Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article, Review
PubMed
35431714
PubMed Central
PMC8999999
DOI
10.1007/s10311-022-01439-4
PII: 1439
Knihovny.cz E-resources
- Keywords
- Contaminated water, Limitations, Molecularly imprinted materials, Pharmaceuticals, Remediation,
- Publication type
- Journal Article MeSH
- Review MeSH
The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation methods. Conventional removal methods are often non-selective and cause secondary contamination. These issues may be partly solved by the use of recently-developped adsorbents such as molecularly imprinted polymers. Here we review the synthesis and application of molecularly imprinted polymers for removing pharmaceuticals in water. Molecularly imprinted polymers are synthesized via several multiple-step polymerization methods. Molecularly imprinted polymers are potent adsorbents at the laboratory scale, yet their efficiency is limited by template leakage and polymer quality. Adsorption performance of multi-templated molecularly imprinted polymers depends on the design of wastewater treatment plants, pharmaceutical consumption patterns and the population serviced by these wastewater treatment plants.
Department of Chemistry Shahr e Qods Branch Islamic Azad University Tehran Iran
Department of Chemistry Soongsil University Seoul 06978 South Korea
Faculty of Chemistry University of Mazandaran 47416 95447 Babolsar Iran
School of Chemistry Damghan University 36716 41167 Damghan Iran
The Faculty of Natural Sciences Duy Tan University 03 Quang Trung Da Nang 55000 Vietnam
See more in PubMed
Abdullah BA, Talpur FN, et al. Synthesis of ultrasonic-assisted lead ion imprinted polymer as a selective sorbent for the removal of Pb2+ in a real water sample. Microchem J. 2019;146:1160–1168. doi: 10.1016/j.microc.2019.02.037. DOI
Adumitrăchioaie A, Tertiş M, Cernat A, et al. Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int J Electrochem Sci. 2018;13:2556–2576. doi: 10.20964/2018.03.75. DOI
Almeida Â, Calisto V, Esteves VI, et al. Effects of single and combined exposure of pharmaceutical drugs (carbamazepine and cetirizine) and a metal (cadmium) on the biochemical responses of R. philippinarum. Aquat Toxicol. 2018;198:10–19. doi: 10.1016/j.aquatox.2018.02.011. PubMed DOI
Almeida LC, Mattos AC, Dinamarco CPG, et al. Chronic toxicity and environmental risk assessment of antivirals in Ceriodaphnia dubia and Raphidocelis subcapitata. Water Sci Technol. 2021;84:1623–1634. doi: 10.2166/wst.2021.347. PubMed DOI
Almuntashiri A, Hosseinzadeh A, Volpin F, et al. Removal of pharmaceuticals from nitrified urine. Chemosphere. 2021;280:130870. doi: 10.1016/j.chemosphere.2021.130870. PubMed DOI
Alshishani A, Saaid M, Basheer C, Saad B. High performance liquid chromatographic determination of triclosan, triclocarban and methyl-triclosan in wastewater using mini-bar micro-solid phase extraction. Microchem J. 2019;147:339–348. doi: 10.1016/j.microc.2019.03.044. DOI
Amaly N, Istamboulie G, El-Moghazy AY, Noguer T. Reusable molecularly imprinted polymeric nanospheres for diclofenac removal from water samples. J Chem Res. 2021;45:102–110. doi: 10.1177/1747519820925998. DOI
Araújo APC, Mesak C, Montalvão MF, et al. Anti-cancer drugs in aquatic environment can cause cancer: insight about mutagenicity in tadpoles. Sci Total Environ. 2019;650:2284–2293. doi: 10.1016/j.scitotenv.2018.09.373. PubMed DOI
Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int. 2014;69:104–119. doi: 10.1016/j.envint.2014.04.011. PubMed DOI
Arnnok P, Singh RR, Burakham R, et al. Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara river. Environ Sci Technol. 2017;51:10652–10662. doi: 10.1021/acs.est.7b02912. PubMed DOI
aus der Beek T, Weber FA, Bergmann A, et al. Pharmaceuticals in the environment-global occurrences and perspectives. Environ Toxicol Chem. 2016;35:823–835. doi: 10.1002/etc.3339. PubMed DOI
Aylaz G, Kuhn J, Lau ECHT, et al. Recent developments on magnetic molecular imprinted polymers (MMIPs) for sensing, capturing, and monitoring pharmaceutical and agricultural pollutants. J Chem Technol Biotechnol. 2021;96:1151–1160. doi: 10.1002/jctb.6681. DOI
Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A. 2020;1614:460603. doi: 10.1016/j.chroma.2019.460603. PubMed DOI
Bagheri AR, Ghaedi M. Green preparation of dual-template chitosan-based magnetic water-compatible molecularly imprinted biopolymer. Carbohydr Polym. 2020;236:116102. doi: 10.1016/j.carbpol.2020.116102. PubMed DOI
