Bio-Based Valorization of Lignin-Derived Phenolic Compounds: A Review

. 2023 Apr 22 ; 13 (5) : . [epub] 20230422

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37238587

Lignins are the most abundant biopolymers that consist of aromatic units. Lignins are obtained by fractionation of lignocellulose in the form of "technical lignins". The depolymerization (conversion) of lignin and the treatment of depolymerized lignin are challenging processes due to the complexity and resistance of lignins. Progress toward mild work-up of lignins has been discussed in numerous reviews. The next step in the valorization of lignin is the conversion of lignin-based monomers, which are limited in number, into a wider range of bulk and fine chemicals. These reactions may need chemicals, catalysts, solvents, or energy from fossil resources. This is counterintuitive to green, sustainable chemistry. Therefore, in this review, we focus on biocatalyzed reactions of lignin monomers, e.g., vanillin, vanillic acid, syringaldehyde, guaiacols, (iso)eugenol, ferulic acid, p-coumaric acid, and alkylphenols. For each monomer, its production from lignin or lignocellulose is summarized, and, mainly, its biotransformations that provide useful chemicals are discussed. The technological maturity of these processes is characterized based on, e.g., scale, volumetric productivities, or isolated yields. The biocatalyzed reactions are compared with their chemically catalyzed counterparts if the latter are available.

Zobrazit více v PubMed

Fache M., Boutevin B., Caillol S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 2015;4:35–46. doi: 10.1021/acssuschemeng.5b01344. DOI

Wolf M.E., Hinchen D.J., DuBois J.L., McGeehan J.E., Eltis L.D. Cytochromes P450 in the biocatalytic valorization of lignin. Curr. Opin. Biotechnol. 2022;73:43–50. doi: 10.1016/j.copbio.2021.06.022. PubMed DOI

Van den Bosch S., Koelewijn S.F., Renders T., Van den Bossche G., Vangeel T., Schutyser W., Sels B.F. Catalytic strategies towards lignin-derived chemicals. Top. Curr. Chem. 2018;376:36. doi: 10.1007/s41061-018-0214-3. PubMed DOI

Damm T., Grande P.M., Jablonowski N.D., Thiele B., Disko U., Mann U., Schurr U., Leitner W., Usadel B., Domínguez de María P., et al. OrganoCat pretreatment of perennial plants: Synergies between a biogenic fractionation and valuable feedstocks. Bioresour. Technol. 2017;244:889–896. doi: 10.1016/j.biortech.2017.08.027. PubMed DOI

Liu H.F., Zhu L.L., Wallraf A.M., Rauber C., Grande P.M., Anders N., Gertler C., Werner B., Klankermayer J., Leitner W., et al. Depolymerization of laccase-oxidized lignin in aqueous alkaline solution at 37 degrees C. ACS Sustain. Chem. Eng. 2019;7:11150–11156. doi: 10.1021/acssuschemeng.9b00204. DOI

Radhika N.L., Sachdeva S., Kumar M. Lignin depolymerization and biotransformation to industrially important chemicals/biofuels. Fuel. 2022;312:122935. doi: 10.1016/j.fuel.2021.122935. DOI

Pasma S.A., Daik R., Ramli S., Maskat M.Y., Zulfakar M.H. Enzymatic degradation of lignin extracted from oil palm empty fruit bunch using laccase and cutinase. Bioresources. 2019;14:8879–8891. doi: 10.15376/biores.14.4.8879-8891. DOI

Broglia F., Rimoldi L., Meroni D., De Vecchi S., Morbidelli M., Ardizzone S. Guaiacol hydrodeoxygenation as a model for lignin upgrading. Role of the support surface features on Ni-based alumina-silica catalysts. Fuel. 2019;243:501–508. doi: 10.1016/j.fuel.2019.01.157. DOI

Liu X.H., Jia W.D., Xu G.Y., Zhang Y., Fu Y. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts. ACS Sustain. Chem. Eng. 2017;5:8594–8601. doi: 10.1021/acssuschemeng.7b01047. DOI

Chaudhary R., Dhepe P.L. Upgrading lignin derived monomers over basic supported metal catalysts. Fuel. 2021;306:121588. doi: 10.1016/j.fuel.2021.121588. DOI

Bomont L., Alda-Onggar M., Fedorov V., Aho A., Peltonen J., Eranen K., Peurla M., Kumar N., Warna J., Russo V., et al. Production of cycloalkanes in hydrodeoxygenation of isoeugenol over Pt- and Ir-modified bifunctional catalysts. Eur. J. Inorg. Chem. 2018:2841–2854. doi: 10.1002/ejic.201800391. DOI

Jung B.K., Lee J., Ha J.M., Lee H., Suh D.J., Jun C.H., Jae J. Effective hydrodeoxygenation of lignin-derived phenols using bimetallic RuRe catalysts: Effect of carbon supports. Catal. Today. 2018;303:191–199. doi: 10.1016/j.cattod.2017.07.027. DOI

