• This record comes from PubMed

Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review

. 2022 ; 20 (4) : 2629-2664. [epub] 20220411

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article, Review

The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation methods. Conventional removal methods are often non-selective and cause secondary contamination. These issues may be partly solved by the use of recently-developped adsorbents such as molecularly imprinted polymers. Here we review the synthesis and application of molecularly imprinted polymers for removing pharmaceuticals in water. Molecularly imprinted polymers are synthesized via several multiple-step polymerization methods. Molecularly imprinted polymers are potent adsorbents at the laboratory scale, yet their efficiency is limited by template leakage and polymer quality. Adsorption performance of multi-templated molecularly imprinted polymers depends on the design of wastewater treatment plants, pharmaceutical consumption patterns and the population serviced by these wastewater treatment plants.

See more in PubMed

Abdullah BA, Talpur FN, et al. Synthesis of ultrasonic-assisted lead ion imprinted polymer as a selective sorbent for the removal of Pb2+ in a real water sample. Microchem J. 2019;146:1160–1168. doi: 10.1016/j.microc.2019.02.037. DOI

Adumitrăchioaie A, Tertiş M, Cernat A, et al. Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int J Electrochem Sci. 2018;13:2556–2576. doi: 10.20964/2018.03.75. DOI

Almeida Â, Calisto V, Esteves VI, et al. Effects of single and combined exposure of pharmaceutical drugs (carbamazepine and cetirizine) and a metal (cadmium) on the biochemical responses of R. philippinarum. Aquat Toxicol. 2018;198:10–19. doi: 10.1016/j.aquatox.2018.02.011. PubMed DOI

Almeida LC, Mattos AC, Dinamarco CPG, et al. Chronic toxicity and environmental risk assessment of antivirals in Ceriodaphnia dubia and Raphidocelis subcapitata. Water Sci Technol. 2021;84:1623–1634. doi: 10.2166/wst.2021.347. PubMed DOI

Almuntashiri A, Hosseinzadeh A, Volpin F, et al. Removal of pharmaceuticals from nitrified urine. Chemosphere. 2021;280:130870. doi: 10.1016/j.chemosphere.2021.130870. PubMed DOI

Alshishani A, Saaid M, Basheer C, Saad B. High performance liquid chromatographic determination of triclosan, triclocarban and methyl-triclosan in wastewater using mini-bar micro-solid phase extraction. Microchem J. 2019;147:339–348. doi: 10.1016/j.microc.2019.03.044. DOI

Amaly N, Istamboulie G, El-Moghazy AY, Noguer T. Reusable molecularly imprinted polymeric nanospheres for diclofenac removal from water samples. J Chem Res. 2021;45:102–110. doi: 10.1177/1747519820925998. DOI

Araújo APC, Mesak C, Montalvão MF, et al. Anti-cancer drugs in aquatic environment can cause cancer: insight about mutagenicity in tadpoles. Sci Total Environ. 2019;650:2284–2293. doi: 10.1016/j.scitotenv.2018.09.373. PubMed DOI

Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int. 2014;69:104–119. doi: 10.1016/j.envint.2014.04.011. PubMed DOI

Arnnok P, Singh RR, Burakham R, et al. Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara river. Environ Sci Technol. 2017;51:10652–10662. doi: 10.1021/acs.est.7b02912. PubMed DOI

aus der Beek T, Weber FA, Bergmann A, et al. Pharmaceuticals in the environment-global occurrences and perspectives. Environ Toxicol Chem. 2016;35:823–835. doi: 10.1002/etc.3339. PubMed DOI

Aylaz G, Kuhn J, Lau ECHT, et al. Recent developments on magnetic molecular imprinted polymers (MMIPs) for sensing, capturing, and monitoring pharmaceutical and agricultural pollutants. J Chem Technol Biotechnol. 2021;96:1151–1160. doi: 10.1002/jctb.6681. DOI

Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A. 2020;1614:460603. doi: 10.1016/j.chroma.2019.460603. PubMed DOI

Bagheri AR, Ghaedi M. Green preparation of dual-template chitosan-based magnetic water-compatible molecularly imprinted biopolymer. Carbohydr Polym. 2020;236:116102. doi: 10.1016/j.carbpol.2020.116102. PubMed DOI

Basturk I, Varank G, Murat-Hocaoglu S, et al. Characterization and treatment of medical laboratory wastewater by ozonation: optimization of toxicity removal by central composite design. Ozone Sci Eng. 2021;43:213–227. doi: 10.1080/01919512.2020.1794794. DOI

Beydoun A, DuPont S, Zhou D, et al. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure. 2020;83:251–263. doi: 10.1016/j.seizure.2020.10.018. PubMed DOI

Bhogal S, Kaur K, Mohiuddin I, et al. Hollow porous molecularly imprinted polymers as emerging adsorbents. Environ Pollut. 2021;288:117775. doi: 10.1016/j.envpol.2021.117775. PubMed DOI

Bi L, Chen Z, Li L, et al. Selective adsorption and enhanced photodegradation of diclofenac in water by molecularly imprinted TiO2. J Hazard Mater. 2021;407:124759. doi: 10.1016/j.jhazmat.2020.124759. PubMed DOI

Björlenius B, Ripszám M, Haglund P, et al. Pharmaceutical residues are widespread in Baltic Sea coastal and offshore waters—screening for pharmaceuticals and modelling of environmental concentrations of carbamazepine. Sci Total Environ. 2018;633:1496–1509. doi: 10.1016/j.scitotenv.2018.03.276. PubMed DOI

Borgatta M, Decosterd LA, Waridel P, et al. The anticancer drug metabolites endoxifen and 4-hydroxy-tamoxifen induce toxic effects on Daphnia pulex in a two-generation study. Sci Total Environ. 2015;520:232–240. doi: 10.1016/j.scitotenv.2015.03.040. PubMed DOI

