Laccases and Tyrosinases in Organic Synthesis

. 2022 Mar 22 ; 23 (7) : . [epub] 20220322

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35408822

Grantová podpora
LTC19037 Ministry of Education Youth and Sports
RVO61388971 Czech Academy of Sciences

Laccases (Lac) and tyrosinases (TYR) are mild oxidants with a great potential in research and industry. In this work, we review recent advances in their use in organic synthesis. We summarize recent examples of Lac-catalyzed oxidation, homocoupling and heterocoupling, and TYR-catalyzed ortho-hydroxylation of phenols. We highlight the combination of Lac and TYR with other enzymes or chemical catalysts. We also point out the biological and pharmaceutical potential of the products, such as dimers of piceid, lignols, isorhamnetin, rutin, caffeic acid, 4-hydroxychalcones, thiols, hybrid antibiotics, benzimidazoles, benzothiazoles, pyrimidine derivatives, hydroxytyrosols, alkylcatechols, halocatechols, or dihydrocaffeoyl esters, etc. These products include radical scavengers; antibacterial, antiviral, and antitumor compounds; and building blocks for bioactive compounds and drugs. We summarize the available enzyme sources and discuss the scalability of their use in organic synthesis. In conclusion, we assume that the intensive use of laccases and tyrosinases in organic synthesis will yield new bioactive compounds and, in the long-term, reduce the environmental impact of industrial organic chemistry.

Zobrazit více v PubMed

Riva S. Laccases: Blue enzymes for green chemistry. Trends Biotechnol. 2006;24:219–226. doi: 10.1016/j.tibtech.2006.03.006. PubMed DOI

Chang C.W., Liao J.Y., Lu K.T. Syntheses and characteristics of urushiol-based waterborne UV-cured wood coatings. Polymers. 2021;13:4005. doi: 10.3390/polym13224005. PubMed DOI PMC

Pezzella C., Guarino L., Piscitelli A. How to enjoy laccases. Cell. Mol. Life Sci. 2015;72:923–940. doi: 10.1007/s00018-014-1823-9. PubMed DOI PMC

Uyama H. Functional polymers from renewable plant oils. Polym. J. 2018;50:1003–1011. doi: 10.1038/s41428-018-0097-8. DOI

Janusz G., Pawlik A., Swiderska-Burek U., Polak J., Sulej J., Jarosz-Wilkolazka A., Paszczynski A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020;21:966. doi: 10.3390/ijms21030966. PubMed DOI PMC

Patel S.K.S., Gupta R.K., Kim S.Y., Kim I.W., Kalia V.C., Lee J.K. Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J. Microbiol. 2021;61:45–54. doi: 10.1007/s12088-020-00912-4. PubMed DOI PMC

Mehra R., Muschiol J., Meyer A.S., Kepp K.P. A structural-chemical explanation of fungal laccase activity. Sci. Rep. 2018;8:17285. doi: 10.1038/s41598-018-35633-8. PubMed DOI PMC

Agrawal K., Verma P. Multicopper oxidase laccases with distinguished spectral properties: A new outlook. Heliyon. 2020;6:e03972. doi: 10.1016/j.heliyon.2020.e03972. PubMed DOI PMC

Radveikiené I., Vidžiúnaité R., Meškiené R., Meškys R., Časaité V. Characterization of a yellow laccase from Botrytis cinerea 241. J. Fungi. 2021;7:143. doi: 10.3390/jof7020143. PubMed DOI PMC

Mot A.C., Coman C., Hadade N., Damian G., Silaghi-Dumitrescu R., Heering H. “Yellow” laccase from Sclerotinia sclerotiorum is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct. PLoS ONE. 2020;15:e0225530. doi: 10.1371/journal.pone.0225530. PubMed DOI PMC

Mehra R., Kepp K.P. Contribution of substrate reorganization energies of electron transfer to laccase activity. Phys. Chem. Chem. Phys. 2019;21:15805–15814. doi: 10.1039/C9CP01012B. PubMed DOI

