Laccases and Tyrosinases in Organic Synthesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LTC19037
Ministry of Education Youth and Sports
RVO61388971
Czech Academy of Sciences
PubMed
35408822
PubMed Central
PMC8998183
DOI
10.3390/ijms23073462
PII: ijms23073462
Knihovny.cz E-zdroje
- Klíčová slova
- bioactive compound, catechol, dimer, heterocoupling, homocoupling, laccase, oligomer, organic synthesis, oxidation, tyrosinase,
- MeSH
- fenoly chemie MeSH
- lakasa * metabolismus MeSH
- oxidace-redukce MeSH
- techniky syntetické chemie MeSH
- tyrosinasa * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fenoly MeSH
- lakasa * MeSH
- tyrosinasa * MeSH
Laccases (Lac) and tyrosinases (TYR) are mild oxidants with a great potential in research and industry. In this work, we review recent advances in their use in organic synthesis. We summarize recent examples of Lac-catalyzed oxidation, homocoupling and heterocoupling, and TYR-catalyzed ortho-hydroxylation of phenols. We highlight the combination of Lac and TYR with other enzymes or chemical catalysts. We also point out the biological and pharmaceutical potential of the products, such as dimers of piceid, lignols, isorhamnetin, rutin, caffeic acid, 4-hydroxychalcones, thiols, hybrid antibiotics, benzimidazoles, benzothiazoles, pyrimidine derivatives, hydroxytyrosols, alkylcatechols, halocatechols, or dihydrocaffeoyl esters, etc. These products include radical scavengers; antibacterial, antiviral, and antitumor compounds; and building blocks for bioactive compounds and drugs. We summarize the available enzyme sources and discuss the scalability of their use in organic synthesis. In conclusion, we assume that the intensive use of laccases and tyrosinases in organic synthesis will yield new bioactive compounds and, in the long-term, reduce the environmental impact of industrial organic chemistry.
Zobrazit více v PubMed
Riva S. Laccases: Blue enzymes for green chemistry. Trends Biotechnol. 2006;24:219–226. doi: 10.1016/j.tibtech.2006.03.006. PubMed DOI
Chang C.W., Liao J.Y., Lu K.T. Syntheses and characteristics of urushiol-based waterborne UV-cured wood coatings. Polymers. 2021;13:4005. doi: 10.3390/polym13224005. PubMed DOI PMC
Pezzella C., Guarino L., Piscitelli A. How to enjoy laccases. Cell. Mol. Life Sci. 2015;72:923–940. doi: 10.1007/s00018-014-1823-9. PubMed DOI PMC
Uyama H. Functional polymers from renewable plant oils. Polym. J. 2018;50:1003–1011. doi: 10.1038/s41428-018-0097-8. DOI
Janusz G., Pawlik A., Swiderska-Burek U., Polak J., Sulej J., Jarosz-Wilkolazka A., Paszczynski A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020;21:966. doi: 10.3390/ijms21030966. PubMed DOI PMC
Patel S.K.S., Gupta R.K., Kim S.Y., Kim I.W., Kalia V.C., Lee J.K. Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J. Microbiol. 2021;61:45–54. doi: 10.1007/s12088-020-00912-4. PubMed DOI PMC
Mehra R., Muschiol J., Meyer A.S., Kepp K.P. A structural-chemical explanation of fungal laccase activity. Sci. Rep. 2018;8:17285. doi: 10.1038/s41598-018-35633-8. PubMed DOI PMC
Agrawal K., Verma P. Multicopper oxidase laccases with distinguished spectral properties: A new outlook. Heliyon. 2020;6:e03972. doi: 10.1016/j.heliyon.2020.e03972. PubMed DOI PMC