Ullah M., Liu P.Y., Xie S.X., Sun S. Recent advancements and challenges in lignin valorization: Green routes towards sustainable bioproducts. Molecules. 2022;27:6055. doi: 10.3390/molecules27186055. PubMed DOI PMC

Li X., Zheng Y. Biotransformation of lignin: Mechanisms, applications and future work. Biotechnol. Progr. 2020;36:e2922. doi: 10.1002/btpr.2922. PubMed DOI

Becker J., Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol. Adv. 2019;37:107360. doi: 10.1016/j.biotechadv.2019.02.016. PubMed DOI

Li F., Zhao Y.Q., Xue L., Ma F.Y., Dai S.Y., Xie S.X. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol. 2022;40:1469–1487. doi: 10.1016/j.tibtech.2022.09.009. PubMed DOI

Liu Z.H., Li B.Z., Yuan J.S., Yuan Y.J. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol. 2022;40:1550–1566. doi: 10.1016/j.tibtech.2022.09.014. PubMed DOI

Haldar D., Dey P., Thomas J., Singhania R.R., Patel A.K. One pot bioprocessing in lignocellulosic biorefinery: A review. Bioresour. Technol. 2022;365:128180. doi: 10.1016/j.biortech.2022.128180. PubMed DOI

Wang S.Q., Wan Z., Han Y., Jiao Y., Li Z.H., Fu P., Li N., Zhang A.D., Yi W.M. A review on lignin waste valorization by catalytic pyrolysis: Catalyst, reaction system, and industrial symbiosis mode. J. Environ. Chem. Eng. 2023;11:109113. doi: 10.1016/j.jece.2022.109113. DOI

Ma Q.Q., Liu L.W., Zhao S., Huang Z.S., Li C.T., Jiang S.X., Li Q., Gu P.F. Biosynthesis of vanillin by different microorganisms: A review. World J. Microbiol. Biotechnol. 2022;38:40. doi: 10.1007/s11274-022-03228-1. PubMed DOI

Banerjee G., Chattopadhyay P. Vanillin biotechnology: The perspectives and future. J. Sci. Food Agric. 2019;99:499–506. doi: 10.1002/jsfa.9303. PubMed DOI

Grajales-Hernández D.A., Armendáriz Ruiz M.A.A., Contreras-Jácquez V., Mateos-Díaz J.C. Biotransformation of phenolic acids from byproducts using heterogeneous biocatalysts: One more step toward a circular economy. Curr. Opin. Green Sustain. Chem. 2021;32:100550. doi: 10.1016/j.cogsc.2021.100550. DOI

Tinikul R., Chenprakhon P., Maenpuen S., Chaiyen P. Biotransformation of plant-derived phenolic acids. Biotechnol. J. 2018;13:1700632. doi: 10.1002/biot.201700632. PubMed DOI

Ullah I., Chen Z.B., Xie Y.X., Khan S.S., Singh S., Yu C.Y., Cheng G. Recent advances in biological activities of lignin and emerging biomedical applications: A short review. Int. J. Biol. Macromol. 2022;208:819–832. doi: 10.1016/j.ijbiomac.2022.03.182. PubMed DOI

Zhao X.Y., Zhang Y.T., Cheng Y., Sun H.L., Bai S.W., Li C.Y. Identifying environmental hotspots and improvement strategies of vanillin production with life cycle assessment. Sci. Total Environ. 2021;769:144771. doi: 10.1016/j.scitotenv.2020.144771. PubMed DOI

Zhao S., Huang X.N., Whelton A.J., Abu-Omar M.M. Renewable epoxy thermosets from fully lignin-derived triphenols. ACS Sustain. Chem. Eng. 2018;6:7600–7608. doi: 10.1021/acssuschemeng.8b00443. DOI

Yu A.Z., Serum E.M., Renner A.C., Sahouani J.M., Sibi M.P., Webster D.C. Renewable reactive diluents as practical styrene replacements in biobased vinyl ester thermosets. ACS Sustain. Chem. Eng. 2018;6:12586–12592. doi: 10.1021/acssuschemeng.8b03356. DOI

Wang B.B., Ma S.Q., Xu X.W., Li Q., Yu T., Wang S., Yan S.F., Liu Y.L., Zhu J. High-performance, biobased, degradable polyurethane thermoset and its application in readily recyclable carbon fiber composites. ACS Sustain. Chem. Eng. 2020;8:11162–11170. doi: 10.1021/acssuschemeng.0c02330. DOI

Luo D.X., Guo S.X., He F., Chen S.H., Dai A., Zhang R.F., Wu J. Design, synthesis, and bioactivity of α-ketoamide derivatives bearing a vanillin skeleton for crop diseases. J. Agric. Food Chem. 2020;68:7226–7234. doi: 10.1021/acs.jafc.0c00724. PubMed DOI

