang Y., Yuan L., Zhao T., Chen H. The synergistic effects of stimuli-responsive polymers with nano- structured surfaces: Wettability and protein adsorption. RSC Adv. 2011;1:262–269. doi: 10.1039/c1ra00201e. DOI
Yu Q., Chen H., Zhang Y., Yuan L., Zhao T., Li X., Wang H. pH-reversible, high-capacity binding of proteins on a substrate with nanostructure. Langmuir. 2010;26:17812–17815. doi: 10.1021/la103647s. PubMed DOI
Kim S., Yu D., Kim T., Shin K., Yoon J. Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy. Electrochim. Acta. 2012;82:126–131. doi: 10.1016/j.electacta.2012.05.131. DOI
Shevchenko N., Tomsik E., Laishevkina S., Iakobson O., Pankova G. Cross-linked polyelectrolyte microspheres: Preparation and new insights into electro-surface properties. Soft Matter. 2021;17:2290–2301. doi: 10.1039/D0SM02147D. PubMed DOI
Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov I., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L. Method of preparation of soluble PEDOT: Self-polymerization of EDOT without oxidant at room temperature. Macromol. Chem. Phys. 2020;221:2000219. doi: 10.1002/macp.202000219. DOI
Ivanko I., Mahun A., Kobera L., Černochová Z., Pavlova E., Toman P., Pientka Z., Štěpánek P., Tomšík E. Synergy between the assembly of individual PEDOT chains and their interaction with light. Macromolecules. 2021;54:10321–10330. doi: 10.1021/acs.macromol.1c01975. DOI
Ivanko I., Svoboda J., Lukesova M., Sedenkova I., Tomsik E. Hydrogen bonding as a tool to control chain structure of PEDOT: Electrochemical synthesis in the presence of different electrolytes. Macromolecules. 2020;53:2464–2473. doi: 10.1021/acs.macromol.9b02627. DOI
Khan M.S.I., Oh S.-W., Kim Y.-J. Power of Scanning electron microscopy and energy dispersive X-ray analysis in rapid microbial detection and identification at the single cell level. Sci. Rep. 2020;10:2368. doi: 10.1038/s41598-020-59448-8. PubMed DOI PMC
Buianova E.S., editor. The Impedance Spectroscopy. The Theory and Application. Ural University Publishing House; Yekaterinburg, Russia: 2017.
Yang W., Zhao W., Liu Y., Hu H., Pei X., Wu Y., Zhou F. The effect of wetting property on anti-fouling/foul-release performance under quasi-static/hydrodynamic conditions. Prog. Org. Coat. 2016;95:64–71. doi: 10.1016/j.porgcoat.2016.02.018. DOI
Rehel K., Linossier I., Le Norcy T., Fay F., Obando C.Z., Hellio C. A new method for evaluation of antifouling activity of molecules against microalgal biofilms using confocal laser scanning microscopy-microfluidic flow-cells. Int. Biodeterior. Biodegrad. 2019;139:54–61.