Brezovšek P, Eleršek T, Filipič M. Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis. Water Res. 2014;52:168–177. doi: 10.1016/j.watres.2014.01.007. PubMed DOI

Byun HS, Yang DS, Cho SH. Synthesis and characterization of high selective molecularly imprinted polymers for bisphenol A and 2,4-dichlorophenoxyacetic acid by using supercritical fluid technology. Polymer (Guildf) 2013;54:589–595. doi: 10.1016/j.polymer.2012.11.079. DOI

Cantarella M, Carroccio SC, Dattilo S, et al. Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem Eng J. 2019;367:180–188. doi: 10.1016/j.cej.2019.02.146. DOI

Cao Y, Sheng T, Yang Z, et al. Synthesis of molecular-imprinting polymer coated magnetic nanocomposites for selective capture and fast removal of environmental tricyclic analogs. Chem Eng J. 2021;426:128678. doi: 10.1016/j.cej.2021.128678. DOI

Caro E, Marce R, Cormack P, et al. A new molecularly imprinted polymer for the selective extraction of naproxen from urine samples by solid-phase extraction. J Chromatogr B. 2004;813:137–143. doi: 10.1016/j.jchromb.2004.09.019. PubMed DOI

Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, et al. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. Sci Total Environ. 2021;757:143722. doi: 10.1016/j.scitotenv.2020.143722. PubMed DOI

Chen X, Ye N. A graphene oxide surface–molecularly imprinted polymer as a dispersive solid-phase extraction adsorbent for the determination of cefadroxil in water samples. RSC Adv. 2017;7:34077–34085. doi: 10.1039/C7RA02985C. DOI

Chen H, Son S, Zhang F, et al. Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk. J Chromatogr B. 2015;983–984:32–38. doi: 10.1016/j.jchromb.2015.01.003. PubMed DOI

Chen Y, Lei X, Dou R, et al. Selective removal and preconcentration of triclosan using a water-compatible imprinted nano-magnetic chitosan particles. Environ Sci Pollut Res. 2017;24:18640–18650. doi: 10.1007/s11356-017-9467-6. PubMed DOI

Chen J, Wang L, Liu Y, et al. Highly selective removal of kitasamycin from the environment by molecularly imprinted polymers: Adsorption performance and mechanism. Colloids Surf A Physicochem Eng Asp. 2021;625:126926. doi: 10.1016/j.colsurfa.2021.126926. DOI

Cheng D, Ngo HH, Guo W, et al. A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches. J Hazard Mater. 2020;387:121682. doi: 10.1016/j.jhazmat.2019.121682. PubMed DOI

Colville C, Alcaraz AJ, Green D, et al. Characterizing toxicity pathways of fluoxetine to predict adverse outcomes in adult fathead minnows (Pimephales promelas) Sci Total Environ. 2022;817:152747. doi: 10.1016/j.scitotenv.2021.152747. PubMed DOI

Da Silva RCS, Santos MN, Pires BC, et al. Assessment of surfactants on performance of molecularly imprinted polymer toward adsorption of pharmaceutical. J Environ Chem Eng. 2019;7:103037. doi: 10.1016/j.jece.2019.103037. DOI

Dai CM, Zhang J, Zhang YL, et al. Selective removal of acidic pharmaceuticals from contaminated lake water using multi-templates molecularly imprinted polymer. Chem Eng J. 2012;211–212:302–309. doi: 10.1016/j.cej.2012.09.090. DOI

de Andrade JR, Oliveira MF, da Silva MGC, Vieira MGA. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res. 2018;57:3103–3127. doi: 10.1021/acs.iecr.7b05137. DOI

Deng D, He Y, Li M, et al. Preparation of multi-walled carbon nanotubes based magnetic multi-template molecularly imprinted polymer for the adsorption of phthalate esters in water samples. Environ Sci Pollut Res. 2021;28:5966–5977. doi: 10.1007/s11356-020-10970-2. PubMed DOI

Ding S, Li Z, Cheng Y, et al. Enhancing adsorption capacity while maintaining specific recognition performance of mesoporous silica: a novel imprinting strategy with amphiphilic ionic liquid as surfactant. Nanotechnology. 2018;29:375604 . doi: 10.1088/1361-6528/aace10. PubMed DOI

Do Nascimento TA, De Oliveira HL, Borges KB. Magnetic molecularly imprinted polypyrrole as a new selective adsorbent for pharmaceutically active compounds. J Environ Chem Eng. 2019;7:103371. doi: 10.1016/j.jece.2019.103371. DOI

Du Q, Wu P, Sun Y, et al. Selective photodegradation of tetracycline by molecularly imprinted ZnO@NH2-UiO-66 composites. Chem Eng J. 2020;390:124614. doi: 10.1016/j.cej.2020.124614. DOI

Elencovan V, Joseph J, Yahaya N, et al. Exploring a novel deep eutectic solvents combined with vortex assisted dispersive liquid–liquid microextraction and its toxicity for organophosphorus pesticides analysis from honey and fruit samples. Food Chem. 2022;368:130835. doi: 10.1016/j.foodchem.2021.130835. PubMed DOI

Elugoke SE, Adekunle AS, Fayemi OE, et al. Molecularly imprinted polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters—review. Electrochem Sci Adv. 2021;1:1–43. doi: 10.1002/elsa.202000026. DOI

Falfushynska H, Sokolov EP, Haider F, et al. Effects of a common pharmaceutical, atorvastatin, on energy metabolism and detoxification mechanisms of a marine bivalve Mytilus edulis. Aquat Toxicol. 2019;208:47–61. doi: 10.1016/j.aquatox.2018.12.022. PubMed DOI

Fan Y, Zeng G, Ma X. Effects of prepolymerization on surface molecularly imprinted polymer for rapid separation and analysis of sulfonamides in water. J Colloid Interface Sci. 2020;571:21–29. doi: 10.1016/j.jcis.2020.03.027. PubMed DOI