Scipioni M., Kay G., Megson I.L., Lin P.K.T. Synthesis of novel vanillin derivatives: Novel multi-targeted scaffold ligands against Alzheimer’s disease. MedChemComm. 2019;10:764–777. doi: 10.1039/C9MD00048H. PubMed DOI PMC

Naz H., Tarique M., Khan P., Luqman S., Ahamad S., Islam A., Ahmad F., Hassan M.I. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol. Cell. Biochem. 2018;438:35–45. doi: 10.1007/s11010-017-3111-0. PubMed DOI

Elsherbiny N.M., Younis N.N., Shaheen M.A., Elseweidy M.M. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line. Pathol. Res. Pract. 2016;212:767–777. doi: 10.1016/j.prp.2016.06.004. PubMed DOI

Ronnander J., Ljunggren J., Hedenstrom E., Wright S.A.I. Biotransformation of vanillin into vanillyl alcohol by a novel strain of Cystobasidium laryngis isolated from decaying wood. AMB Express. 2018;8:137. doi: 10.1186/s13568-018-0666-4. PubMed DOI PMC

Wang Z.Y., Gnanasekar P., Nair S.S., Yi S.L., Yan N. Curing behavior and thermomechanical performance of bioepoxy resin synthesized from vanillyl alcohol: Effects of the curing agent. Polymers. 2021;13:2891. doi: 10.3390/polym13172891. PubMed DOI PMC

Guo Y.M., Hao Y.H., Zhou Y.N., Han Z.Y., Xie C., Su W.Y., Hao H.X. Solubility and thermodynamic properties of vanillyl alcohol in some pure solvents. J. Chem. Thermodyn. 2017;106:276–284. doi: 10.1016/j.jct.2016.11.030. DOI

Guo X.J., Gao G., Remon J., Ma Y., Jiang Z.C., Shi B., Tsang D.C.W. Selective hydrogenation of vanillin to vanillyl alcohol over Pd, Pt, and Au catalysts supported on an advanced nitrogen-containing carbon material produced from food waste. Chem. Eng. J. 2022;440:135885. doi: 10.1016/j.cej.2022.135885. DOI

Wright S.A.I., de Felice D.V., Ianiri G., Pinedo-Rivilla C., De Curtis F., Castoria R. Two rapid assays for screening of patulin biodegradation. Int. J. Environ. Sci. Technol. 2014;11:1387–1398. doi: 10.1007/s13762-013-0325-x. DOI

Rocha I.L.D., Lopes A.M.D., Ventura S.P.M., Coutinho J.A.P. Selective separation of vanillic acid from other lignin-derived monomers using centrifugal partition chromatography: The effect of pH. ACS Sustain. Chem. Eng. 2022;10:4913–4921. doi: 10.1021/acssuschemeng.1c08082. PubMed DOI PMC

Kuhire S.S., Ichake A.B., Grau E., Cramail H., Wadgaonkar P.P. Synthesis and characterization of partially bio-based polyimides based on biphenylene-containing diisocyanate derived from vanillic acid. Eur. Polym. J. 2018;109:257–264. doi: 10.1016/j.eurpolymj.2018.09.054. DOI

Zhang S.L., Cheng Z.Z., Zeng S., Li G.Y., Xiong J., Ding L., Gauthier M. Synthesis and characterization of renewable polyesters based on vanillic acid. J. Appl. Polym. Sci. 2020;137:e49189. doi: 10.1002/app.49189. DOI

Kasmi N., Papadopoulos L., Chebbi Y., Papageorgiou G.Z., Bikiaris D.N. Effective and facile solvent-free synthesis route to novel biobased monomers from vanillic acid: Structure-thermal property relationships of sustainable polyesters. Polym. Degrad. Stab. 2020;181:109315. doi: 10.1016/j.polymdegradstab.2020.109315. DOI

Zhu H.C., Yang J.J., Wu M.Y., Wu Q.Y., Liu J.Y., Zhang J.A. Vanillic acid as a new skeleton for formulating a biobased plasticizer. ACS Sustain. Chem. Eng. 2021;9:15322–15330. doi: 10.1021/acssuschemeng.1c05885. DOI

Kaur J., Gulati M., Singh S.K., Kuppusamy G., Kapoor B., Mishra V., Gupta S., Arshad M.F., Porwal O., Jha N.K., et al. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci. Technol. 2022;122:187–200. doi: 10.1016/j.tifs.2022.02.023. DOI

Horvat M., Fiume G., Fritsche S., Winkler M. Discovery of carboxylic acid reductase (CAR) from Thermothelomyces thermophila and its evaluation for vanillin synthesis. J. Biotechnol. 2019;304:44–51. doi: 10.1016/j.jbiotec.2019.08.007. PubMed DOI

Kramer L., Le X., Hankore E.D., Wilson M.A., Guo J.T., Niu W. Engineering and characterization of hybrid carboxylic acid reductases. J. Biotechnol. 2019;304:52–56. doi: 10.1016/j.jbiotec.2019.08.008. PubMed DOI