Radveikiené I., Vidžiúnaité R., Meškiené R., Meškys R., Časaité V. Characterization of a yellow laccase from Botrytis cinerea 241. J. Fungi. 2021;7:143. doi: 10.3390/jof7020143. PubMed DOI PMC
Mot A.C., Coman C., Hadade N., Damian G., Silaghi-Dumitrescu R., Heering H. “Yellow” laccase from Sclerotinia sclerotiorum is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct. PLoS ONE. 2020;15:e0225530. doi: 10.1371/journal.pone.0225530. PubMed DOI PMC
Mehra R., Kepp K.P. Contribution of substrate reorganization energies of electron transfer to laccase activity. Phys. Chem. Chem. Phys. 2019;21:15805–15814. doi: 10.1039/C9CP01012B. PubMed DOI
Mehra R., Meyer A.S., Kepp K.P. Molecular dynamics derived life times of active substrate binding poses explain KM of laccase mutants. RSC Adv. 2018;8:36915–36926. doi: 10.1039/C8RA07138A. PubMed DOI PMC
Yoshida H. Chemistry of lacquer (urushi) J. Chem. Soc. 1883;43:472–486. doi: 10.1039/CT8834300472. DOI
Patel S.K.S., Otari S.V., Li J., Kim D.R., Kim S.C., Cho B.-K., Kalia V.C., Kang Y.C., Lee J.-K. Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J. Hazard. Mater. 2018;347:442–450. doi: 10.1016/j.jhazmat.2018.01.003. PubMed DOI
Vipotnik Z., Michelin M., Tavares T. Rehabilitation of a historically contaminated soil by different laccases and laccase-mediator system. J. Soils Sediments. 2022:1–9. doi: 10.1007/s11368-021-03125-4. PubMed DOI
Sorrentino I., Carriere M., Jamet H., Stanzione I., Piscitelli A., Giardina P., Le Goff A. The laccase mediator system at carbon nanotubes for anthracene oxidation and femtomolar electrochemical biosensing. Analyst. 2022;147:897–904. doi: 10.1039/D1AN02091A. PubMed DOI
Jeon J.R., Baldrian P., Murugesan K., Chang Y.S. Laccase-catalysed oxidations of naturally occurring phenols: From in vivo biosynthetic pathways to green synthetic applications. Microb. Biotechnol. 2012;5:318–332. doi: 10.1111/j.1751-7915.2011.00273.x. PubMed DOI PMC
Debnath R., Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatal. Agric. Biotechnol. 2020;26:101645. doi: 10.1016/j.bcab.2020.101645. DOI
Khatami S.H., Vakili O., Movahedpour A., Ghesmati Z., Ghasemi H., Taheri-Anganeh M. Laccase: Various types and applications. Biotechnol. Appl. Biochem. 2022 doi: 10.1002/bab.2313. PubMed DOI
Senthivelan T., Kanagaraj J., Panda R.C. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach—A review. Biotechnol. Bioproc. Eng. 2016;21:19–38. doi: 10.1007/s12257-015-0278-7. DOI
Rostami A., Abdelrasoul A., Shokri Z., Shirvandi Z. Applications and mechanisms of free and immobilized laccase in detoxification of phenolic compounds—A review. Korean J. Chem. Eng. 2022:1–12. doi: 10.1007/s11814-021-0984-0. DOI
Martínková L., Kotik M., Marková E., Homolka L. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. Chemosphere. 2016;149:373–382. doi: 10.1016/j.chemosphere.2016.01.022. PubMed DOI
Bilal M., Rasheed T., Nabeel F., Iqbal H.M.N., Zhao Y.P. Hazardous contaminants in the environment and their laccase-assisted degradation—A review. J. Environ. Manag. 2019;234:253–264. doi: 10.1016/j.jenvman.2019.01.001. PubMed DOI