Mehra R., Meyer A.S., Kepp K.P. Molecular dynamics derived life times of active substrate binding poses explain KM of laccase mutants. RSC Adv. 2018;8:36915–36926. doi: 10.1039/C8RA07138A. PubMed DOI PMC

Yoshida H. Chemistry of lacquer (urushi) J. Chem. Soc. 1883;43:472–486. doi: 10.1039/CT8834300472. DOI

Patel S.K.S., Otari S.V., Li J., Kim D.R., Kim S.C., Cho B.-K., Kalia V.C., Kang Y.C., Lee J.-K. Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J. Hazard. Mater. 2018;347:442–450. doi: 10.1016/j.jhazmat.2018.01.003. PubMed DOI

Vipotnik Z., Michelin M., Tavares T. Rehabilitation of a historically contaminated soil by different laccases and laccase-mediator system. J. Soils Sediments. 2022:1–9. doi: 10.1007/s11368-021-03125-4. PubMed DOI

Sorrentino I., Carriere M., Jamet H., Stanzione I., Piscitelli A., Giardina P., Le Goff A. The laccase mediator system at carbon nanotubes for anthracene oxidation and femtomolar electrochemical biosensing. Analyst. 2022;147:897–904. doi: 10.1039/D1AN02091A. PubMed DOI

Jeon J.R., Baldrian P., Murugesan K., Chang Y.S. Laccase-catalysed oxidations of naturally occurring phenols: From in vivo biosynthetic pathways to green synthetic applications. Microb. Biotechnol. 2012;5:318–332. doi: 10.1111/j.1751-7915.2011.00273.x. PubMed DOI PMC

Debnath R., Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatal. Agric. Biotechnol. 2020;26:101645. doi: 10.1016/j.bcab.2020.101645. DOI

Khatami S.H., Vakili O., Movahedpour A., Ghesmati Z., Ghasemi H., Taheri-Anganeh M. Laccase: Various types and applications. Biotechnol. Appl. Biochem. 2022 doi: 10.1002/bab.2313. PubMed DOI

Senthivelan T., Kanagaraj J., Panda R.C. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach—A review. Biotechnol. Bioproc. Eng. 2016;21:19–38. doi: 10.1007/s12257-015-0278-7. DOI

Rostami A., Abdelrasoul A., Shokri Z., Shirvandi Z. Applications and mechanisms of free and immobilized laccase in detoxification of phenolic compounds—A review. Korean J. Chem. Eng. 2022:1–12. doi: 10.1007/s11814-021-0984-0. DOI

Martínková L., Kotik M., Marková E., Homolka L. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. Chemosphere. 2016;149:373–382. doi: 10.1016/j.chemosphere.2016.01.022. PubMed DOI

Bilal M., Rasheed T., Nabeel F., Iqbal H.M.N., Zhao Y.P. Hazardous contaminants in the environment and their laccase-assisted degradation—A review. J. Environ. Manag. 2019;234:253–264. doi: 10.1016/j.jenvman.2019.01.001. PubMed DOI

Barrios-Estrada C., Rostro-Alanis M.D., Muñoz-Gutiérrez B.D., Iqbal H.M.N., Kannan S., Parra-Saldívar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—A review. Sci. Total Environ. 2018;612:1516–1531. doi: 10.1016/j.scitotenv.2017.09.013. PubMed DOI

Yashas S.R., Shivakumara B.P., Udayashankara T.H., Krishna B.M. Laccase biosensor: Green technique for quantification of phenols in wastewater (a review) Orient. J. Chem. 2018;34:631–637. doi: 10.13005/ojc/340204. DOI

Sun K., Li S.Y., Si Y.B., Huang Q.G. Advances in laccase-triggered anabolism for biotechnology applications. Crit. Rev. Biotechnol. 2021;41:969–993. doi: 10.1080/07388551.2021.1895053. PubMed DOI