Fang L, Miao Y, Wei D, et al. Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer. Chemosphere. 2021;262:128032. doi: 10.1016/j.chemosphere.2020.128032. PubMed DOI

Farooq S, Nie J, Cheng Y, et al. Molecularly imprinted polymers’ application in pesticide residue detection. Analyst. 2018;143:3971–3989. doi: 10.1039/c8an00907d. PubMed DOI

Feijão E, Cruz de Carvalho R, Duarte IA, et al. Fluoxetine arrests growth of the model diatom Phaeodactylum tricornutum by increasing oxidative stress and altering energetic and lipid metabolism. Front Microbiol. 2020;11:1803. doi: 10.3389/fmicb.2020.01803. PubMed DOI PMC

Fontes MK, Gusso-Choueri PK, Maranho LA, et al. A tiered approach to assess effects of diclofenac on the brown mussel Perna perna: a contribution to characterize the hazard. Water Res. 2018;132:361–370. doi: 10.1016/j.watres.2017.12.077. PubMed DOI

Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15:569–589. doi: 10.1038/s41574-019-0242-2. PubMed DOI

Fraz S, Lee AH, Wilson JY. Gemfibrozil and carbamazepine decrease steroid production in zebrafish testes (Danio rerio) Aquat Toxicol. 2018;198:1–9. doi: 10.1016/j.aquatox.2018.02.006. PubMed DOI

Freitas R, Silvestro S, Coppola F, et al. Biochemical and physiological responses induced in Mytilus galloprovincialis after a chronic exposure to salicylic acid. Aquat Toxicol. 2019;214:105258. doi: 10.1016/j.aquatox.2019.105258. PubMed DOI

Freitas R, Silvestro S, Pagano M, et al. Impacts of salicylic acid in Mytilus galloprovincialis exposed to warming conditions. Environ Toxicol Pharmacol. 2020;80:103448. doi: 10.1016/j.etap.2020.103448. PubMed DOI

Friedman BW, Cisewski D, Irizarry E, et al. A randomized, double-blind, placebo-controlled trial of naproxen with or without orphenadrine or methocarbamol for acute low back pain. Ann Emerg Med. 2018;71:348–356.e5. doi: 10.1016/j.annemergmed.2017.09.031. PubMed DOI PMC

Fu J, Chen L, Li J, Zhang Z. Current status and challenges of ion imprinting. J Mater Chem A. 2015;3:13598–13627. doi: 10.1039/C5TA02421H. DOI

Fuller BB. Antioxidants and anti-inflammatories. In: Draelos ZD, editor. Cosmet. Dermatology, Third Edition, Chapter 37. Hoboken: Wiley; 2022. pp. 366–387.

Gao M, Gao Y, Chen G, et al. Recent Advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Front Chem. 2020;8:1–20. doi: 10.3389/fchem.2020.616326. PubMed DOI PMC

Godoy AA, Kummrow F. What do we know about the ecotoxicology of pharmaceutical and personal care product mixtures? A critical review. Crit Rev Environ Sci Technol. 2017;47:1453–1496. doi: 10.1080/10643389.2017.1370991. DOI

Gornik T, Shinde S, Lamovsek L, et al. Molecularly imprinted polymers for the removal of antidepressants from contaminated wastewater. Polymers (Basel) 2021;13:1–20. doi: 10.3390/polym13010120. PubMed DOI PMC

Guyon A, Smith KF, Charry MP, et al. Effects of chronic exposure to benzophenone and diclofenac on DNA methylation levels and reproductive success in a marine copepod. J Xenobiotics. 2018;8:7674. doi: 10.4081/xeno.2018.7674. PubMed DOI PMC

Hassan AA, Tanimu A, Alhooshani K. Iron and cobalt-containing magnetic ionic liquids for dispersive micro-solid phase extraction coupled with HPLC-DAD for the preconcentration and quantification of carbamazepine drug in urine and environmental water samples. J Mol Liq. 2021;336:116370. doi: 10.1016/j.molliq.2021.116370. DOI

He Q, Liang JJ, Chen LX, et al. Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: molecular simulation, adsorption properties, and mechanisms. Water Res. 2020;168:115164. doi: 10.1016/j.watres.2019.115164. PubMed DOI

He S, Zhang L, Bai S, et al. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. Eur Polym J. 2021;143:110179. doi: 10.1016/j.eurpolymj.2020.110179. DOI

Herrera-Chacón A, Cetó X, del Valle M. Molecularly imprinted polymers—towards electrochemical sensors and electronic tongues. Anal Bioanal Chem. 2021;413:6117–6140. doi: 10.1007/s00216-021-03313-8. PubMed DOI PMC

Hu X, Fan Y, Zhang Y, et al. Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition–fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples. Anal Chim Acta. 2012;731:40–48. doi: 10.1016/j.aca.2012.04.013. PubMed DOI

Hu Y, Jiang L, Sun X, et al. Risk assessment of antibiotic resistance genes in the drinking water system. Sci Total Environ. 2021;800:149650. doi: 10.1016/j.scitotenv.2021.149650. PubMed DOI

Hu Y, Jin L, Zhao Y, et al. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. Sci Total Environ. 2021;791:148152. doi: 10.1016/j.scitotenv.2021.148152. PubMed DOI

Husin NA, Muhamad M, Yahaya N, et al. Application of a new choline-imidazole based deep eutectic solvents in hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples. Mater Chem Phys. 2021;261:124228. doi: 10.1016/j.matchemphys.2021.124228. DOI

Iesce MR, Lavorgna M, Russo C, et al. Ecotoxic effects of loratadine and its metabolic and light-induced derivatives. Ecotoxicol Environ Saf. 2019;170:664–672. doi: 10.1016/j.ecoenv.2018.11.116. PubMed DOI