Barrios-Estrada C., Rostro-Alanis M.D., Muñoz-Gutiérrez B.D., Iqbal H.M.N., Kannan S., Parra-Saldívar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—A review. Sci. Total Environ. 2018;612:1516–1531. doi: 10.1016/j.scitotenv.2017.09.013. PubMed DOI
Yashas S.R., Shivakumara B.P., Udayashankara T.H., Krishna B.M. Laccase biosensor: Green technique for quantification of phenols in wastewater (a review) Orient. J. Chem. 2018;34:631–637. doi: 10.13005/ojc/340204. DOI
Sun K., Li S.Y., Si Y.B., Huang Q.G. Advances in laccase-triggered anabolism for biotechnology applications. Crit. Rev. Biotechnol. 2021;41:969–993. doi: 10.1080/07388551.2021.1895053. PubMed DOI
Slagman S., Zuilhof H., Franssen M.C.R. Laccase-mediated grafting on biopolymers and synthetic polymers: A critical review. ChemBioChem. 2018;19:288–311. doi: 10.1002/cbic.201700518. PubMed DOI PMC
Liu Y., Luo G., Ngo H.H., Guo W.S., Zhang S.C. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review. Bioresour. Technol. 2020;298:122511. doi: 10.1016/j.biortech.2019.122511. PubMed DOI
Mayolo-Deloisa K., González-González M., Rito-Palomares M. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Front. Bioeng. Biotechnol. 2020;8:222. doi: 10.3389/fbioe.2020.00222. PubMed DOI PMC
Nasir M., Hashim R., Sulaiman O., Nordin N.A., Lamaming J., Asim M. Laccase, an emerging tool to fabricate green composites: A review. Bioresources. 2015;10:6262–6284. doi: 10.15376/biores.10.3.Nasir. DOI
Adamian Y., Lonappan L., Alokpa K., Agathos S.N., Cabana H. Recent developments in the immobilization of laccase on carbonaceous supports for environmental applications—A critical review. Front. Bioeng. Biotechnol. 2021;9 doi: 10.3389/fbioe.2021.778239. PubMed DOI PMC
Vieira Y.A., Gurgel D., Henriques R.O., Machado R.A.F., de Oliveira D., Oechsler B.F., Furigo A. A perspective review on the application of polyacrylonitrile-based supports for laccase immobilization. Chem. Rec. 2021:e202100215. doi: 10.1002/tcr.202100215. PubMed DOI
Gu Y.H., Yuan L., Jia L.N., Xue P., Yao H.Q. Recent developments of a co-immobilized laccase-mediator system: A review. RSC Adv. 2021;11:29498–29506. doi: 10.1039/D1RA05104K. PubMed DOI PMC
Zhou W.T., Zhang W.X., Cai Y.P. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021;403:126272. doi: 10.1016/j.cej.2020.126272. DOI
Daronch N.A., Kelbert M., Pereira C.S., de Araújo P.H.H., de Oliveira D. Elucidating the choice for a precise matrix for laccase immobilization: A review. Chem. Eng. J. 2020;397:125506. doi: 10.1016/j.cej.2020.125506. DOI
Ren D.J., Wang Z.B., Jiang S., Yu H.Y., Zhang S.Q., Zhang X.Q., Taylor, Francis L. Recent environmental applications of and development prospects for immobilized laccase: A review. Biotechnol. Genet. Eng. Rev. 2020;36:81–131. doi: 10.1080/02648725.2020.1864187. PubMed DOI
Liu H., Wu X., Sun J.L., Chen S.C. Stimulation of laccase biocatalysis in ionic liquids: A review on recent progress. Curr. Prot. Pept. Sci. 2018;19:100–111. doi: 10.2174/1389203718666161122110647. PubMed DOI
Lei L.L., Yang X.Y., Song Y.D., Huang H., Li Y.X. Current research progress on laccase-like nanomaterials. New J. Chem. 2022;46:3541–3550. doi: 10.1039/D1NJ05658A. DOI
Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 2006;30:215–242. doi: 10.1111/j.1574-4976.2005.00010.x. PubMed DOI