Slagman S., Zuilhof H., Franssen M.C.R. Laccase-mediated grafting on biopolymers and synthetic polymers: A critical review. ChemBioChem. 2018;19:288–311. doi: 10.1002/cbic.201700518. PubMed DOI PMC

Liu Y., Luo G., Ngo H.H., Guo W.S., Zhang S.C. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review. Bioresour. Technol. 2020;298:122511. doi: 10.1016/j.biortech.2019.122511. PubMed DOI

Mayolo-Deloisa K., González-González M., Rito-Palomares M. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Front. Bioeng. Biotechnol. 2020;8:222. doi: 10.3389/fbioe.2020.00222. PubMed DOI PMC

Nasir M., Hashim R., Sulaiman O., Nordin N.A., Lamaming J., Asim M. Laccase, an emerging tool to fabricate green composites: A review. Bioresources. 2015;10:6262–6284. doi: 10.15376/biores.10.3.Nasir. DOI

Adamian Y., Lonappan L., Alokpa K., Agathos S.N., Cabana H. Recent developments in the immobilization of laccase on carbonaceous supports for environmental applications—A critical review. Front. Bioeng. Biotechnol. 2021;9 doi: 10.3389/fbioe.2021.778239. PubMed DOI PMC

Vieira Y.A., Gurgel D., Henriques R.O., Machado R.A.F., de Oliveira D., Oechsler B.F., Furigo A. A perspective review on the application of polyacrylonitrile-based supports for laccase immobilization. Chem. Rec. 2021:e202100215. doi: 10.1002/tcr.202100215. PubMed DOI

Gu Y.H., Yuan L., Jia L.N., Xue P., Yao H.Q. Recent developments of a co-immobilized laccase-mediator system: A review. RSC Adv. 2021;11:29498–29506. doi: 10.1039/D1RA05104K. PubMed DOI PMC

Zhou W.T., Zhang W.X., Cai Y.P. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021;403:126272. doi: 10.1016/j.cej.2020.126272. DOI

Daronch N.A., Kelbert M., Pereira C.S., de Araújo P.H.H., de Oliveira D. Elucidating the choice for a precise matrix for laccase immobilization: A review. Chem. Eng. J. 2020;397:125506. doi: 10.1016/j.cej.2020.125506. DOI

Ren D.J., Wang Z.B., Jiang S., Yu H.Y., Zhang S.Q., Zhang X.Q., Taylor, Francis L. Recent environmental applications of and development prospects for immobilized laccase: A review. Biotechnol. Genet. Eng. Rev. 2020;36:81–131. doi: 10.1080/02648725.2020.1864187. PubMed DOI

Liu H., Wu X., Sun J.L., Chen S.C. Stimulation of laccase biocatalysis in ionic liquids: A review on recent progress. Curr. Prot. Pept. Sci. 2018;19:100–111. doi: 10.2174/1389203718666161122110647. PubMed DOI

Lei L.L., Yang X.Y., Song Y.D., Huang H., Li Y.X. Current research progress on laccase-like nanomaterials. New J. Chem. 2022;46:3541–3550. doi: 10.1039/D1NJ05658A. DOI

Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 2006;30:215–242. doi: 10.1111/j.1574-4976.2005.00010.x. PubMed DOI

Ramsden C.A., Riley P.A. Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. Lett. 2014;22:2388–2395. doi: 10.1016/j.bmc.2014.02.048. PubMed DOI

Ramsden C.A., Riley P.A. Mechanistic aspects of the tyrosinase oxidation of hydroquinone. Bioorg. Med. Chem. Lett. 2014;24:2463–2464. doi: 10.1016/j.bmcl.2014.04.009. PubMed DOI

Halaouli S., Asther M., Sigoillot J.C., Hamdi M., Lomascolo A. Fungal tyrosinases: New prospects in molecular characteristics, bioengineering and biotechnological applications. J. Appl. Microbiol. 2006;100:219–232. doi: 10.1111/j.1365-2672.2006.02866.x. PubMed DOI