Schwendenwein D., Fiume G., Weber H., Rudroff F., Winkler M. Selective enzymatic transformation to aldehydes in vivo by fungal carboxylate reductase from Neurospora crassa. Adv. Synth. Catal. 2016;358:3414–3421. doi: 10.1002/adsc.201600914. PubMed DOI PMC

Park J., Lee H.S., Oh J., Joo J.C., Yeon Y.J. A highly active carboxylic acid reductase from Mycobacterium abscessus for biocatalytic reduction of vanillic acid to vanillin. Biochem. Eng. J. 2020;161:107683. doi: 10.1016/j.bej.2020.107683. DOI

Strohmeier G.A., Eiteljorg E.I.C., Schwarz A., Winkler M. Enzymatic one-step reduction of carboxylates to aldehydes with cell-free regeneration of ATP and NADPH. Chem.-Eur. J. 2019;25:6119–6123. doi: 10.1002/chem.201901147. PubMed DOI PMC

Winkler M., Horvat M., Schiefer A., Weilch V., Rudroff F., Pátek M., Martínková L. Organic acid to nitrile: A chemoenzymatic three-step route. Adv. Synth. Catal. 2023;365:37–42. doi: 10.1002/adsc.202201053. PubMed DOI PMC

Hinzmann A., Betke T., Asano Y., Groger H. Synthetic processes toward nitriles without the use of cyanide: A biocatalytic concept based on dehydration of aldoximes in water. Chemistry. 2021;27:5313–5321. doi: 10.1002/chem.202001647. PubMed DOI PMC

Lubbers R.J.M., Dilokpimol A., Nousiainen P.A., Visser J., Bruijnincx P.C.A., de Vries R.P., Cioc R.C. Vanillic acid and methoxyhydroquinone production from guaiacyl units and related aromatic compounds using Aspergillus niger cell factories. Microb. Cell Fact. 2021;20:151. doi: 10.1186/s12934-021-01643-x. PubMed DOI PMC

Schlemmer W., Sahin M., Nothdurft P., Mourad E., Fruhwirt P., Riess G., Schmalegger M., Gescheidt-Demner G., Fischer R., Freunberger S., et al. 2-Methoxyhydroquinone from vanillin as bio-based active material for redox-flow batteries. Abstr. Pap. Am. Chem. Soc. 2019;257:Meeting Abstract 397.

Schlemmer W., Nothdurft P., Petzold A., Riess G., Fruhwirt P., Schmallegger M., Gescheidt-Demner G., Fischer R., Freunberger S.A., Kern W., et al. 2-Methoxyhydroquinone from vanillin for aqueous redox-flow batteries. Angew. Chem. Int. Ed. 2020;59:22943–22946. doi: 10.1002/anie.202008253. PubMed DOI PMC

Cai C.G., Xu Z.X., Zhou H.R., Chen S.T., Jin M.J. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation. Sci. Adv. 2021;7:abg4585. doi: 10.1126/sciadv.abg4585. PubMed DOI PMC

Bonner I.J., Thompson D.N., Plummer M., Dee M., Tumuluru J.S., Pace D., Teymouri F., Campbell T., Bals B. Impact of ammonia fiber expansion (AFEX) pretreatment on energy consumption during drying, grinding, and pelletization of corn stover. Dry. Technol. 2016;34:1319–1329. doi: 10.1080/07373937.2015.1112809. DOI

Das A.K., Islam M.N., Faruk M.O., Ashaduzzaman M., Dungani R. Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot. 2020;135:58–70. doi: 10.1016/j.sajb.2020.08.008. DOI

Al Zahrani N.A., El-Shishtawy R.M., Asiri A.M. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur. J. Med. Chem. 2020;204:112609. doi: 10.1016/j.ejmech.2020.112609. PubMed DOI

Mori T., Koyama N., Tan J., Segawa T., Maeda M., Town T. Combination therapy with octyl gallate and ferulic acid improves cognition and neurodegeneration in a transgenic mouse model of Alzheimer’s disease. J. Biol. Chem. 2017;292:11310–11325. doi: 10.1074/jbc.M116.762658. PubMed DOI PMC

Cheemanapalli S., Mopuri R., Golla R., Anuradha C.M., Chitta S.K. Syringic acid (SA)—A review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother. 2018;108:547–557. doi: 10.1016/j.biopha.2018.09.069. PubMed DOI

Lee H.S., Park J., Yeon Y.J. Biocatalytic valorization of lignin subunit: Screening a carboxylic acid reductase with high substrate preference to syringyl functional group. Enzym. Microb. Technol. 2022;161:110099. doi: 10.1016/j.enzmictec.2022.110099. PubMed DOI