Basturk I, Varank G, Murat-Hocaoglu S, et al. Characterization and treatment of medical laboratory wastewater by ozonation: optimization of toxicity removal by central composite design. Ozone Sci Eng. 2021;43:213–227. doi: 10.1080/01919512.2020.1794794. DOI
Beydoun A, DuPont S, Zhou D, et al. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure. 2020;83:251–263. doi: 10.1016/j.seizure.2020.10.018. PubMed DOI
Bhogal S, Kaur K, Mohiuddin I, et al. Hollow porous molecularly imprinted polymers as emerging adsorbents. Environ Pollut. 2021;288:117775. doi: 10.1016/j.envpol.2021.117775. PubMed DOI
Bi L, Chen Z, Li L, et al. Selective adsorption and enhanced photodegradation of diclofenac in water by molecularly imprinted TiO2. J Hazard Mater. 2021;407:124759. doi: 10.1016/j.jhazmat.2020.124759. PubMed DOI
Björlenius B, Ripszám M, Haglund P, et al. Pharmaceutical residues are widespread in Baltic Sea coastal and offshore waters—screening for pharmaceuticals and modelling of environmental concentrations of carbamazepine. Sci Total Environ. 2018;633:1496–1509. doi: 10.1016/j.scitotenv.2018.03.276. PubMed DOI
Borgatta M, Decosterd LA, Waridel P, et al. The anticancer drug metabolites endoxifen and 4-hydroxy-tamoxifen induce toxic effects on Daphnia pulex in a two-generation study. Sci Total Environ. 2015;520:232–240. doi: 10.1016/j.scitotenv.2015.03.040. PubMed DOI
Brezovšek P, Eleršek T, Filipič M. Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis. Water Res. 2014;52:168–177. doi: 10.1016/j.watres.2014.01.007. PubMed DOI
Byun HS, Yang DS, Cho SH. Synthesis and characterization of high selective molecularly imprinted polymers for bisphenol A and 2,4-dichlorophenoxyacetic acid by using supercritical fluid technology. Polymer (Guildf) 2013;54:589–595. doi: 10.1016/j.polymer.2012.11.079. DOI
Cantarella M, Carroccio SC, Dattilo S, et al. Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem Eng J. 2019;367:180–188. doi: 10.1016/j.cej.2019.02.146. DOI
Cao Y, Sheng T, Yang Z, et al. Synthesis of molecular-imprinting polymer coated magnetic nanocomposites for selective capture and fast removal of environmental tricyclic analogs. Chem Eng J. 2021;426:128678. doi: 10.1016/j.cej.2021.128678. DOI
Caro E, Marce R, Cormack P, et al. A new molecularly imprinted polymer for the selective extraction of naproxen from urine samples by solid-phase extraction. J Chromatogr B. 2004;813:137–143. doi: 10.1016/j.jchromb.2004.09.019. PubMed DOI
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, et al. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. Sci Total Environ. 2021;757:143722. doi: 10.1016/j.scitotenv.2020.143722. PubMed DOI
Chen X, Ye N. A graphene oxide surface–molecularly imprinted polymer as a dispersive solid-phase extraction adsorbent for the determination of cefadroxil in water samples. RSC Adv. 2017;7:34077–34085. doi: 10.1039/C7RA02985C. DOI
Chen H, Son S, Zhang F, et al. Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk. J Chromatogr B. 2015;983–984:32–38. doi: 10.1016/j.jchromb.2015.01.003. PubMed DOI
Chen Y, Lei X, Dou R, et al. Selective removal and preconcentration of triclosan using a water-compatible imprinted nano-magnetic chitosan particles. Environ Sci Pollut Res. 2017;24:18640–18650. doi: 10.1007/s11356-017-9467-6. PubMed DOI
Chen J, Wang L, Liu Y, et al. Highly selective removal of kitasamycin from the environment by molecularly imprinted polymers: Adsorption performance and mechanism. Colloids Surf A Physicochem Eng Asp. 2021;625:126926. doi: 10.1016/j.colsurfa.2021.126926. DOI
Cheng D, Ngo HH, Guo W, et al. A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches. J Hazard Mater. 2020;387:121682. doi: 10.1016/j.jhazmat.2019.121682. PubMed DOI
Colville C, Alcaraz AJ, Green D, et al. Characterizing toxicity pathways of fluoxetine to predict adverse outcomes in adult fathead minnows (Pimephales promelas) Sci Total Environ. 2022;817:152747. doi: 10.1016/j.scitotenv.2021.152747. PubMed DOI
Da Silva RCS, Santos MN, Pires BC, et al. Assessment of surfactants on performance of molecularly imprinted polymer toward adsorption of pharmaceutical. J Environ Chem Eng. 2019;7:103037. doi: 10.1016/j.jece.2019.103037. DOI
Dai CM, Zhang J, Zhang YL, et al. Selective removal of acidic pharmaceuticals from contaminated lake water using multi-templates molecularly imprinted polymer. Chem Eng J. 2012;211–212:302–309. doi: 10.1016/j.cej.2012.09.090. DOI