Ullah S., Son S., Yun H.Y., Kim D.H., Chun P., Moon H.R. Tyrosinase inhibitors: A patent review (2011–2015) Expert Opin. Ther. Pat. 2016;26:347–362. doi: 10.1517/13543776.2016.1146253. PubMed DOI

Burlando B., Clericuzio M., Cornara L. Moraceae plants with tyrosinase inhibitory activity: A review. Mini-Rev. Med. Chem. 2017;17:108–121. doi: 10.2174/1389557516666160609071854. PubMed DOI

Zolghadri S., Bahrami A., Khan M.T.H., Muñoz-Muñoz J., García-Molina F., García-Cánovas F., Saboury A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhibit. Med. Chem. 2019;34:279–309. doi: 10.1080/14756366.2018.1545767. PubMed DOI PMC

Obaid R.J., Mughal E.U., Naeem N., Sadiq A., Alsantali R.I., Jassas R.S., Moussa Z., Ahmed S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Adv. 2021;11:22159–22198. doi: 10.1039/D1RA03196A. PubMed DOI PMC

Opperman L., De Kock M., Klaasen J., Rahiman F. Tyrosinase and melanogenesis inhibition by indigenous african plants: A review. Cosmetics. 2020;7:60. doi: 10.3390/cosmetics7030060. DOI

Peng Z.Y., Wang G.C., Zeng Q.H., Li Y.F., Liu H.Q., Wang J.J., Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit. Rev. Food Sci. Nutr. 2021:1–42. doi: 10.1080/10408398.2021.1871724. PubMed DOI

Fernandes M.S., Kerkar S. Microorganisms as a source of tyrosinase inhibitors: A review. Ann. Microbiol. 2017;67:343–358. doi: 10.1007/s13213-017-1261-7. DOI

García-Molina P., García-Molina F., Teruel-Puche J.A., Rodríguez-López J.N., García-Cánovas F., Muñoz-Muñoz J.L. Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: A review. Mol. Catal. 2022;518:112072. doi: 10.1016/j.mcat.2021.112072. DOI

Mogharabi M., Faramarzi M.A. Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv. Synth. Catal. 2014;356:897–927. doi: 10.1002/adsc.201300960. DOI

Kudanga T., Nemadziva B., Le Roes-Hill M. Laccase catalysis for the synthesis of bioactive compounds. Appl. Microbiol. Biotechnol. 2017;101:13–33. doi: 10.1007/s00253-016-7987-5. PubMed DOI

Aruwa C.E., Amoo S.O., Koorbanally N., Kudanga T. Laccase-mediated modification of isorhamnetin improves antioxidant and antibacterial activities. Process Biochem. 2022;112:53–61. doi: 10.1016/j.procbio.2021.11.019. DOI

Gavezzotti P., Bertacchi F., Fronza G., Křen V., Monti D., Riva S. Laccase-catalyzed dimerization of piceid, a resveratrol glucoside, and its further enzymatic elaboration. Adv. Synth. Catal. 2015;357:1831–1839. doi: 10.1002/adsc.201500185. DOI

Bassanini I., Gavezzotti P., Monti D., Krejzova J., Kren V., Riva S. Laccase-catalyzed dimerization of glycosylated lignols. J. Mol. Catal. B-Enzym. 2016;134:295–301. doi: 10.1016/j.molcatb.2016.10.019. DOI

Muñiz-Mouro A., Ferreira A.M., Coutinho J.A.P., Freire M.G., Tavares A.P.M., Gullón P., González-García S., Eibes G. Integrated biocatalytic platform based on aqueous biphasic systems for the sustainable oligomerization of rutin. ACS Sustain. Chem. Eng. 2021;9:9941–9950. doi: 10.1021/acssuschemeng.1c03399. DOI