Ramsden C.A., Riley P.A. Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. Lett. 2014;22:2388–2395. doi: 10.1016/j.bmc.2014.02.048. PubMed DOI
Ramsden C.A., Riley P.A. Mechanistic aspects of the tyrosinase oxidation of hydroquinone. Bioorg. Med. Chem. Lett. 2014;24:2463–2464. doi: 10.1016/j.bmcl.2014.04.009. PubMed DOI
Halaouli S., Asther M., Sigoillot J.C., Hamdi M., Lomascolo A. Fungal tyrosinases: New prospects in molecular characteristics, bioengineering and biotechnological applications. J. Appl. Microbiol. 2006;100:219–232. doi: 10.1111/j.1365-2672.2006.02866.x. PubMed DOI
Ullah S., Son S., Yun H.Y., Kim D.H., Chun P., Moon H.R. Tyrosinase inhibitors: A patent review (2011–2015) Expert Opin. Ther. Pat. 2016;26:347–362. doi: 10.1517/13543776.2016.1146253. PubMed DOI
Burlando B., Clericuzio M., Cornara L. Moraceae plants with tyrosinase inhibitory activity: A review. Mini-Rev. Med. Chem. 2017;17:108–121. doi: 10.2174/1389557516666160609071854. PubMed DOI
Zolghadri S., Bahrami A., Khan M.T.H., Muñoz-Muñoz J., García-Molina F., García-Cánovas F., Saboury A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhibit. Med. Chem. 2019;34:279–309. doi: 10.1080/14756366.2018.1545767. PubMed DOI PMC
Obaid R.J., Mughal E.U., Naeem N., Sadiq A., Alsantali R.I., Jassas R.S., Moussa Z., Ahmed S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Adv. 2021;11:22159–22198. doi: 10.1039/D1RA03196A. PubMed DOI PMC
Opperman L., De Kock M., Klaasen J., Rahiman F. Tyrosinase and melanogenesis inhibition by indigenous african plants: A review. Cosmetics. 2020;7:60. doi: 10.3390/cosmetics7030060. DOI
Peng Z.Y., Wang G.C., Zeng Q.H., Li Y.F., Liu H.Q., Wang J.J., Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit. Rev. Food Sci. Nutr. 2021:1–42. doi: 10.1080/10408398.2021.1871724. PubMed DOI
Fernandes M.S., Kerkar S. Microorganisms as a source of tyrosinase inhibitors: A review. Ann. Microbiol. 2017;67:343–358. doi: 10.1007/s13213-017-1261-7. DOI
García-Molina P., García-Molina F., Teruel-Puche J.A., Rodríguez-López J.N., García-Cánovas F., Muñoz-Muñoz J.L. Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: A review. Mol. Catal. 2022;518:112072. doi: 10.1016/j.mcat.2021.112072. DOI
Mogharabi M., Faramarzi M.A. Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv. Synth. Catal. 2014;356:897–927. doi: 10.1002/adsc.201300960. DOI
Kudanga T., Nemadziva B., Le Roes-Hill M. Laccase catalysis for the synthesis of bioactive compounds. Appl. Microbiol. Biotechnol. 2017;101:13–33. doi: 10.1007/s00253-016-7987-5. PubMed DOI
Aruwa C.E., Amoo S.O., Koorbanally N., Kudanga T. Laccase-mediated modification of isorhamnetin improves antioxidant and antibacterial activities. Process Biochem. 2022;112:53–61. doi: 10.1016/j.procbio.2021.11.019. DOI
Gavezzotti P., Bertacchi F., Fronza G., Křen V., Monti D., Riva S. Laccase-catalyzed dimerization of piceid, a resveratrol glucoside, and its further enzymatic elaboration. Adv. Synth. Catal. 2015;357:1831–1839. doi: 10.1002/adsc.201500185. DOI
Bassanini I., Gavezzotti P., Monti D., Krejzova J., Kren V., Riva S. Laccase-catalyzed dimerization of glycosylated lignols. J. Mol. Catal. B-Enzym. 2016;134:295–301. doi: 10.1016/j.molcatb.2016.10.019. DOI