de Andrade JR, Oliveira MF, da Silva MGC, Vieira MGA. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res. 2018;57:3103–3127. doi: 10.1021/acs.iecr.7b05137. DOI
Deng D, He Y, Li M, et al. Preparation of multi-walled carbon nanotubes based magnetic multi-template molecularly imprinted polymer for the adsorption of phthalate esters in water samples. Environ Sci Pollut Res. 2021;28:5966–5977. doi: 10.1007/s11356-020-10970-2. PubMed DOI
Ding S, Li Z, Cheng Y, et al. Enhancing adsorption capacity while maintaining specific recognition performance of mesoporous silica: a novel imprinting strategy with amphiphilic ionic liquid as surfactant. Nanotechnology. 2018;29:375604 . doi: 10.1088/1361-6528/aace10. PubMed DOI
Do Nascimento TA, De Oliveira HL, Borges KB. Magnetic molecularly imprinted polypyrrole as a new selective adsorbent for pharmaceutically active compounds. J Environ Chem Eng. 2019;7:103371. doi: 10.1016/j.jece.2019.103371. DOI
Du Q, Wu P, Sun Y, et al. Selective photodegradation of tetracycline by molecularly imprinted ZnO@NH2-UiO-66 composites. Chem Eng J. 2020;390:124614. doi: 10.1016/j.cej.2020.124614. DOI
Elencovan V, Joseph J, Yahaya N, et al. Exploring a novel deep eutectic solvents combined with vortex assisted dispersive liquid–liquid microextraction and its toxicity for organophosphorus pesticides analysis from honey and fruit samples. Food Chem. 2022;368:130835. doi: 10.1016/j.foodchem.2021.130835. PubMed DOI
Elugoke SE, Adekunle AS, Fayemi OE, et al. Molecularly imprinted polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters—review. Electrochem Sci Adv. 2021;1:1–43. doi: 10.1002/elsa.202000026. DOI
Falfushynska H, Sokolov EP, Haider F, et al. Effects of a common pharmaceutical, atorvastatin, on energy metabolism and detoxification mechanisms of a marine bivalve Mytilus edulis. Aquat Toxicol. 2019;208:47–61. doi: 10.1016/j.aquatox.2018.12.022. PubMed DOI
Fan Y, Zeng G, Ma X. Effects of prepolymerization on surface molecularly imprinted polymer for rapid separation and analysis of sulfonamides in water. J Colloid Interface Sci. 2020;571:21–29. doi: 10.1016/j.jcis.2020.03.027. PubMed DOI
Fang L, Miao Y, Wei D, et al. Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer. Chemosphere. 2021;262:128032. doi: 10.1016/j.chemosphere.2020.128032. PubMed DOI
Farooq S, Nie J, Cheng Y, et al. Molecularly imprinted polymers’ application in pesticide residue detection. Analyst. 2018;143:3971–3989. doi: 10.1039/c8an00907d. PubMed DOI
Feijão E, Cruz de Carvalho R, Duarte IA, et al. Fluoxetine arrests growth of the model diatom Phaeodactylum tricornutum by increasing oxidative stress and altering energetic and lipid metabolism. Front Microbiol. 2020;11:1803. doi: 10.3389/fmicb.2020.01803. PubMed DOI PMC
Fontes MK, Gusso-Choueri PK, Maranho LA, et al. A tiered approach to assess effects of diclofenac on the brown mussel Perna perna: a contribution to characterize the hazard. Water Res. 2018;132:361–370. doi: 10.1016/j.watres.2017.12.077. PubMed DOI
Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15:569–589. doi: 10.1038/s41574-019-0242-2. PubMed DOI
Fraz S, Lee AH, Wilson JY. Gemfibrozil and carbamazepine decrease steroid production in zebrafish testes (Danio rerio) Aquat Toxicol. 2018;198:1–9. doi: 10.1016/j.aquatox.2018.02.006. PubMed DOI
Freitas R, Silvestro S, Coppola F, et al. Biochemical and physiological responses induced in Mytilus galloprovincialis after a chronic exposure to salicylic acid. Aquat Toxicol. 2019;214:105258. doi: 10.1016/j.aquatox.2019.105258. PubMed DOI
Freitas R, Silvestro S, Pagano M, et al. Impacts of salicylic acid in Mytilus galloprovincialis exposed to warming conditions. Environ Toxicol Pharmacol. 2020;80:103448. doi: 10.1016/j.etap.2020.103448. PubMed DOI
Friedman BW, Cisewski D, Irizarry E, et al. A randomized, double-blind, placebo-controlled trial of naproxen with or without orphenadrine or methocarbamol for acute low back pain. Ann Emerg Med. 2018;71:348–356.e5. doi: 10.1016/j.annemergmed.2017.09.031. PubMed DOI PMC
Fu J, Chen L, Li J, Zhang Z. Current status and challenges of ion imprinting. J Mater Chem A. 2015;3:13598–13627. doi: 10.1039/C5TA02421H. DOI
Fuller BB. Antioxidants and anti-inflammatories. In: Draelos ZD, editor. Cosmet. Dermatology, Third Edition, Chapter 37. Hoboken: Wiley; 2022. pp. 366–387.