Isidori M, Lavorgna M, Nardelli A, et al. Ecotoxicity of naproxen and its phototransformation products. Sci Total Environ. 2005;348:93–101. doi: 10.1016/j.scitotenv.2004.12.068. PubMed DOI

Jeong TY, Kim HY, Kim SD. Multi-generational effects of propranolol on Daphnia magna at different environmental concentrations. Environ Pollut. 2015;206:188–194. doi: 10.1016/j.envpol.2015.07.003. PubMed DOI

Jeong TY, Yoon D, Kim S, et al. Mode of action characterization for adverse effect of propranolol in Daphnia magna based on behavior and physiology monitoring and metabolite profiling. Environ Pollut. 2018;233:99–108. doi: 10.1016/j.envpol.2017.10.043. PubMed DOI

Jureczko M, Kalka J. Cytostatic pharmaceuticals as water contaminants. Eur J Pharmacol. 2020;866:172816. doi: 10.1016/j.ejphar.2019.172816. PubMed DOI

Kechagia M, Samanidou V, Kabir A, Furton KG. One-pot synthesis of a multi-template molecularly imprinted polymer for the extraction of six sulfonamide residues from milk before high-performance liquid chromatography with diode array detection. J Sep Sci. 2018;41:723–731. doi: 10.1002/jssc.201701205. PubMed DOI

Kefayati H, Yamini Y, Shamsayei M, Abdi S. Molecularly imprinted polypyrrole@CuO nanocomposite as an in-tube solid-phase microextraction coating for selective extraction of carbamazepine from biological samples. J Pharm Biomed Anal. 2021;204:114256. doi: 10.1016/j.jpba.2021.114256. PubMed DOI

Khan HK, Rehman MYA, Malik RN. Fate and toxicity of pharmaceuticals in water environment: an insight on their occurrence in South Asia. J Environ Manage. 2020;271:111030. doi: 10.1016/j.jenvman.2020.111030. PubMed DOI

Khan NA, Ahmed S, Farooqi IH, et al. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: a critical review. TrAC Trends Anal Chem. 2020;129:115921. doi: 10.1016/j.trac.2020.115921. DOI

Khulu S, Ncube S, Kgame T, et al. Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. Polym Bull. 2021;79:1287–1307. doi: 10.1007/s00289-021-03553-9. DOI

Khulu S, Ncube S, Nuapia Y, et al. Multivariate optimization of a two-way technique for extraction of pharmaceuticals in surface water using a combination of membrane assisted solvent extraction and a molecularly imprinted polymer. Chemosphere. 2022;286:131973. doi: 10.1016/j.chemosphere.2021.131973. PubMed DOI

Kim S, Gholamirad F, Yu M, et al. Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene. Chem Eng J. 2021;406:126789. doi: 10.1016/j.cej.2020.126789. DOI

Kleinert C, Poirier-Larabie S, Gagnon C, et al. Occurrence and ecotoxicity of cytostatic drugs 5-fluorouracil and methotrexate in the freshwater unionid Elliptio complanata. Comp Biochem Physiol C Toxicol Pharmacol. 2021;244:109027. doi: 10.1016/j.cbpc.2021.109027. PubMed DOI

Kong X, Li F, Li Y, et al. Molecularly imprinted polymer functionalized magnetic Fe3O4 for the highly selective extraction of triclosan. J Sep Sci. 2020;43:808–817. doi: 10.1002/jssc.201900924. PubMed DOI

Kovalakova P, Cizmas L, McDonald TJ, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere. 2020;251:126351. doi: 10.1016/j.chemosphere.2020.126351. PubMed DOI

Kriikku P, Pelkonen S, Kaukonen M, Ojanperä I. Propranolol and metoprolol: two comparable drugs with very different post-mortem toxicological profiles. Forensic Sci Int. 2021;327:110978. doi: 10.1016/j.forsciint.2021.110978. PubMed DOI

Kristensen DM, Desdoits-Lethimonier C, Mackey AL, et al. Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism. Proc Natl Acad Sci USA. 2018 doi: 10.1073/pnas.1715035115. PubMed DOI PMC

Kumar A, Pal D. Antibiotic resistance and wastewater: correlation, impact and critical human health challenges. J Environ Chem Eng. 2018;6:52–58. doi: 10.1016/j.jece.2017.11.059. DOI

Kumar S, Karfa P, Majhi KC, Madhuri R. Photocatalytic, fluorescent BiPO4@ graphene oxide based magnetic molecularly imprinted polymer for detection, removal and degradation of ciprofloxacin. Mater Sci Eng C. 2020;111:110777. doi: 10.1016/j.msec.2020.110777. PubMed DOI

Kumar M, Mazumder P, Mohapatra S, et al. A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. J Hazard Mater. 2021;405:124043. doi: 10.1016/j.jhazmat.2020.124043. PubMed DOI PMC

Kwak K, Ji K, Kho Y, et al. Chronic toxicity and endocrine disruption of naproxen in freshwater waterfleas and fish, and steroidogenic alteration using H295R cell assay. Chemosphere. 2018;204:156–162. doi: 10.1016/j.chemosphere.2018.04.035. PubMed DOI

Li X, Row KH. Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Microchim Acta. 2019;186:753. doi: 10.1007/s00604-019-3885-8. PubMed DOI

Li N, Yang H. Construction of natural polymeric imprinted materials and their applications in water treatment: a review. J Hazard Mater. 2021;403:123643. doi: 10.1016/j.jhazmat.2020.123643. PubMed DOI

Li Q, Yu J, Chen W, et al. Degradation of triclosan by chlorine dioxide: reaction mechanism,2,4-dichlorophenol accumulation and toxicity evaluation. Chemosphere. 2018;207:449–456. doi: 10.1016/j.chemosphere.2018.05.065. PubMed DOI