Janvier M., Hollande L., Jaufurally A.S., Pernes M., Menard R., Grimaldi M., Beaugrand J., Balaguer P., Ducrot P.H., Allais F. Syringaresinol: A renewable and safer alternative to bisphenol A for epoxy-amine resins. ChemSusChem. 2017;10:738–746. doi: 10.1002/cssc.201601595. PubMed DOI

Wu J.Y., Fu Y.S., Lin K.H., Huang X., Chen Y.J., Lai D., Kang N., Huang L.Y., Weng C.F. A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. Biomed. Pharmacother. 2022;153:113339. doi: 10.1016/j.biopha.2022.113339. PubMed DOI

Wang Y.L., Wang W.K., Wu Q.C., Yang H.J. The release and catabolism of ferulic acid in plant cell wall by rumen microbes: A review. Anim. Nutr. 2022;9:335–344. doi: 10.1016/j.aninu.2022.02.003. PubMed DOI PMC

Ludek S., Wawrzynczak A., Nowak I., Feliczak-Guzik A. Synthesis of lipid nanoparticles incorporated with Ferula assa-foetida L. extract. Cosmetics. 2022;9:129. doi: 10.3390/cosmetics9060129. DOI

Dong X.Y., Huang R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. Phytomedicine. 2022;105:154355. doi: 10.1016/j.phymed.2022.154355. PubMed DOI

Di Giacomo S., Percaccio E., Gulli M., Romano A., Vitalone A., Mazzanti G., Gaetani S., Di Sotto A. Recent advances in the neuroprotective properties of ferulic acid in Alzheimer’s disease: A narrative review. Nutrients. 2022;14:3709. doi: 10.3390/nu14183709. PubMed DOI PMC

Babbar R., Dhiman S., Grover R., Kaur A., Arora S. A comprehensive review on therapeutic applications of ferulic acid and its novel analogues: A brief literature. Mini-Rev. Med. Chem. 2021;21:1578–1593. doi: 10.2174/1389557521666210120111702. PubMed DOI

Margesin R., Volgger G., Wagner A.O., Zhang D.C., Poyntner C. Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil. Appl. Microbiol. Biotechnol. 2021;105:2967–2977. doi: 10.1007/s00253-021-11215-z. PubMed DOI PMC

Zippilli C., Bartolome M.J., Hilberath T., Botta L., Hollmann F., Saladino R. A photochemoenzymatic Hunsdiecker-Borodin-type halodecarboxylation of ferulic acid. ChemBioChem. 2022;23:e202200367. doi: 10.1002/cbic.202200367. PubMed DOI PMC

Liberato M.V., Araujo J.N., Sodre V., Goncalves T.A., Vilela N., Moraes E.C., Garcia W., Squina F.M. The structure of a prokaryotic feruloyl-CoA hydratase-lyase from a lignin-degrading consortium with high oligomerization stability under extreme pHs. BBA-Proteins Proteom. 2020;1868:140344. doi: 10.1016/j.bbapap.2019.140344. PubMed DOI

Chen Q.H., Xie D.T., Qiang S., Hu C.Y., Meng Y.H. Developing efficient vanillin biosynthesis system by regulating feruloyl-CoA synthetase and enoyl-CoA hydratase enzymes. Appl. Microbiol. Biotechnol. 2022;106:247–259. doi: 10.1007/s00253-021-11709-w. PubMed DOI

Dippe M., Bauer A.K., Porzel A., Funke E., Müller A.O., Schmidt J., Beier M., Wessjohann L.A. Coenzyme A-conjugated cinnamic acids-enzymatic synthesis of a CoA-ester library and application in biocatalytic cascades to vanillin derivatives. Adv. Synth. Catal. 2019;361:5346–5350. doi: 10.1002/adsc.201900892. DOI

Yao X.Y., Lv Y.M., Yu H.L., Cao H., Wang L.Y., Wen B.T., Gu T.Y., Wang F.Z., Sun L.C., Xin F.J. Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin. Appl. Microbiol. Biotechnol. 2020;104:3897–3907. doi: 10.1007/s00253-020-10433-1. PubMed DOI

Saito T., Aono R., Furuya T., Kino K. Efficient and long-term vanillin production from 4-vinylguaiacol using immobilized whole cells expressing Cso2 protein. J. Biosci. Bioeng. 2020;130:260–264. doi: 10.1016/j.jbiosc.2020.04.012. PubMed DOI

Furuya T., Kuroiwa M., Kino K. Biotechnological production of vanillin using immobilized enzymes. J. Biotechnol. 2017;243:25–28. doi: 10.1016/j.jbiotec.2016.12.021. PubMed DOI

Sharma A., Singh J., Sharma P., Tomar G.S., Singh S., Grover M., Nain L. One-pot microbial bioconversion of wheat bran ferulic acid to biovanillin. 3 Biotech. 2021;11:462. doi: 10.1007/s13205-021-03006-0. PubMed DOI PMC