Gao M, Gao Y, Chen G, et al. Recent Advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Front Chem. 2020;8:1–20. doi: 10.3389/fchem.2020.616326. PubMed DOI PMC
Godoy AA, Kummrow F. What do we know about the ecotoxicology of pharmaceutical and personal care product mixtures? A critical review. Crit Rev Environ Sci Technol. 2017;47:1453–1496. doi: 10.1080/10643389.2017.1370991. DOI
Gornik T, Shinde S, Lamovsek L, et al. Molecularly imprinted polymers for the removal of antidepressants from contaminated wastewater. Polymers (Basel) 2021;13:1–20. doi: 10.3390/polym13010120. PubMed DOI PMC
Guyon A, Smith KF, Charry MP, et al. Effects of chronic exposure to benzophenone and diclofenac on DNA methylation levels and reproductive success in a marine copepod. J Xenobiotics. 2018;8:7674. doi: 10.4081/xeno.2018.7674. PubMed DOI PMC
Hassan AA, Tanimu A, Alhooshani K. Iron and cobalt-containing magnetic ionic liquids for dispersive micro-solid phase extraction coupled with HPLC-DAD for the preconcentration and quantification of carbamazepine drug in urine and environmental water samples. J Mol Liq. 2021;336:116370. doi: 10.1016/j.molliq.2021.116370. DOI
He Q, Liang JJ, Chen LX, et al. Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: molecular simulation, adsorption properties, and mechanisms. Water Res. 2020;168:115164. doi: 10.1016/j.watres.2019.115164. PubMed DOI
He S, Zhang L, Bai S, et al. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. Eur Polym J. 2021;143:110179. doi: 10.1016/j.eurpolymj.2020.110179. DOI
Herrera-Chacón A, Cetó X, del Valle M. Molecularly imprinted polymers—towards electrochemical sensors and electronic tongues. Anal Bioanal Chem. 2021;413:6117–6140. doi: 10.1007/s00216-021-03313-8. PubMed DOI PMC
Hu X, Fan Y, Zhang Y, et al. Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition–fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples. Anal Chim Acta. 2012;731:40–48. doi: 10.1016/j.aca.2012.04.013. PubMed DOI
Hu Y, Jiang L, Sun X, et al. Risk assessment of antibiotic resistance genes in the drinking water system. Sci Total Environ. 2021;800:149650. doi: 10.1016/j.scitotenv.2021.149650. PubMed DOI
Hu Y, Jin L, Zhao Y, et al. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. Sci Total Environ. 2021;791:148152. doi: 10.1016/j.scitotenv.2021.148152. PubMed DOI
Husin NA, Muhamad M, Yahaya N, et al. Application of a new choline-imidazole based deep eutectic solvents in hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples. Mater Chem Phys. 2021;261:124228. doi: 10.1016/j.matchemphys.2021.124228. DOI
Iesce MR, Lavorgna M, Russo C, et al. Ecotoxic effects of loratadine and its metabolic and light-induced derivatives. Ecotoxicol Environ Saf. 2019;170:664–672. doi: 10.1016/j.ecoenv.2018.11.116. PubMed DOI
Isidori M, Lavorgna M, Nardelli A, et al. Ecotoxicity of naproxen and its phototransformation products. Sci Total Environ. 2005;348:93–101. doi: 10.1016/j.scitotenv.2004.12.068. PubMed DOI
Jeong TY, Kim HY, Kim SD. Multi-generational effects of propranolol on Daphnia magna at different environmental concentrations. Environ Pollut. 2015;206:188–194. doi: 10.1016/j.envpol.2015.07.003. PubMed DOI
Jeong TY, Yoon D, Kim S, et al. Mode of action characterization for adverse effect of propranolol in Daphnia magna based on behavior and physiology monitoring and metabolite profiling. Environ Pollut. 2018;233:99–108. doi: 10.1016/j.envpol.2017.10.043. PubMed DOI
Jureczko M, Kalka J. Cytostatic pharmaceuticals as water contaminants. Eur J Pharmacol. 2020;866:172816. doi: 10.1016/j.ejphar.2019.172816. PubMed DOI
Kechagia M, Samanidou V, Kabir A, Furton KG. One-pot synthesis of a multi-template molecularly imprinted polymer for the extraction of six sulfonamide residues from milk before high-performance liquid chromatography with diode array detection. J Sep Sci. 2018;41:723–731. doi: 10.1002/jssc.201701205. PubMed DOI
Kefayati H, Yamini Y, Shamsayei M, Abdi S. Molecularly imprinted polypyrrole@CuO nanocomposite as an in-tube solid-phase microextraction coating for selective extraction of carbamazepine from biological samples. J Pharm Biomed Anal. 2021;204:114256. doi: 10.1016/j.jpba.2021.114256. PubMed DOI
Khan HK, Rehman MYA, Malik RN. Fate and toxicity of pharmaceuticals in water environment: an insight on their occurrence in South Asia. J Environ Manage. 2020;271:111030. doi: 10.1016/j.jenvman.2020.111030. PubMed DOI
Khan NA, Ahmed S, Farooqi IH, et al. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: a critical review. TrAC Trends Anal Chem. 2020;129:115921. doi: 10.1016/j.trac.2020.115921. DOI
Khulu S, Ncube S, Kgame T, et al. Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. Polym Bull. 2021;79:1287–1307. doi: 10.1007/s00289-021-03553-9. DOI
Khulu S, Ncube S, Nuapia Y, et al. Multivariate optimization of a two-way technique for extraction of pharmaceuticals in surface water using a combination of membrane assisted solvent extraction and a molecularly imprinted polymer. Chemosphere. 2022;286:131973. doi: 10.1016/j.chemosphere.2021.131973. PubMed DOI
Kim S, Gholamirad F, Yu M, et al. Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene. Chem Eng J. 2021;406:126789. doi: 10.1016/j.cej.2020.126789. DOI
Kleinert C, Poirier-Larabie S, Gagnon C, et al. Occurrence and ecotoxicity of cytostatic drugs 5-fluorouracil and methotrexate in the freshwater unionid Elliptio complanata. Comp Biochem Physiol C Toxicol Pharmacol. 2021;244:109027. doi: 10.1016/j.cbpc.2021.109027. PubMed DOI