Li J, Ji F, Ng DHL, et al. Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water. Chem Eng J. 2019;369:611–620. doi: 10.1016/j.cej.2019.03.101. DOI

Li Y, Zhang L, Ding J, Liu X. Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals. J Environ Manag. 2020;253:109732. doi: 10.1016/j.jenvman.2019.109732. PubMed DOI

Limbu SM, Zhou L, Sun SX, et al. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ Int. 2018;115:205–219. doi: 10.1016/j.envint.2018.03.034. PubMed DOI

Liu L, Yang M, He M, et al. Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Microchim Acta. 2020;187:503. doi: 10.1007/s00604-020-04465-7. PubMed DOI

Liu N, Jin X, Feng C, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system. Environ Int. 2020;136:105454. doi: 10.1016/j.envint.2019.105454. PubMed DOI

Liu H, Jin P, Zhu F, et al. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. TrAC Trends Anal Chem. 2021;134:116132. doi: 10.1016/j.trac.2020.116132. DOI

Liu Y, Lian Z, Li F, et al. Review on molecular imprinting technology and its application in pre-treatment and detection of marine organic pollutants. Mar Pollut Bull. 2021;169:112541. doi: 10.1016/j.marpolbul.2021.112541. PubMed DOI

Liu Y, Liu Y, Liu Z, et al. Ultra-durable, multi-template molecularly imprinted polymers for ultrasensitive monitoring and multicomponent quantification of trace sulfa antibiotics. J Mater Chem B. 2021;9:3192–3199. doi: 10.1039/D1TB00091H. PubMed DOI

Liu Z, Chen G, Lu X. In-situ growth of molecularly imprinted metal–organic frameworks on 3D carbon foam as an efficient adsorbent for selective removal of antibiotics. J Mol Liq. 2021;340:117232. doi: 10.1016/j.molliq.2021.117232. DOI

Lu W, Liu J, Li J, et al. Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst. 2019;144:1292–1302. doi: 10.1039/c8an02133c. PubMed DOI

Ma Z, Wu H, Zhang K, et al. Long-term low dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in swine wastewater treatment. Chem Eng J. 2018;334:630–637. doi: 10.1016/j.cej.2017.10.051. DOI

Mackuľak T, Černanský S, Fehér M, et al. Pharmaceuticals, drugs, and resistant microorganisms—environmental impact on population health. Curr Opin Environ Sci Health. 2019;9:40–48. doi: 10.1016/j.coesh.2019.04.002. DOI

Madikizela LM, Chimuka L. Synthesis, adsorption and selectivity studies of a polymer imprinted with naproxen, ibuprofen and diclofenac. J Environ Chem Eng. 2016;4:4029–4037. doi: 10.1016/j.jece.2016.09.012. DOI

Madikizela LM, Chimuka L. Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction. J Pharm Biomed Anal. 2016;128:210–215. doi: 10.1016/j.jpba.2016.05.037. PubMed DOI

Madikizela LM, Mdluli PS, Chimuka L. Experimental and theoretical study of molecular interactions between 2-vinyl pyridine and acidic pharmaceuticals used as multi-template molecules in molecularly imprinted polymer. React Funct Polym. 2016;103:33–43. doi: 10.1016/j.reactfunctpolym.2016.03.017. DOI

Madikizela LM, Tavengwa N, Pakade V. Molecularly imprinted polymers for pharmaceutical compounds: synthetic procedures and analytical applications. Recent Res Polym. London: IntechOpen; 2018.

Madikizela LM, Tavengwa NT, Chimuka L. Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed Anal. 2018;147:624–633. doi: 10.1016/j.jpba.2017.04.010. PubMed DOI

Madikizela LM, Tavengwa NT, Tutu H, Chimuka L. Green aspects in molecular imprinting technology: from design to environmental applications. Trends Environ Anal Chem. 2018;17:14–22. doi: 10.1016/j.teac.2018.01.001. DOI

Madikizela LM, Zunngu SS, Mlunguza NY, et al. Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA. 2018;44:406–418. doi: 10.4314/wsa.v44i3.08. DOI

Magro C, Mateus EP, Paz-Garcia JM, Ribeiro AB. Emerging organic contaminants in wastewater: understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere. 2020;247:125758. doi: 10.1016/j.chemosphere.2019.125758. PubMed DOI

Maksoud MIAA, Fahim RA, Bedir AG, et al. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. Environ Chem Lett. 2022;20:519–562. doi: 10.1007/s10311-021-01351-3. DOI

Manzo V, Ulisse K, Rodríguez I, et al. A molecularly imprinted polymer as the sorptive phase immobilized in a rotating disk extraction device for the determination of diclofenac and mefenamic acid in wastewater. Anal Chim Acta. 2015;889:130–137. doi: 10.1016/j.aca.2015.07.038. PubMed DOI

Metwally MG, Benhawy AH, Khalifa RM, et al. Application of molecularly imprinted polymers in the analysis of waters and wastewaters. Molecules. 2021;26:1–38. doi: 10.3390/molecules26216515. PubMed DOI PMC

Mezzelani M, Gorbi S, Fattorini D, et al. Long-term exposure of Mytilus galloprovincialis to diclofenac, Ibuprofen and Ketoprofen: insights into bioavailability, biomarkers and transcriptomic changes. Chemosphere. 2018;198:238–248. doi: 10.1016/j.chemosphere.2018.01.148. PubMed DOI

Mezzelani M, Gorbi S, Regoli F. Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms. Mar Environ Res. 2018;140:41–60. doi: 10.1016/j.marenvres.2018.05.001. PubMed DOI

Mohamed Idris Z, Hameed BH, Ye L, et al. Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption. J Environ Chem Eng. 2020;8:103981. doi: 10.1016/j.jece.2020.103981. DOI