Valerio R., Bernardino A.R.S., Torres C.A.V., Brazinha C., Tavares M.L., Crespo J.G., Reis M.A.M. Feeding strategies to optimize vanillin production by Amycolatopsis sp. ATCC 39116. Bioprocess. Biosyst. Eng. 2021;44:737–747. doi: 10.1007/s00449-020-02482-7. PubMed DOI

Chakraborty D., Selvam A., Kaur B., Wong J.W.C., Karthikeyan O.P. Application of recombinant Pediococcus acidilactici BD16 (fcs+/ech+) for bioconversion of agrowaste to vanillin. Appl. Microbiol. Biotechnol. 2017;101:5615–5626. doi: 10.1007/s00253-017-8283-8. PubMed DOI

Saeed S., Baig U.U.R., Tayyab M., Altaf I., Irfan M., Raza S.Q., Nadeem F., Mehmood T. Valorization of banana peels waste into biovanillin and optimization of process parameters using submerged fermentation. Biocatal. Agric. Biotechnol. 2021;36:102154. doi: 10.1016/j.bcab.2021.102154. DOI

Yeoh J.W., Jayaraman S., Tan S.G.D., Jayaraman P., Holowko M.B., Zhang J.Y., Kang C.W., Leo H.L., Poh C.L. A model-driven approach towards rational microbial bioprocess optimization. Biotechnol. Bioeng. 2021;118:305–318. doi: 10.1002/bit.27571. PubMed DOI

Luziatelli F., Brunetti L., Ficca A.G., Ruzzi M. Maximizing the efficiency of vanillin production by biocatalyst enhancement and process optimization. Front. Bioeng. Biotechnol. 2019;7:279. doi: 10.3389/fbioe.2019.00279. PubMed DOI PMC

Jung D.H., Kim E.J., Jung E., Kazlauskas R.J., Choi K.Y., Kim B.G. Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1. Biotechnol. Bioeng. 2016;113:1493–1503. doi: 10.1002/bit.25908. PubMed DOI

Feng C., Chen J., Ye W.X., Liao K.S., Wang Z.S., Song X.F., Qiao M.Q. Synthetic biology-driven microbial production of resveratrol: Advances and perspectives. Front. Bioeng. Biotechnol. 2022;10:833920. doi: 10.3389/fbioe.2022.833920. PubMed DOI PMC

Bai Y.F., Yin H., Bi H.P., Zhuang Y.B., Liu T., Ma Y.H. De novo biosynthesis of Gastrodin in Escherichia coli. Metab. Eng. 2016;35:138–147. doi: 10.1016/j.ymben.2016.01.002. PubMed DOI

Liu Y., Gao J.L., Peng M., Meng H.Y., Ma H.B., Cai P.P., Xu Y., Zhao Q., Si G.M. A review on central nervous system effects of gastrodin. Front. Pharmacol. 2018;9:24. doi: 10.3389/fphar.2018.00024. PubMed DOI PMC

Qian L.C., Yan S.H., Li Y.Z., Wu L.H., Zheng Y.W., Wang Y.X., Fang Z.Y. The effects of gastrodin injection on hypertension A systematic review and meta-analysis. Medicine. 2020;99:20936. doi: 10.1097/MD.0000000000020936. PubMed DOI PMC

Jurica K., Gobin I., Kremer D., Cepo D.V., Grubesic R.J., Karaconji I.B., Kosalec I. Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J. Herb. Med. 2017;8:17–23. doi: 10.1016/j.hermed.2017.03.006. DOI

Shang Y.Z., Wei W.P., Zhang P., Ye B.C. Engineering Yarrowia lipolytica for enhanced production of arbutin. J. Agric. Food Chem. 2020;68:1364–1372. doi: 10.1021/acs.jafc.9b07151. PubMed DOI

Lee J.G., Lee S., Lee H., Kurisingal J.F., Han S.H., Kim Y.H., An K. Complete utilization of waste lignin: Preparation of lignin-derived carbon supports and conversion of lignin-derived guaiacol to nylon precursors. Catal. Sci. Technol. 2022;12:5021–5031. doi: 10.1039/D2CY00522K. DOI

Barton N., Horbal L., Starck S., Kohlstedt M., Luzhetskyy A., Wittmann C. Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116. Metab. Eng. 2018;45:200–210. doi: 10.1016/j.ymben.2017.12.001. PubMed DOI

Ye J., Zhou M.H., Zhao J.P., Xia H.H., Xu J.M., Tan W.H., Jiang J.C. Continuous steam-assisted low-temperature pyrolysis of alkali lignin and selective production of guaiacol components in a fixed-bed reactor. Energy Fuels. 2019;33:8694–8701. doi: 10.1021/acs.energyfuels.9b01501. DOI

Shen X.J., Meng Q.L., Mei Q.Q., Liu H.Z., Yan J., Song J.L., Tan D.X., Chen B.F., Zhang Z.R., Yang G.Y., et al. Selective catalytic transformation of lignin with guaiacol as the only liquid product. Chem. Sci. 2020;11:1347–1352. doi: 10.1039/C9SC05892C. PubMed DOI PMC