Kong X, Li F, Li Y, et al. Molecularly imprinted polymer functionalized magnetic Fe3O4 for the highly selective extraction of triclosan. J Sep Sci. 2020;43:808–817. doi: 10.1002/jssc.201900924. PubMed DOI
Kovalakova P, Cizmas L, McDonald TJ, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere. 2020;251:126351. doi: 10.1016/j.chemosphere.2020.126351. PubMed DOI
Kriikku P, Pelkonen S, Kaukonen M, Ojanperä I. Propranolol and metoprolol: two comparable drugs with very different post-mortem toxicological profiles. Forensic Sci Int. 2021;327:110978. doi: 10.1016/j.forsciint.2021.110978. PubMed DOI
Kristensen DM, Desdoits-Lethimonier C, Mackey AL, et al. Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism. Proc Natl Acad Sci USA. 2018 doi: 10.1073/pnas.1715035115. PubMed DOI PMC
Kumar A, Pal D. Antibiotic resistance and wastewater: correlation, impact and critical human health challenges. J Environ Chem Eng. 2018;6:52–58. doi: 10.1016/j.jece.2017.11.059. DOI
Kumar S, Karfa P, Majhi KC, Madhuri R. Photocatalytic, fluorescent BiPO4@ graphene oxide based magnetic molecularly imprinted polymer for detection, removal and degradation of ciprofloxacin. Mater Sci Eng C. 2020;111:110777. doi: 10.1016/j.msec.2020.110777. PubMed DOI
Kumar M, Mazumder P, Mohapatra S, et al. A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. J Hazard Mater. 2021;405:124043. doi: 10.1016/j.jhazmat.2020.124043. PubMed DOI PMC
Kwak K, Ji K, Kho Y, et al. Chronic toxicity and endocrine disruption of naproxen in freshwater waterfleas and fish, and steroidogenic alteration using H295R cell assay. Chemosphere. 2018;204:156–162. doi: 10.1016/j.chemosphere.2018.04.035. PubMed DOI
Li X, Row KH. Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Microchim Acta. 2019;186:753. doi: 10.1007/s00604-019-3885-8. PubMed DOI
Li N, Yang H. Construction of natural polymeric imprinted materials and their applications in water treatment: a review. J Hazard Mater. 2021;403:123643. doi: 10.1016/j.jhazmat.2020.123643. PubMed DOI
Li Q, Yu J, Chen W, et al. Degradation of triclosan by chlorine dioxide: reaction mechanism,2,4-dichlorophenol accumulation and toxicity evaluation. Chemosphere. 2018;207:449–456. doi: 10.1016/j.chemosphere.2018.05.065. PubMed DOI
Li J, Ji F, Ng DHL, et al. Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water. Chem Eng J. 2019;369:611–620. doi: 10.1016/j.cej.2019.03.101. DOI
Li Y, Zhang L, Ding J, Liu X. Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals. J Environ Manag. 2020;253:109732. doi: 10.1016/j.jenvman.2019.109732. PubMed DOI
Limbu SM, Zhou L, Sun SX, et al. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ Int. 2018;115:205–219. doi: 10.1016/j.envint.2018.03.034. PubMed DOI
Liu L, Yang M, He M, et al. Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Microchim Acta. 2020;187:503. doi: 10.1007/s00604-020-04465-7. PubMed DOI
Liu N, Jin X, Feng C, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system. Environ Int. 2020;136:105454. doi: 10.1016/j.envint.2019.105454. PubMed DOI
Liu H, Jin P, Zhu F, et al. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. TrAC Trends Anal Chem. 2021;134:116132. doi: 10.1016/j.trac.2020.116132. DOI
Liu Y, Lian Z, Li F, et al. Review on molecular imprinting technology and its application in pre-treatment and detection of marine organic pollutants. Mar Pollut Bull. 2021;169:112541. doi: 10.1016/j.marpolbul.2021.112541. PubMed DOI
Liu Y, Liu Y, Liu Z, et al. Ultra-durable, multi-template molecularly imprinted polymers for ultrasensitive monitoring and multicomponent quantification of trace sulfa antibiotics. J Mater Chem B. 2021;9:3192–3199. doi: 10.1039/D1TB00091H. PubMed DOI
Liu Z, Chen G, Lu X. In-situ growth of molecularly imprinted metal–organic frameworks on 3D carbon foam as an efficient adsorbent for selective removal of antibiotics. J Mol Liq. 2021;340:117232. doi: 10.1016/j.molliq.2021.117232. DOI
Lu W, Liu J, Li J, et al. Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst. 2019;144:1292–1302. doi: 10.1039/c8an02133c. PubMed DOI
Ma Z, Wu H, Zhang K, et al. Long-term low dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in swine wastewater treatment. Chem Eng J. 2018;334:630–637. doi: 10.1016/j.cej.2017.10.051. DOI
Mackuľak T, Černanský S, Fehér M, et al. Pharmaceuticals, drugs, and resistant microorganisms—environmental impact on population health. Curr Opin Environ Sci Health. 2019;9:40–48. doi: 10.1016/j.coesh.2019.04.002. DOI
Madikizela LM, Chimuka L. Synthesis, adsorption and selectivity studies of a polymer imprinted with naproxen, ibuprofen and diclofenac. J Environ Chem Eng. 2016;4:4029–4037. doi: 10.1016/j.jece.2016.09.012. DOI
Madikizela LM, Chimuka L. Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction. J Pharm Biomed Anal. 2016;128:210–215. doi: 10.1016/j.jpba.2016.05.037. PubMed DOI
Madikizela LM, Mdluli PS, Chimuka L. Experimental and theoretical study of molecular interactions between 2-vinyl pyridine and acidic pharmaceuticals used as multi-template molecules in molecularly imprinted polymer. React Funct Polym. 2016;103:33–43. doi: 10.1016/j.reactfunctpolym.2016.03.017. DOI
Madikizela LM, Tavengwa N, Pakade V. Molecularly imprinted polymers for pharmaceutical compounds: synthetic procedures and analytical applications. Recent Res Polym. London: IntechOpen; 2018.