Nemadziva B., Le Roes-Hill M., Koorbanally N., Kudanga T. Small laccase-catalyzed synthesis of a caffeic acid dimer with high antioxidant capacity. Process Biochem. 2018;69:99–105. doi: 10.1016/j.procbio.2018.03.009. DOI

Nemadziva B., Ngubane S., Ruzengwe F.M., Kasumbwe K., Kudanga T. Potato peels as feedstock for laccase-catalysed synthesis of phellinsin A. Biomass Convers. Biorefinery. 2022 doi: 10.1007/s13399-021-02251-w. DOI

Grosso S., Radaelli F., Fronza G., Passarella D., Monti D., Riva S. Studies on the laccase-catalyzed oxidation of 4-hydroxy-chalcones. Adv. Synth. Catal. 2019;361:2696–2705. doi: 10.1002/adsc.201900190. DOI

Khaledian D., Rostami A., Zarei S.A. Laccase-catalyzed in situ generation and regeneration of N-phenyltriazolinedione for the aerobic oxidative homo-coupling of thiols to disulfides. Catal. Commun. 2018;114:75–78. doi: 10.1016/j.catcom.2018.06.007. DOI

Mikolasch A., Hammer E., Witt S., Lindequist U. Laccase-catalyzed derivatization of 6-aminopenicillanic, 7-aminocephalosporanic and 7-aminodesacetoxycephalosporanic acid. AMB Express. 2020;10:177. doi: 10.1186/s13568-020-01117-0. PubMed DOI PMC

Mikolasch A., Hahn V. Laccase-catalyzed derivatization of antibiotics with sulfonamide or sulfone structures. Microorganisms. 2021;9:2199. doi: 10.3390/microorganisms9112199. PubMed DOI PMC

Maphupha M., Juma W.P., de Koning C.B., Brady D. A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Adv. 2018;8:39496–39510. doi: 10.1039/C8RA07377E. PubMed DOI PMC

Habibi D., Rahimi A., Rostami A., Moradi S. Green and mild laccase-catalyzed aerobic oxidative coupling of benzenediol derivatives with various sodium benzenesulfinates. Tetrahedron Lett. 2017;58:289–293. doi: 10.1016/j.tetlet.2016.11.119. DOI

Abdel-Mohsen H.T., Conrad J., Harms K., Nohr D., Beifuss U. Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Adv. 2017;7:17427–17441. doi: 10.1039/C6RA28102H. DOI

Benny L., Cherian A.R., Varghese A., Sangwan N., Avti P.K., Hegde G. A novel laccase-based biocatalyst for selective electro-oxidation of 2-thiophene methanol. Mol. Catal. 2021;516:111999. doi: 10.1016/j.mcat.2021.111999. DOI

González-Granda S., Méndez-Sánchez D., Lavandera I., Gotor-Fernández V. Laccase-mediated oxidations of propargylic alcohols. application in the deracemization of 1-arylprop-2-yn-1-ols in combination with alcohol dehydrogenases. ChemCatChem. 2020;12:520–527. doi: 10.1002/cctc.201901543. DOI

Ramos-Martín M., Lecuna R., Cicco L., Vitale P., Capriati V., Rios-Lombardía N., González-Sabin J., Soto A.P., García-Álvarez J. A one-pot two-step synthesis of tertiary alcohols combining the biocatalytic laccase/TEMPO oxidation system with organolithium reagents in aerobic aqueous media at room temperature. Chem. Commun. 2021;57:13534–13537. doi: 10.1039/D1CC06460F. PubMed DOI

Mayr S.A., Subagia R., Weiss R., Schwaiger N., Weber H.K., Leitner J., Ribitsch D., Nyanhongo G.S., Guebitz G.M. Oxidation of various kraft lignins with a bacterial laccase enzyme. Int. J. Mol. Sci. 2021;22:13161. doi: 10.3390/ijms222313161. PubMed DOI PMC