Mohiuddin I, Bhogal S, Grover A, et al. Simultaneous determination of amitriptyline, nortriptyline, and clomipramine in aqueous samples using selective multi-template molecularly imprinted polymers. Environ Nanotechnol Monit Manag. 2021;16:100527. doi: 10.1016/j.enmm.2021.100527. DOI

Mole RA, Brooks BW. Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. Environ Pollut. 2019;250:1019–1031. doi: 10.1016/j.envpol.2019.04.118. PubMed DOI

Monisha RS, Mani RL, Sivaprakash B, et al. Green remediation of pharmaceutical wastes using biochar: a review. Environ Chem Lett. 2022;20:681–704. doi: 10.1007/s10311-021-01348-y. DOI

Morin-Crini N, Lichtfouse E, Fourmentin M, et al. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environ Chem Lett. 2022 doi: 10.1007/s10311-021-01379-5. DOI

Möstl E, Palme R. Hormones as indicators of stress. Domest Anim Endocrinol. 2002;23:67–74. doi: 10.1016/S0739-7240(02)00146-7. PubMed DOI

Ndunda EN. Molecularly imprinted polymers—a closer look at the control polymer used in determining the imprinting effect: a mini review. J Mol Recognit. 2020;33:1–11. doi: 10.1002/jmr.2855. PubMed DOI

Nie XP, Liu BY, Yu HJ, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ Pollut. 2013;172:23–32. doi: 10.1016/j.envpol.2012.08.013. PubMed DOI

Nunes B, Antunes SC, Santos J, et al. Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators? Ecotoxicol Environ Saf. 2014;107:178–185. doi: 10.1016/j.ecoenv.2014.05.027. PubMed DOI

Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev. 2018;47:5574–5587. doi: 10.1039/c7cs00854f. PubMed DOI

Parry CM, Threlfall EJ. Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Curr Opin Infect Dis. 2008;21:531–538. doi: 10.1097/QCO.0b013e32830f453a. PubMed DOI

Patel S, Homaei A, Raju AB, Meher BR. Estrogen: the necessary evil for human health, and ways to tame it. Biomed Pharmacother. 2018;102:403–411. doi: 10.1016/j.biopha.2018.03.078. PubMed DOI

Peng Q, Wu Y, Cong H, et al. Preparation of monodisperse porous polymeric ionic liquid microspheres and their application as stationary phases for HPLC. Talanta. 2019;208:120462. doi: 10.1016/j.talanta.2019.120462. PubMed DOI

Pereira A, Silva L, Laranjeiro C, et al. Selected pharmaceuticals in different aquatic compartments: part I—source. Fate Occur Mol. 2020;25:1026. doi: 10.3390/molecules25051026. PubMed DOI PMC

Perussolo MC, Guiloski IC, Lirola JR, et al. Integrated biomarker response index to assess toxic effects of environmentally relevant concentrations of paracetamol in a neotropical catfish (Rhamdia quelen) Ecotoxicol Environ Saf. 2019;182:109438. doi: 10.1016/j.ecoenv.2019.109438. PubMed DOI

Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta. 2008;622:48–61. doi: 10.1016/j.aca.2008.05.057. PubMed DOI

Qiao L, Sun R, Yu C, et al. Novel hydrophobic deep eutectic solvents for ultrasound-assisted dispersive liquid-liquid microextraction of trace non-steroidal anti-inflammatory drugs in water and milk samples. Microchem J. 2021;170:106686. doi: 10.1016/j.microc.2021.106686. DOI

Quesada HB, Baptista ATA, Cusioli LF, et al. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere. 2019;222:766–780. doi: 10.1016/j.chemosphere.2019.02.009. PubMed DOI

Rathi BS, Kumar PS, Show PL. A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. J Hazard Mater. 2021;409:124413. doi: 10.1016/j.jhazmat.2020.124413. PubMed DOI

Ribeiro S, Torres T, Martins R, Santos MM. Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. Ecotoxicol Environ Saf. 2015;114:67–74. doi: 10.1016/j.ecoenv.2015.01.008. PubMed DOI

Robson L, Barnhoorn IEJ, Wagenaar GM. The potential effects of efavirenz on Oreochromis mossambicus after acute exposure. Environ Toxicol Pharmacol. 2017;56:225–232. doi: 10.1016/j.etap.2017.09.017. PubMed DOI

Rodrigues S, Antunes SC, Correia AT, et al. Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere. 2019;216:234–247. doi: 10.1016/j.chemosphere.2018.10.124. PubMed DOI

Rodrigues S, Antunes SC, Correia AT, Nunes B. Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment. Environ Sci Pollut Res. 2019;26:227–239. doi: 10.1007/s11356-018-3494-9. PubMed DOI

Rodrigues S, Antunes SC, Nunes B, Correia AT. Histopathological effects in gills and liver of Sparus aurata following acute and chronic exposures to erythromycin and oxytetracycline. Environ Sci Pollut Res. 2019;26:15481–15495. doi: 10.1007/s11356-019-04954-0. PubMed DOI

Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: highlighting computational design, nano and photo-responsive imprinting. Talanta Open. 2021;4:100072. doi: 10.1016/j.talo.2021.100072. DOI

Sathishkumar P, Meena RAA, Palanisami T, et al. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota—a review. Sci Total Environ. 2020;698:134057. doi: 10.1016/j.scitotenv.2019.134057. PubMed DOI

Schlüter-Vorberg L, Prasse C, Ternes TA, et al. Toxification by transformation in conventional and advanced wastewater treatment: the antiviral drug acyclovir. Environ Sci Technol Lett. 2015;2:342–346. doi: 10.1021/acs.estlett.5b00291. DOI

Schüle C. Neuroendocrinological mechanisms of actions of antidepressant drugs. J Neuroendocrinol. 2007;19:213–226. doi: 10.1111/j.1365-2826.2006.01516.x. PubMed DOI