Madikizela LM, Tavengwa NT, Chimuka L. Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed Anal. 2018;147:624–633. doi: 10.1016/j.jpba.2017.04.010. PubMed DOI
Madikizela LM, Tavengwa NT, Tutu H, Chimuka L. Green aspects in molecular imprinting technology: from design to environmental applications. Trends Environ Anal Chem. 2018;17:14–22. doi: 10.1016/j.teac.2018.01.001. DOI
Madikizela LM, Zunngu SS, Mlunguza NY, et al. Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA. 2018;44:406–418. doi: 10.4314/wsa.v44i3.08. DOI
Magro C, Mateus EP, Paz-Garcia JM, Ribeiro AB. Emerging organic contaminants in wastewater: understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere. 2020;247:125758. doi: 10.1016/j.chemosphere.2019.125758. PubMed DOI
Maksoud MIAA, Fahim RA, Bedir AG, et al. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. Environ Chem Lett. 2022;20:519–562. doi: 10.1007/s10311-021-01351-3. DOI
Manzo V, Ulisse K, Rodríguez I, et al. A molecularly imprinted polymer as the sorptive phase immobilized in a rotating disk extraction device for the determination of diclofenac and mefenamic acid in wastewater. Anal Chim Acta. 2015;889:130–137. doi: 10.1016/j.aca.2015.07.038. PubMed DOI
Metwally MG, Benhawy AH, Khalifa RM, et al. Application of molecularly imprinted polymers in the analysis of waters and wastewaters. Molecules. 2021;26:1–38. doi: 10.3390/molecules26216515. PubMed DOI PMC
Mezzelani M, Gorbi S, Fattorini D, et al. Long-term exposure of Mytilus galloprovincialis to diclofenac, Ibuprofen and Ketoprofen: insights into bioavailability, biomarkers and transcriptomic changes. Chemosphere. 2018;198:238–248. doi: 10.1016/j.chemosphere.2018.01.148. PubMed DOI
Mezzelani M, Gorbi S, Regoli F. Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms. Mar Environ Res. 2018;140:41–60. doi: 10.1016/j.marenvres.2018.05.001. PubMed DOI
Mohamed Idris Z, Hameed BH, Ye L, et al. Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption. J Environ Chem Eng. 2020;8:103981. doi: 10.1016/j.jece.2020.103981. DOI
Mohiuddin I, Bhogal S, Grover A, et al. Simultaneous determination of amitriptyline, nortriptyline, and clomipramine in aqueous samples using selective multi-template molecularly imprinted polymers. Environ Nanotechnol Monit Manag. 2021;16:100527. doi: 10.1016/j.enmm.2021.100527. DOI
Mole RA, Brooks BW. Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. Environ Pollut. 2019;250:1019–1031. doi: 10.1016/j.envpol.2019.04.118. PubMed DOI
Monisha RS, Mani RL, Sivaprakash B, et al. Green remediation of pharmaceutical wastes using biochar: a review. Environ Chem Lett. 2022;20:681–704. doi: 10.1007/s10311-021-01348-y. DOI
Morin-Crini N, Lichtfouse E, Fourmentin M, et al. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environ Chem Lett. 2022 doi: 10.1007/s10311-021-01379-5. DOI
Möstl E, Palme R. Hormones as indicators of stress. Domest Anim Endocrinol. 2002;23:67–74. doi: 10.1016/S0739-7240(02)00146-7. PubMed DOI
Ndunda EN. Molecularly imprinted polymers—a closer look at the control polymer used in determining the imprinting effect: a mini review. J Mol Recognit. 2020;33:1–11. doi: 10.1002/jmr.2855. PubMed DOI
Nie XP, Liu BY, Yu HJ, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ Pollut. 2013;172:23–32. doi: 10.1016/j.envpol.2012.08.013. PubMed DOI
Nunes B, Antunes SC, Santos J, et al. Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators? Ecotoxicol Environ Saf. 2014;107:178–185. doi: 10.1016/j.ecoenv.2014.05.027. PubMed DOI
Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev. 2018;47:5574–5587. doi: 10.1039/c7cs00854f. PubMed DOI
Parry CM, Threlfall EJ. Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Curr Opin Infect Dis. 2008;21:531–538. doi: 10.1097/QCO.0b013e32830f453a. PubMed DOI
Patel S, Homaei A, Raju AB, Meher BR. Estrogen: the necessary evil for human health, and ways to tame it. Biomed Pharmacother. 2018;102:403–411. doi: 10.1016/j.biopha.2018.03.078. PubMed DOI
Peng Q, Wu Y, Cong H, et al. Preparation of monodisperse porous polymeric ionic liquid microspheres and their application as stationary phases for HPLC. Talanta. 2019;208:120462. doi: 10.1016/j.talanta.2019.120462. PubMed DOI
Pereira A, Silva L, Laranjeiro C, et al. Selected pharmaceuticals in different aquatic compartments: part I—source. Fate Occur Mol. 2020;25:1026. doi: 10.3390/molecules25051026. PubMed DOI PMC