Zhu J., Song S.Q., Lian L.D., Shi L., Ren A., Zhao M.W. Improvement of laccase activity by silencing PacC in Ganoderma lucidum. World J. Microbiol. Biotechnol. 2022;38:32. doi: 10.1007/s11274-021-03216-x. PubMed DOI

Aza P., Molpeceres G., Ruiz-Dueñas F.J., Camarero S. Heterologous expression, engineering and characterization of a novel laccase of Agrocybe pediades with promising properties as biocatalyst. J. Fungi. 2021;7:359. doi: 10.3390/jof7050359. PubMed DOI PMC

Patel S.K.S., Kalia V.C., Kim S.Y., Lee J.K., Kim I.W. Immobilization of laccase through inorganic-protein hybrids using various metal ions. Indian J. Microbiol. 2022:1–5. doi: 10.1007/s12088-022-01000-5. PubMed DOI PMC

Espín J.C., Soler-Rivas C., Cantos E., Tomas-Barberán F.A., Wichers H.J. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J. Agric. Food Chem. 2001;49:1187–1193. doi: 10.1021/jf001258b. PubMed DOI

Guazzaroni M., Crestini C., Saladino R. Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols. Bioorg. Med. Chem. 2012;20:157–166. doi: 10.1016/j.bmc.2011.11.018. PubMed DOI

Botta G., Bizzarri B.M., Garozzo A., Timpanaro R., Bisignano B., Amatore D., Palamara A.T., Nencioni L., Saladino R. Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses. Bioorg. Med. Chem. 2015;23:5345–5351. doi: 10.1016/j.bmc.2015.07.061. PubMed DOI PMC

Deri-Zenaty B., Bachar S., Rebros M., Fishman A. A coupled enzymatic reaction of tyrosinase and glucose dehydrogenase for the production of hydroxytyrosol. Appl. Microbiol. Biotechnol. 2020;104:4945–4955. doi: 10.1007/s00253-020-10594-z. PubMed DOI

Bizzarri B.M., Pieri C., Botta G., Arabuli L., Mosesso P., Cinelli S., Schinoppi A., Saladino R. Synthesis and antioxidant activity of DOPA peptidomimetics by a novel IBX mediated aromatic oxidative functionalization. RSC Adv. 2015;5:60354–60364. doi: 10.1039/C5RA09464J. DOI

Botta G., Delfino M., Guazzaroni M., Crestini C., Onofri S., Saladino R. Selective synthesis of DOPA and DOPA peptides by native and immobilized tyrosinase in organic solvent. ChemPlusChem. 2013;78:325–330. doi: 10.1002/cplu.201200300. DOI

Bozzini T., Botta G., Delfino M., Onofri S., Saladino R., Amatore D., Sgarbanti R., Nencioni L., Palamara A.T. Tyrosinase and Layer-by-Layer supported tyrosinases in the synthesis of lipophilic catechols with antiinfluenza activity. Bioorg. Med. Chem. 2013;21:7699–7708. doi: 10.1016/j.bmc.2013.10.026. PubMed DOI

Guazzaroni M., Pasqualini M., Botta G., Saladino R. A Novel synthesis of bioactive catechols by layer-by-layer immobilized tyrosinase in an organic solvent medium. ChemCatChem. 2012;4:89–99. doi: 10.1002/cctc.201100229. DOI

Martínková L., Příhodová R., Kulik N., Pelantová H., Křístková B., Petrásková L., Biedermann D. Biocatalyzed reactions towards functional food components 4-alkylcatechols and their analogues. Catalysts. 2020;10:1077. doi: 10.3390/catal10091077. DOI

Davis R., Molloy S., Quigley B., Nikodinovic-Runic J., Solano F., O’Connor K.E. Biocatalytic versatility of engineered and wild-type tyrosinase from R. solanacearum for the synthesis of 4-halocatechols. Appl. Microbiol. Biotechnol. 2018;102:5121–5131. doi: 10.1007/s00253-018-8994-5. PubMed DOI