Muñiz-Mouro A., Ferreira A.M., Coutinho J.A.P., Freire M.G., Tavares A.P.M., Gullón P., González-García S., Eibes G. Integrated biocatalytic platform based on aqueous biphasic systems for the sustainable oligomerization of rutin. ACS Sustain. Chem. Eng. 2021;9:9941–9950. doi: 10.1021/acssuschemeng.1c03399. DOI
Nemadziva B., Le Roes-Hill M., Koorbanally N., Kudanga T. Small laccase-catalyzed synthesis of a caffeic acid dimer with high antioxidant capacity. Process Biochem. 2018;69:99–105. doi: 10.1016/j.procbio.2018.03.009. DOI
Nemadziva B., Ngubane S., Ruzengwe F.M., Kasumbwe K., Kudanga T. Potato peels as feedstock for laccase-catalysed synthesis of phellinsin A. Biomass Convers. Biorefinery. 2022 doi: 10.1007/s13399-021-02251-w. DOI
Grosso S., Radaelli F., Fronza G., Passarella D., Monti D., Riva S. Studies on the laccase-catalyzed oxidation of 4-hydroxy-chalcones. Adv. Synth. Catal. 2019;361:2696–2705. doi: 10.1002/adsc.201900190. DOI
Khaledian D., Rostami A., Zarei S.A. Laccase-catalyzed in situ generation and regeneration of N-phenyltriazolinedione for the aerobic oxidative homo-coupling of thiols to disulfides. Catal. Commun. 2018;114:75–78. doi: 10.1016/j.catcom.2018.06.007. DOI
Mikolasch A., Hammer E., Witt S., Lindequist U. Laccase-catalyzed derivatization of 6-aminopenicillanic, 7-aminocephalosporanic and 7-aminodesacetoxycephalosporanic acid. AMB Express. 2020;10:177. doi: 10.1186/s13568-020-01117-0. PubMed DOI PMC
Mikolasch A., Hahn V. Laccase-catalyzed derivatization of antibiotics with sulfonamide or sulfone structures. Microorganisms. 2021;9:2199. doi: 10.3390/microorganisms9112199. PubMed DOI PMC
Maphupha M., Juma W.P., de Koning C.B., Brady D. A modern and practical laccase-catalysed route suitable for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. RSC Adv. 2018;8:39496–39510. doi: 10.1039/C8RA07377E. PubMed DOI PMC
Habibi D., Rahimi A., Rostami A., Moradi S. Green and mild laccase-catalyzed aerobic oxidative coupling of benzenediol derivatives with various sodium benzenesulfinates. Tetrahedron Lett. 2017;58:289–293. doi: 10.1016/j.tetlet.2016.11.119. DOI
Abdel-Mohsen H.T., Conrad J., Harms K., Nohr D., Beifuss U. Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Adv. 2017;7:17427–17441. doi: 10.1039/C6RA28102H. DOI
Benny L., Cherian A.R., Varghese A., Sangwan N., Avti P.K., Hegde G. A novel laccase-based biocatalyst for selective electro-oxidation of 2-thiophene methanol. Mol. Catal. 2021;516:111999. doi: 10.1016/j.mcat.2021.111999. DOI
González-Granda S., Méndez-Sánchez D., Lavandera I., Gotor-Fernández V. Laccase-mediated oxidations of propargylic alcohols. application in the deracemization of 1-arylprop-2-yn-1-ols in combination with alcohol dehydrogenases. ChemCatChem. 2020;12:520–527. doi: 10.1002/cctc.201901543. DOI
Ramos-Martín M., Lecuna R., Cicco L., Vitale P., Capriati V., Rios-Lombardía N., González-Sabin J., Soto A.P., García-Álvarez J. A one-pot two-step synthesis of tertiary alcohols combining the biocatalytic laccase/TEMPO oxidation system with organolithium reagents in aerobic aqueous media at room temperature. Chem. Commun. 2021;57:13534–13537. doi: 10.1039/D1CC06460F. PubMed DOI