Sehonova P, Hodkovicova N, Urbanova M, et al. Effects of antidepressants with different modes of action on early life stages of fish and amphibians. Environ Pollut. 2019;254:112999. doi: 10.1016/j.envpol.2019.112999. PubMed DOI

Sharma BM, Bečanová J, Scheringer M, et al. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Environ. 2019;646:1459–1467. doi: 10.1016/j.scitotenv.2018.07.235. PubMed DOI

Shea KJ, Dougherty TK. Molecular recognition on synthetic amorphous surfaces. the influence of functional group positioning on the effectiveness of molecular recognition. J Am Chem Soc. 1986;108:1091–1093. doi: 10.1021/ja00265a046. DOI

Shen X, Xu C, Ye L. Molecularly imprinted polymers for clean water: analysis and purification. Ind Eng Chem Res. 2013;52:13890–13899. doi: 10.1021/ie302623s. DOI

Shen R, Yu Y, Lan R, et al. The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish. Environ Pollut. 2019;254:112861. doi: 10.1016/j.envpol.2019.07.029. PubMed DOI

Shi X, Leong KY, Ng HY. Anaerobic treatment of pharmaceutical wastewater: a critical review. Bioresour Technol. 2017;245:1238–1244. doi: 10.1016/j.biortech.2017.08.150. PubMed DOI

Shin J, Kwak J, Lee YG, et al. Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: contribution of hydrophobic and π-π interactions. Environ Pollut. 2021;270:116244. doi: 10.1016/j.envpol.2020.116244. PubMed DOI

Srinivasan AV. Propranolol: a 50-year historical perspective. Ann Indian Acad Neurol. 2019;22:21. doi: 10.4103/aian.AIAN_201_18. PubMed DOI PMC

Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–2093. doi: 10.1161/01.CIR.98.19.2088. PubMed DOI

Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med. 2001;5:378–387. doi: 10.1111/j.1582-4934.2001.tb00172.x. PubMed DOI PMC

Stoczynski L, van den Hurk P. Effects of selective serotonin reuptake inhibitor sertraline on hybrid striped bass predatory behavior and brain chemistry. Aquat Toxicol. 2020;226:105564. doi: 10.1016/j.aquatox.2020.105564. PubMed DOI

Sun XY, Ma RT, Chen J, Shi YP. Synthesis of magnetic molecularly imprinted nanoparticles with multiple recognition sites for the simultaneous and selective capture of two glycoproteins. J Mater Chem B. 2018;6:688–696. doi: 10.1039/C7TB03001K. PubMed DOI

Sun L, Li J, Li X, et al. Molecularly imprinted Ag/Ag3VO4/g-C3N4 Z-scheme photocatalysts for enhanced preferential removal of tetracycline. J Colloid Interface Sci. 2019;552:271–286. doi: 10.1016/j.jcis.2019.05.060. PubMed DOI

Suwanwong Y, Kulkeratiyut S, Prachayasittikul V, Boonpangrak S. Effects of polymerization methods and functional monomers on curcumin imprinted polymer properties. Sep Sci Technol. 2014;49:1086–1095. doi: 10.1080/01496395.2013.871036. DOI

Taisen I, Hajime W, Yoshinao K. Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environ Health Perspect. 2006;114:101–105. doi: 10.1289/ehp.8061. PubMed DOI PMC

Tian M, Yu K, Li L, et al. Fabrication of dual-template molecularly imprinted mesoporous silica for simultaneous rapid and efficient detection of bisphenol A and diethylstilbestrol in environmental water samples. Anal Methods. 2019;11:4761–4768. doi: 10.1039/C9AY01368G. DOI

Top S, Akgün M, Kıpçak E, Bilgili MS. Treatment of hospital wastewater by supercritical water oxidation process. Water Res. 2020;185:116279. doi: 10.1016/j.watres.2020.116279. PubMed DOI

Turk Sekulic M, Boskovic N, Slavkovic A, et al. Surface functionalised adsorbent for emerging pharmaceutical removal: adsorption performance and mechanisms. Process Saf Environ Prot. 2019;125:50–63. doi: 10.1016/j.psep.2019.03.007. DOI

Ut Dong T, Thi H, Pham T, et al. Synergetic effect of dual functional monomers in molecularly imprinted polymer preparation for selective solid phase extraction of ciprofloxacin. Polymers (Basel) 2021;13:2788. doi: 10.3390/polym13162788. PubMed DOI PMC

Viveiros R, Rebocho S, Casimiro T. Green strategies for molecularly imprinted polymer development. Polymers (Basel) 2018;10:306. doi: 10.3390/polym10030306. PubMed DOI PMC

Wan L, Gao H, Yan G, et al. Metal-organic gel-modulated synthesis of hierarchically porous molecularly imprinted polymers for efficient removal of sildenafil from water. ACS Omega. 2021;6:7478–7486. doi: 10.1021/acsomega.0c06000. PubMed DOI PMC

Wang R, Cui Y, Hu F, et al. Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization. J Chromatogr A. 2019;1591:62–70. doi: 10.1016/j.chroma.2019.01.057. PubMed DOI

Wang D, Liu Y, Xu Z, et al. Multitemplate molecularly imprinted polymeric solid-phase microextraction fiber coupled with HPLC for endocrine disruptor analysis in water samples. Microchem J. 2020;155:104802. doi: 10.1016/j.microc.2020.104802. DOI

Wang XT, Deng X, Zhang TD, et al. Biocompatible self-healing hydrogels based on boronic acid-functionalized polymer and laponite nanocomposite for water pollutant removal. Environ Chem Lett. 2022;20:81–90. doi: 10.1007/s10311-021-01350-4. DOI

Wee SY, Aris AZ. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ Int. 2017;106:207–233. doi: 10.1016/j.envint.2017.05.004. PubMed DOI