Wu X., Liao Y.H., Bomon J., Tian G.L., Bai S.T., Van Aelst K., Zhang Q., Vermandel W., Wambacq B., Maes B.U.W., et al. Lignin-first monomers to catechol: Rational cleavage of C-O and C-C bonds over zeolites. ChemSusChem. 2022;15:e202102248. doi: 10.1002/cssc.202102248. PubMed DOI

Wang A.R., Dayo A.Q., Zu L.W., Xu Y.L., Lv D., Song S., Tang T., Liu W.B., Wang J., Gao B.C. Bio-based phthalonitrile compounds: Synthesis, curing behavior, thermomechanical and thermal properties. React. Funct. Polym. 2018;127:1–9. doi: 10.1016/j.reactfunctpolym.2018.03.017. DOI

Han J. Process design and techno-economic evaluation for catalytic production of cellulosic γ-Valerolactone using lignin derived propyl guaiacol. J. Ind. Eng. Chem. 2017;52:218–223. doi: 10.1016/j.jiec.2017.03.048. DOI

García-Hidalgo J., Ravi K., Kuré L.L., Lidén G., Gorwa-Grauslund M. Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation. AMB Express. 2019;9:34. doi: 10.1186/s13568-019-0759-8. PubMed DOI PMC

Suitor J.T., Varzandeh S., Wallace S. One-pot synthesis of adipic acid from guaiacol in Escherichia coli. ACS Synth. Biol. 2020;9:2472–2476. doi: 10.1021/acssynbio.0c00254. PubMed DOI

van Duuren J., de Wild P.J., Starck S., Bradtmöller C., Selzer M., Mehlmann K., Schneider R., Kohlstedt M., Poblete-Castro I., Stolzenberger J., et al. Limited life cycle and cost assessment for the bioconversion of lignin-derived aromatics into adipic acid. Biotechnol. Bioeng. 2020;117:1381–1393. doi: 10.1002/bit.27299. PubMed DOI

Almqvist H., Veras H., Li K.N., Hidalgo J.G., Hulteberg C., Gorwa-Grauslund M., Parachin N.S., Carlquist M. Muconic acid production using engineered Pseudomonas putida KT2440 and a guaiacol-rich fraction derived from kraft lignin. ACS Sustain. Chem. Eng. 2021;9:8097–8106. doi: 10.1021/acssuschemeng.1c00933. DOI

Morales-Cerrada R., Molina-Gutierrez S., Lacroix-Desmazes P., Caillol S. Eugenol, a promising building block for biobased polymers with cutting-edge properties. Biomacromolecules. 2021;22:3625–3648. doi: 10.1021/acs.biomac.1c00837. PubMed DOI

Moradipour M., Chase E.K., Khan M.A., Asare S.O., Lynn B.C., Rankin S.E., Knutson B.L. Interaction of lignin-derived dimer and eugenol-functionalized silica nanoparticles with supported lipid bilayers. Colloid Surf. B-Biointerfaces. 2020;191:111028. doi: 10.1016/j.colsurfb.2020.111028. PubMed DOI

Kalita D.J., Tarnavchyk I., Selvakumar S., Chisholm B.J., Sibi M., Webster D.C. Poly (vinyl ethers) based on the biomass-derived compound, eugenol, and their one-component, ambient-cured surface coatings. Prog. Org. Coat. 2022;170:106996. doi: 10.1016/j.porgcoat.2022.106996. DOI

Li X.F., Lin H.D., Jiang H., Zhang Y.Z., Liu B.H., Sun Y.A., Zhao C.J. Preparation and properties of a new bio-based epoxy resin/diatomite composite. Polym. Degrad. Stab. 2021;187:109541. doi: 10.1016/j.polymdegradstab.2021.109541. DOI

Singh A., Mukhopadhyay K., Sachan S.G. Biotransformation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003. Biocatal. Biotransform. 2019;37:291–303. doi: 10.1080/10242422.2018.1544245. DOI

Lone B.A., Bhushan A., Ganjoo A., Katoch M., Gairola S., Gupta P., Babu V. Biotransformation of eugenol by an endophytic fungus Daldinia sp. IIIMF4010 isolated from Rosmarinus officinalis. Nat. Prod. Res. 2022;37:535–541. doi: 10.1080/14786419.2022.2066101. PubMed DOI

Ashengroph M., Amini J. Bioconversion of isoeugenol to vanillin and vanillic acid using the resting cells of Trichosporon asahii. 3 Biotech. 2017;7:358. doi: 10.1007/s13205-017-0998-9. PubMed DOI PMC

Lu X.Y., Wu X.M., Ma B.D., Xu Y. Enhanced thermostability of Pseudomonas nitroreducens isoeugenol monooxygenase by the combinatorial strategy of surface residue replacement and consensus mutagenesis. Catalysts. 2021;11:1199. doi: 10.3390/catal11101199. DOI