Mayr S.A., Subagia R., Weiss R., Schwaiger N., Weber H.K., Leitner J., Ribitsch D., Nyanhongo G.S., Guebitz G.M. Oxidation of various kraft lignins with a bacterial laccase enzyme. Int. J. Mol. Sci. 2021;22:13161. doi: 10.3390/ijms222313161. PubMed DOI PMC
Zhu J., Song S.Q., Lian L.D., Shi L., Ren A., Zhao M.W. Improvement of laccase activity by silencing PacC in Ganoderma lucidum. World J. Microbiol. Biotechnol. 2022;38:32. doi: 10.1007/s11274-021-03216-x. PubMed DOI
Aza P., Molpeceres G., Ruiz-Dueñas F.J., Camarero S. Heterologous expression, engineering and characterization of a novel laccase of Agrocybe pediades with promising properties as biocatalyst. J. Fungi. 2021;7:359. doi: 10.3390/jof7050359. PubMed DOI PMC
Patel S.K.S., Kalia V.C., Kim S.Y., Lee J.K., Kim I.W. Immobilization of laccase through inorganic-protein hybrids using various metal ions. Indian J. Microbiol. 2022:1–5. doi: 10.1007/s12088-022-01000-5. PubMed DOI PMC
Espín J.C., Soler-Rivas C., Cantos E., Tomas-Barberán F.A., Wichers H.J. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J. Agric. Food Chem. 2001;49:1187–1193. doi: 10.1021/jf001258b. PubMed DOI
Guazzaroni M., Crestini C., Saladino R. Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols. Bioorg. Med. Chem. 2012;20:157–166. doi: 10.1016/j.bmc.2011.11.018. PubMed DOI
Botta G., Bizzarri B.M., Garozzo A., Timpanaro R., Bisignano B., Amatore D., Palamara A.T., Nencioni L., Saladino R. Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses. Bioorg. Med. Chem. 2015;23:5345–5351. doi: 10.1016/j.bmc.2015.07.061. PubMed DOI PMC
Deri-Zenaty B., Bachar S., Rebros M., Fishman A. A coupled enzymatic reaction of tyrosinase and glucose dehydrogenase for the production of hydroxytyrosol. Appl. Microbiol. Biotechnol. 2020;104:4945–4955. doi: 10.1007/s00253-020-10594-z. PubMed DOI
Bizzarri B.M., Pieri C., Botta G., Arabuli L., Mosesso P., Cinelli S., Schinoppi A., Saladino R. Synthesis and antioxidant activity of DOPA peptidomimetics by a novel IBX mediated aromatic oxidative functionalization. RSC Adv. 2015;5:60354–60364. doi: 10.1039/C5RA09464J. DOI
Botta G., Delfino M., Guazzaroni M., Crestini C., Onofri S., Saladino R. Selective synthesis of DOPA and DOPA peptides by native and immobilized tyrosinase in organic solvent. ChemPlusChem. 2013;78:325–330. doi: 10.1002/cplu.201200300. DOI
Bozzini T., Botta G., Delfino M., Onofri S., Saladino R., Amatore D., Sgarbanti R., Nencioni L., Palamara A.T. Tyrosinase and Layer-by-Layer supported tyrosinases in the synthesis of lipophilic catechols with antiinfluenza activity. Bioorg. Med. Chem. 2013;21:7699–7708. doi: 10.1016/j.bmc.2013.10.026. PubMed DOI
Guazzaroni M., Pasqualini M., Botta G., Saladino R. A Novel synthesis of bioactive catechols by layer-by-layer immobilized tyrosinase in an organic solvent medium. ChemCatChem. 2012;4:89–99. doi: 10.1002/cctc.201100229. DOI
Martínková L., Příhodová R., Kulik N., Pelantová H., Křístková B., Petrásková L., Biedermann D. Biocatalyzed reactions towards functional food components 4-alkylcatechols and their analogues. Catalysts. 2020;10:1077. doi: 10.3390/catal10091077. DOI