Algieri C., Donato L., Bonacci P., Giorno L. Tyrosinase immobilised on polyamide tubular membrane for the l-DOPA production: Total recycle and continuous reactor study. Biochem. Eng. J. 2012;66:14–19. doi: 10.1016/j.bej.2012.03.013. DOI

Donato L., Algieri C., Rizzi A., Giorno L. Kinetic study of tyrosinase immobilized on polymeric membrane. J. Membr. Sci. 2014;454:346–350. doi: 10.1016/j.memsci.2013.12.029. DOI

Senger D.R., Li D., Jaminet S.C., Cao S.G. Activation of the Nrf2 cell defense pathway by ancient foods: Disease prevention by important molecules and microbes lost from the modern western diet. PLoS ONE. 2016;11:e0148042. doi: 10.1371/journal.pone.0148042. PubMed DOI PMC

Lezzi C., Bleve G., Spagnolo S., Perrotta C., Grieco F. Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells. J. Ind. Microbiol. Biotechnol. 2012;39:1875–1880. doi: 10.1007/s10295-012-1192-z. PubMed DOI

Kawamura-Konishi Y., Maekawa S., Tsuji M., Goto H. C-terminal processing of tyrosinase is responsible for activation of Pholiota microspora proenzyme. Appl. Microbiol. Biotechnol. 2011;90:227–234. doi: 10.1007/s00253-010-3039-8. PubMed DOI

Moe L.L., Maekawa S., Kawamura-Konishi Y. The pro-enzyme C-terminal processing domain of Pholiota nameko tyrosinase is responsible for folding of the N-terminal catalytic domain. Appl. Microbiol. Biotechnol. 2015;99:5499–5510. doi: 10.1007/s00253-015-6597-y. PubMed DOI

Haudecoeur R., Gouron A., Dubois C., Jamet H., Lightbody M., Hardré R., Milet A., Bergantino E., Bubacco L., Belle C., et al. Investigation of binding-site homology between mushroom and bacterial tyrosinases by using aurones as effectors. ChemBioChem. 2014;15:1325–1333. doi: 10.1002/cbic.201402003. PubMed DOI

Marková E., Kotik M., Křenková A., Man P., Haudecoeur R., Boumendjel A., Hardré R., Mekmouche Y., Courvoisier-Dezord E., Réglier M., et al. Recombinant tyrosinase from Polyporus arcularius: Overproduction in escherichia coli, characterization, and use in a study of aurones as tyrosinase effectors. J. Agric. Food Chem. 2016;64:2925–2931. doi: 10.1021/acs.jafc.6b00286. PubMed DOI

Halaouli S., Record E., Casalot L., Hamdi M., Sigoillot J.C., Asther M., Lomascolo A. Cloning and characterization of a tyrosinase gene from the white-rot fungus Pycnoporus sanguineus, and overproduction of the recombinant protein in Aspergillus niger. Appl. Microbiol. Biotechnol. 2006;70:580–589. doi: 10.1007/s00253-005-0109-4. PubMed DOI

Westerholm-Parvinen A., Selinheimo E., Boer H., Kalkkinen N., Mattinen M., Saloheimo M. Expression of the Trichoderma reesei tyrosinase 2 in Pichia pastoris: Isotopic labeling and physicochemical characterization. Protein Expr. Purif. 2007;55:147–158. doi: 10.1016/j.pep.2007.04.014. PubMed DOI

Uhnáková B., Ludwig R., Pěknicová J., Homolka L., Lisá L., Šulc M., Petříčková A., Elzeinová F., Pelantová H., Monti D., et al. Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresour. Technol. 2011;102:9409–9415. doi: 10.1016/j.biortech.2011.07.036. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bio-Based Valorization of Lignin-Derived Phenolic Compounds: A Review

. 2023 Apr 22 ; 13 (5) : . [epub] 20230422

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...