Zhao L.Q., Xie Y.M., Chen L.Y., Xu X.F., Zha C.X., Cheng F. Efficient biotransformation of isoeugenol to vanillin in recombinant strains of Escherichia coli by using engineered isoeugenol monooxygenase and sol-gel chitosan membrane. Proc. Biochem. 2018;71:76–81. doi: 10.1016/j.procbio.2018.05.013. DOI

Sahu P., Ganesh V., Sakthivel A. Oxidation of a lignin-derived-model compound: Iso-eugenol to vanillin over cerium containing MCM-22. Catal. Commun. 2020;145:106099. doi: 10.1016/j.catcom.2020.106099. DOI

Franco A., De S., Balu A.M., Garcia A., Luque R. Mechanochemical synthesis of graphene oxide-supported transition metal catalysts for the oxidation of isoeugenol to vanillin. Beilstein J. Org. Chem. 2017;13:1439–1445. doi: 10.3762/bjoc.13.141. PubMed DOI PMC

Franco A., de Souza J.F., do Nascimiento P.F.P., Pedroza M.M., de Carvalho L.S., Rodriguez-Castellón E., Luque R. Sewage sludge-derived materials as efficient catalysts for the selective production of vanillin from isoeugenol. ACS Sustain. Chem. Eng. 2019;7:7519–7526. doi: 10.1021/acssuschemeng.8b05105. DOI

Zuo K.J., Li H.A., Chen J.H., Ran Q.P., Huang M.T., Cui X.X., He L.L., Liu J.S., Jiang Z.B. Effective biotransformation of variety of guaiacyl lignin monomers into vanillin by Bacillus pumilus. Front. Microbiol. 2022;13:901690. doi: 10.3389/fmicb.2022.901690. PubMed DOI PMC

Martínková L., Křístková B., Křen V. Laccases and tyrosinases in organic synthesis. Int. J. Mol. Sci. 2022;23:3462. doi: 10.3390/ijms23073462. PubMed DOI PMC

Guazzaroni M., Pasqualini M., Botta G., Saladino R. A novel synthesis of bioactive catechols by layer-by-layer immobilized tyrosinase in an organic solvent medium. ChemCatChem. 2012;4:89–99. doi: 10.1002/cctc.201100229. DOI

Bozzini T., Botta G., Delfino M., Onofri S., Saladino R., Amatore D., Sgarbanti R., Nencioni L., Palamara A.T. Tyrosinase and layer-by-layer supported tyrosinases in the synthesis of lipophilic catechols with antiinfluenza activity. Biorg. Med. Chem. 2013;21:7699–7708. doi: 10.1016/j.bmc.2013.10.026. PubMed DOI

Botta G., Bizzarri B.M., Garozzo A., Timpanaro R., Bisignano B., Amatore D., Palamara A.T., Nencioni L., Saladino R. Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses. Biorg. Med. Chem. 2015;23:5345–5351. doi: 10.1016/j.bmc.2015.07.061. PubMed DOI PMC

Bizzarri B.M., Martini A., Serafini F., Aversa D., Piccinino D., Botta L., Berretta N., Guatteo E., Saladino R. Tyrosinase mediated oxidative functionalization in the synthesis of DOPA-derived peptidomimetics with anti-Parkinson activity. RSC Adv. 2017;7:20502–20509. doi: 10.1039/C7RA03326E. DOI

Martínková L., Příhodová R., Kulik N., Pelantová H., Křístková B., Petrásková L., Biedermann D. Biocatalyzed reactions towards functional food components 4-alkylcatechols and their analogues. Catalysts. 2020;10:1077. doi: 10.3390/catal10091077. DOI

Senger D.R., Li D., Jaminet S.C., Cao S.G. Activation of the Nrf2 cell defense pathway by ancient foods: Disease prevention by important molecules and microbes lost from the modern western diet. PLoS ONE. 2016;11:e0148042. doi: 10.1371/journal.pone.0148042. PubMed DOI PMC

Gygli G., Lucas M.F., Guallar V., van Berkel W.J.H. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths. PLoS Comput. Biol. 2017;13:e1005787. doi: 10.1371/journal.pcbi.1005787. PubMed DOI PMC

Ewing T.A., Kühn J., Segarra S., Tortajada M., Zuhse R., van Berkel W.J.H. Multigram scale enzymatic synthesis of (R)-1-(4′-Hydroxyphenyl)ethanol using vanillyl alcohol oxidase. Adv. Synth. Catal. 2018;360:2370–2376. doi: 10.1002/adsc.201800197. DOI

Gygli G., de Vries R.P., van Berkel W.J.H. On the origin of vanillyl alcohol oxidases. Fungal Genet. Biol. 2018;116:24–32. doi: 10.1016/j.fgb.2018.04.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...