Davis R., Molloy S., Quigley B., Nikodinovic-Runic J., Solano F., O’Connor K.E. Biocatalytic versatility of engineered and wild-type tyrosinase from R. solanacearum for the synthesis of 4-halocatechols. Appl. Microbiol. Biotechnol. 2018;102:5121–5131. doi: 10.1007/s00253-018-8994-5. PubMed DOI
Algieri C., Donato L., Bonacci P., Giorno L. Tyrosinase immobilised on polyamide tubular membrane for the l-DOPA production: Total recycle and continuous reactor study. Biochem. Eng. J. 2012;66:14–19. doi: 10.1016/j.bej.2012.03.013. DOI
Donato L., Algieri C., Rizzi A., Giorno L. Kinetic study of tyrosinase immobilized on polymeric membrane. J. Membr. Sci. 2014;454:346–350. doi: 10.1016/j.memsci.2013.12.029. DOI
Senger D.R., Li D., Jaminet S.C., Cao S.G. Activation of the Nrf2 cell defense pathway by ancient foods: Disease prevention by important molecules and microbes lost from the modern western diet. PLoS ONE. 2016;11:e0148042. doi: 10.1371/journal.pone.0148042. PubMed DOI PMC
Lezzi C., Bleve G., Spagnolo S., Perrotta C., Grieco F. Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells. J. Ind. Microbiol. Biotechnol. 2012;39:1875–1880. doi: 10.1007/s10295-012-1192-z. PubMed DOI
Kawamura-Konishi Y., Maekawa S., Tsuji M., Goto H. C-terminal processing of tyrosinase is responsible for activation of Pholiota microspora proenzyme. Appl. Microbiol. Biotechnol. 2011;90:227–234. doi: 10.1007/s00253-010-3039-8. PubMed DOI
Moe L.L., Maekawa S., Kawamura-Konishi Y. The pro-enzyme C-terminal processing domain of Pholiota nameko tyrosinase is responsible for folding of the N-terminal catalytic domain. Appl. Microbiol. Biotechnol. 2015;99:5499–5510. doi: 10.1007/s00253-015-6597-y. PubMed DOI
Haudecoeur R., Gouron A., Dubois C., Jamet H., Lightbody M., Hardré R., Milet A., Bergantino E., Bubacco L., Belle C., et al. Investigation of binding-site homology between mushroom and bacterial tyrosinases by using aurones as effectors. ChemBioChem. 2014;15:1325–1333. doi: 10.1002/cbic.201402003. PubMed DOI
Marková E., Kotik M., Křenková A., Man P., Haudecoeur R., Boumendjel A., Hardré R., Mekmouche Y., Courvoisier-Dezord E., Réglier M., et al. Recombinant tyrosinase from Polyporus arcularius: Overproduction in escherichia coli, characterization, and use in a study of aurones as tyrosinase effectors. J. Agric. Food Chem. 2016;64:2925–2931. doi: 10.1021/acs.jafc.6b00286. PubMed DOI
Halaouli S., Record E., Casalot L., Hamdi M., Sigoillot J.C., Asther M., Lomascolo A. Cloning and characterization of a tyrosinase gene from the white-rot fungus Pycnoporus sanguineus, and overproduction of the recombinant protein in Aspergillus niger. Appl. Microbiol. Biotechnol. 2006;70:580–589. doi: 10.1007/s00253-005-0109-4. PubMed DOI
Westerholm-Parvinen A., Selinheimo E., Boer H., Kalkkinen N., Mattinen M., Saloheimo M. Expression of the Trichoderma reesei tyrosinase 2 in Pichia pastoris: Isotopic labeling and physicochemical characterization. Protein Expr. Purif. 2007;55:147–158. doi: 10.1016/j.pep.2007.04.014. PubMed DOI
Uhnáková B., Ludwig R., Pěknicová J., Homolka L., Lisá L., Šulc M., Petříčková A., Elzeinová F., Pelantová H., Monti D., et al. Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresour. Technol. 2011;102:9409–9415. doi: 10.1016/j.biortech.2011.07.036. PubMed DOI