Scanning Electron Microscopy (SEM) and Immuno-SEM of Nuclear Pore Complexes from Amphibian Oocytes, Mammalian Cell Cultures, Yeast, and Plants
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/G011818/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/E015735/1
Biotechnology and Biological Sciences Research Council - United Kingdom
- Klíčová slova
- Cell culture, Envelope, Immunogold, Labeling, Mammalian, Nuclear, Plant, Scanning electron microscopy, Xenopus, Yeast,
- MeSH
- buněčné kultury MeSH
- jaderný obal metabolismus MeSH
- jaderný pór * metabolismus MeSH
- mikroskopie elektronová rastrovací MeSH
- obojživelníci MeSH
- oocyty metabolismus MeSH
- Saccharomyces cerevisiae * MeSH
- savci MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Scanning electron microscopy (SEM) can be used to image nuclear pore complex (NPC) surface structure of from a number of organisms and model systems. With a field emission SEM , this is a medium resolution technique where details of the organization of various components can be directly imaged. Some components, such as the NPC baskets and cytoplasmic filaments, are difficult to visualize in any other way. Protein components can be identified by immunogold labeling. Any surface that can be exposed can potentially be studied by SEM . Several overlapping protocols for SEM sample preparation and immunogold labeling of NPCs are given here. Various parameters for sample preparation, fixation, immunogold labeling, drying, metal coating, and imaging are detailed which have been optimized for different types of specimens and desired endpoints.
Zobrazit více v PubMed
Allen TD, Rutherford SA, Murray S, Gardiner F, Kiseleva E, Goldberg MW, Drummond SP (2007) Visualization of the nucleus and nuclear envelope in situ by SEM in tissue culture cells. Nat Protoc 2:1180–1184 DOI
Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prévost MC, Allen TD, Charneau P (2007) HIV-1 DNA flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 26:3025–3037 DOI
Goldberg MW, Allen TD (1992) High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol 119:1429–1440 DOI
Goldberg MW, Huttenlauch I, Hutchison CJ, Stick R (2008) Filaments made from A- and B-type lamins differ in structure and organization. J Cell Sci 121:215–225 DOI
Kiseleva E, Allen TD, Rutherford S, Bucci M, Wente SR, Goldberg MW (2004) Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J Struct Biol 145:272–288 DOI
Fiserova J, Spink M, Richards SA, Saunter C, Goldberg MW (2014) Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains. J Cell Sci 127:124–136 PubMed
Kiseleva E, Richardson AC, Fiserova J, Strunov AA, Spink MC, Johnson SR, Goldberg MW (2014) Imaging yeast NPCs: from classical electron microscopy to Immuno-SEM. Methods Cell Biol 122:59–79 DOI
Fiserova J, Kiseleva E, Goldberg MW (2009) Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells. Plant J 59:243–255 DOI
Ris H (1997) High-resolution field-emission scanning electron microscopy of nuclear pore complex. Scanning 19:368–375 DOI
Goldberg MW, Allen TD (1996) The nuclear pore complex and lamina: three-dimensional structures and interactions determined by field emission in-lens scanning electron microscopy. J Mol Biol 257(4):848–865. https://doi.org/10.1006/jmbi.1996.0206 PubMed DOI
Apkarian RP (1994) Analysis of high quality monatomic chromium films used in biological high resolution scanning electron microscopy. Scanning Microsc 8:289–299 PubMed
Svitkina T (2007) Electron microscopic analysis of the leading edge in migrating cells. Methods Cell Biol 79:295–319 DOI