Wei CJ, Li XY, Xie YF, Wang XM. Direct photo transformation of tetracycline and sulfanomide group antibiotics in surface water: kinetics, toxicity and site modeling. Sci Total Environ. 2019;686:1–9. doi: 10.1016/j.scitotenv.2019.04.041. PubMed DOI

Wiest L, Chonova T, Bergé A, et al. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environ Sci Pollut Res. 2018;25:9207–9218. doi: 10.1007/s11356-017-9662-5. PubMed DOI

Wu Y, Ma Y, Pan J, et al. Porous and magnetic molecularly imprinted polymers via pickering high internal phase emulsions polymerization for selective adsorption of λ-cyhalothrin. Front Chem. 2017;5:1–10. doi: 10.3389/fchem.2017.00018. PubMed DOI PMC

Wu Y, Xing W, Meng M, et al. Multiple-functional molecularly imprinted nanocomposite membranes for high-efficiency selective separation applications: an imitated core-shell TiO2@PDA-based MIMs design. Compos B Eng. 2020;198:108123. doi: 10.1016/j.compositesb.2020.108123. DOI

Wulff G, Schauhoff S. Enzyme-analog-built polymers. 27. Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements. J Org Chem. 1991;56:395–400. doi: 10.1021/jo00001a071. DOI

Wulff G, Vietmeier J. Enzyme-analogue built polymers, 26. Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules. Die Makromol Chem. 1989;190:1727–1735. doi: 10.1002/macp.1989.021900724. DOI

Wulff G, Wolf G. Zur Chemie von Haftgruppen, VI. Über die Eignung verschiedener Aldehyde und Ketone als Haftgruppen für Monoalkohole. Chem Ber. 1986;119:1876–1889. doi: 10.1002/cber.19861190610. DOI

Xu D, Xiao Y, Pan H, Mei Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol Environ Saf. 2019;174:43–47. doi: 10.1016/j.ecoenv.2019.02.063. PubMed DOI

Xu L, Zhang H, Xiong P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci Total Environ. 2021;753:141975. doi: 10.1016/j.scitotenv.2020.141975. PubMed DOI

Yahaya N, Zain NNM, Miskam M, Kamaruzaman S. Molecularly imprinted polymer composites in wastewater treatment. In: Mathew MP, Beena, Nair, Archana S, Thomas S, editors. Molecularly imprinted polymer composites. 1. Amsterdam: Elsevier; 2021. pp. 381–413.

Yang Y, Ok YS, Kim KH, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ. 2017;596–597:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI

Yang Y, Song W, Lin H, et al. Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environ Int. 2018;116:60–73. doi: 10.1016/j.envint.2018.04.011. PubMed DOI

Yang Z, Lu T, Zhu Y, et al. Aquatic ecotoxicity of an antidepressant, sertraline hydrochloride, on microbial communities. Sci Total Environ. 2019;654:129–134. doi: 10.1016/j.scitotenv.2018.11.164. PubMed DOI

Yilmaz G, Kaya Y, Vergili I, et al. Characterization and toxicity of hospital wastewaters in Turkey. Environ Monit Assess. 2017;189:55. doi: 10.1007/s10661-016-5732-2. PubMed DOI

Yu M, Li H, Xie J, et al. A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta. 2022;236:122875. doi: 10.1016/j.talanta.2021.122875. PubMed DOI

Yuan Y, Yang Y, Zhu G. Molecularly imprinted porous aromatic frameworks for molecular recognition. ACS Cent Sci. 2020;6:1082–1094. doi: 10.1021/acscentsci.0c00311. PubMed DOI PMC

Zare EN, Mudhoo A, Khan MA, et al. Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents. Environ Chem Lett. 2021;19:3075–3114. doi: 10.1007/s10311-021-01207-w. DOI

Zeng G, Liu Y, Ma X, Fan Y. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water. Front Environ Sci Eng. 2021;15:107. doi: 10.1007/s11783-021-1395-5. DOI

Zeng H, Yu X, Wan J, Cao X. Synthesis of molecularly imprinted polymers based on boronate affinity for diol-containing macrolide antibiotics with hydrophobicity-balanced and pH-responsive cavities. J Chromatogr A. 2021;1642:461969. doi: 10.1016/j.chroma.2021.461969. PubMed DOI

Zhang Z, Cao X, Zhang Z, et al. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta. 2020;208:120385. doi: 10.1016/j.talanta.2019.120385. PubMed DOI

Zhao Q, Zhao H, Huang W, et al. Dual functional monomer surface molecularly imprinted microspheres for polysaccharide recognition in aqueous solution. Anal Methods. 2019;11:2800–2808. doi: 10.1039/C9AY00132H. DOI

Zhao X, Wang Y, Zhang P, et al. Recent advances of molecularly imprinted polymers based on cyclodextrin. Macromol Rapid Commun. 2021;42:1–19. doi: 10.1002/marc.202100004. PubMed DOI

Zhu G, Cheng G, Wang L, et al. A new ionic liquid surface-imprinted polymer for selective solid-phase-extraction and determination of sulfonamides in environmental samples. J Sep Sci. 2019;42:725–735. doi: 10.1002/jssc.201800759. PubMed DOI

Zivna D, Sehonova P, Plhalova L, et al. Effect of salicylic acid on early life stages of common carp (Cyprinus carpio) Environ Toxicol Pharmacol. 2015;40:319–325. doi: 10.1016/j.etap.2015.06.018. PubMed DOI

Zounková R, Odráska P, Dolezalová L, et al. Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environ Toxicol Chem. 2007;26:2208–2214. doi: 10.1897/07-137R.1. PubMed DOI

Zounkova R, Kovalova L, Blaha L, Dott W. Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere. 2010;81:253–260. doi: 10.1016/j.chemosphere.2010.06.029. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...