Perussolo MC, Guiloski IC, Lirola JR, et al. Integrated biomarker response index to assess toxic effects of environmentally relevant concentrations of paracetamol in a neotropical catfish (Rhamdia quelen) Ecotoxicol Environ Saf. 2019;182:109438. doi: 10.1016/j.ecoenv.2019.109438. PubMed DOI
Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta. 2008;622:48–61. doi: 10.1016/j.aca.2008.05.057. PubMed DOI
Qiao L, Sun R, Yu C, et al. Novel hydrophobic deep eutectic solvents for ultrasound-assisted dispersive liquid-liquid microextraction of trace non-steroidal anti-inflammatory drugs in water and milk samples. Microchem J. 2021;170:106686. doi: 10.1016/j.microc.2021.106686. DOI
Quesada HB, Baptista ATA, Cusioli LF, et al. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere. 2019;222:766–780. doi: 10.1016/j.chemosphere.2019.02.009. PubMed DOI
Rathi BS, Kumar PS, Show PL. A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. J Hazard Mater. 2021;409:124413. doi: 10.1016/j.jhazmat.2020.124413. PubMed DOI
Ribeiro S, Torres T, Martins R, Santos MM. Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. Ecotoxicol Environ Saf. 2015;114:67–74. doi: 10.1016/j.ecoenv.2015.01.008. PubMed DOI
Robson L, Barnhoorn IEJ, Wagenaar GM. The potential effects of efavirenz on Oreochromis mossambicus after acute exposure. Environ Toxicol Pharmacol. 2017;56:225–232. doi: 10.1016/j.etap.2017.09.017. PubMed DOI
Rodrigues S, Antunes SC, Correia AT, et al. Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. Chemosphere. 2019;216:234–247. doi: 10.1016/j.chemosphere.2018.10.124. PubMed DOI
Rodrigues S, Antunes SC, Correia AT, Nunes B. Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment. Environ Sci Pollut Res. 2019;26:227–239. doi: 10.1007/s11356-018-3494-9. PubMed DOI
Rodrigues S, Antunes SC, Nunes B, Correia AT. Histopathological effects in gills and liver of Sparus aurata following acute and chronic exposures to erythromycin and oxytetracycline. Environ Sci Pollut Res. 2019;26:15481–15495. doi: 10.1007/s11356-019-04954-0. PubMed DOI
Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: highlighting computational design, nano and photo-responsive imprinting. Talanta Open. 2021;4:100072. doi: 10.1016/j.talo.2021.100072. DOI
Sathishkumar P, Meena RAA, Palanisami T, et al. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota—a review. Sci Total Environ. 2020;698:134057. doi: 10.1016/j.scitotenv.2019.134057. PubMed DOI
Schlüter-Vorberg L, Prasse C, Ternes TA, et al. Toxification by transformation in conventional and advanced wastewater treatment: the antiviral drug acyclovir. Environ Sci Technol Lett. 2015;2:342–346. doi: 10.1021/acs.estlett.5b00291. DOI
Schüle C. Neuroendocrinological mechanisms of actions of antidepressant drugs. J Neuroendocrinol. 2007;19:213–226. doi: 10.1111/j.1365-2826.2006.01516.x. PubMed DOI
Sehonova P, Hodkovicova N, Urbanova M, et al. Effects of antidepressants with different modes of action on early life stages of fish and amphibians. Environ Pollut. 2019;254:112999. doi: 10.1016/j.envpol.2019.112999. PubMed DOI
Sharma BM, Bečanová J, Scheringer M, et al. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Environ. 2019;646:1459–1467. doi: 10.1016/j.scitotenv.2018.07.235. PubMed DOI
Shea KJ, Dougherty TK. Molecular recognition on synthetic amorphous surfaces. the influence of functional group positioning on the effectiveness of molecular recognition. J Am Chem Soc. 1986;108:1091–1093. doi: 10.1021/ja00265a046. DOI
Shen X, Xu C, Ye L. Molecularly imprinted polymers for clean water: analysis and purification. Ind Eng Chem Res. 2013;52:13890–13899. doi: 10.1021/ie302623s. DOI
Shen R, Yu Y, Lan R, et al. The cardiovascular toxicity induced by high doses of gatifloxacin and ciprofloxacin in zebrafish. Environ Pollut. 2019;254:112861. doi: 10.1016/j.envpol.2019.07.029. PubMed DOI
Shi X, Leong KY, Ng HY. Anaerobic treatment of pharmaceutical wastewater: a critical review. Bioresour Technol. 2017;245:1238–1244. doi: 10.1016/j.biortech.2017.08.150. PubMed DOI
Shin J, Kwak J, Lee YG, et al. Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: contribution of hydrophobic and π-π interactions. Environ Pollut. 2021;270:116244. doi: 10.1016/j.envpol.2020.116244. PubMed DOI
Srinivasan AV. Propranolol: a 50-year historical perspective. Ann Indian Acad Neurol. 2019;22:21. doi: 10.4103/aian.AIAN_201_18. PubMed DOI PMC
Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–2093. doi: 10.1161/01.CIR.98.19.2088. PubMed DOI
Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med. 2001;5:378–387. doi: 10.1111/j.1582-4934.2001.tb00172.x. PubMed DOI PMC
Stoczynski L, van den Hurk P. Effects of selective serotonin reuptake inhibitor sertraline on hybrid striped bass predatory behavior and brain chemistry. Aquat Toxicol. 2020;226:105564. doi: 10.1016/j.aquatox.2020.105564. PubMed DOI
Sun XY, Ma RT, Chen J, Shi YP. Synthesis of magnetic molecularly imprinted nanoparticles with multiple recognition sites for the simultaneous and selective capture of two glycoproteins. J Mater Chem B. 2018;6:688–696. doi: 10.1039/C7TB03001K. PubMed DOI
Sun L, Li J, Li X, et al. Molecularly imprinted Ag/Ag3VO4/g-C3N4 Z-scheme photocatalysts for enhanced preferential removal of tetracycline. J Colloid Interface Sci. 2019;552:271–286. doi: 10.1016/j.jcis.2019.05.060. PubMed DOI
Suwanwong Y, Kulkeratiyut S, Prachayasittikul V, Boonpangrak S. Effects of polymerization methods and functional monomers on curcumin imprinted polymer properties. Sep Sci Technol. 2014;49:1086–1095. doi: 10.1080/01496395.2013.871036. DOI
Taisen I, Hajime W, Yoshinao K. Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environ Health Perspect. 2006;114:101–105. doi: 10.1289/ehp.8061. PubMed DOI PMC
Tian M, Yu K, Li L, et al. Fabrication of dual-template molecularly imprinted mesoporous silica for simultaneous rapid and efficient detection of bisphenol A and diethylstilbestrol in environmental water samples. Anal Methods. 2019;11:4761–4768. doi: 10.1039/C9AY01368G. DOI
Top S, Akgün M, Kıpçak E, Bilgili MS. Treatment of hospital wastewater by supercritical water oxidation process. Water Res. 2020;185:116279. doi: 10.1016/j.watres.2020.116279. PubMed DOI
Turk Sekulic M, Boskovic N, Slavkovic A, et al. Surface functionalised adsorbent for emerging pharmaceutical removal: adsorption performance and mechanisms. Process Saf Environ Prot. 2019;125:50–63. doi: 10.1016/j.psep.2019.03.007. DOI
Ut Dong T, Thi H, Pham T, et al. Synergetic effect of dual functional monomers in molecularly imprinted polymer preparation for selective solid phase extraction of ciprofloxacin. Polymers (Basel) 2021;13:2788. doi: 10.3390/polym13162788. PubMed DOI PMC
Viveiros R, Rebocho S, Casimiro T. Green strategies for molecularly imprinted polymer development. Polymers (Basel) 2018;10:306. doi: 10.3390/polym10030306. PubMed DOI PMC
Wan L, Gao H, Yan G, et al. Metal-organic gel-modulated synthesis of hierarchically porous molecularly imprinted polymers for efficient removal of sildenafil from water. ACS Omega. 2021;6:7478–7486. doi: 10.1021/acsomega.0c06000. PubMed DOI PMC
Wang R, Cui Y, Hu F, et al. Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization. J Chromatogr A. 2019;1591:62–70. doi: 10.1016/j.chroma.2019.01.057. PubMed DOI
Wang D, Liu Y, Xu Z, et al. Multitemplate molecularly imprinted polymeric solid-phase microextraction fiber coupled with HPLC for endocrine disruptor analysis in water samples. Microchem J. 2020;155:104802. doi: 10.1016/j.microc.2020.104802. DOI
Wang XT, Deng X, Zhang TD, et al. Biocompatible self-healing hydrogels based on boronic acid-functionalized polymer and laponite nanocomposite for water pollutant removal. Environ Chem Lett. 2022;20:81–90. doi: 10.1007/s10311-021-01350-4. DOI
Wee SY, Aris AZ. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ Int. 2017;106:207–233. doi: 10.1016/j.envint.2017.05.004. PubMed DOI
Wei CJ, Li XY, Xie YF, Wang XM. Direct photo transformation of tetracycline and sulfanomide group antibiotics in surface water: kinetics, toxicity and site modeling. Sci Total Environ. 2019;686:1–9. doi: 10.1016/j.scitotenv.2019.04.041. PubMed DOI
Wiest L, Chonova T, Bergé A, et al. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environ Sci Pollut Res. 2018;25:9207–9218. doi: 10.1007/s11356-017-9662-5. PubMed DOI
Wu Y, Ma Y, Pan J, et al. Porous and magnetic molecularly imprinted polymers via pickering high internal phase emulsions polymerization for selective adsorption of λ-cyhalothrin. Front Chem. 2017;5:1–10. doi: 10.3389/fchem.2017.00018. PubMed DOI PMC
Wu Y, Xing W, Meng M, et al. Multiple-functional molecularly imprinted nanocomposite membranes for high-efficiency selective separation applications: an imitated core-shell TiO2@PDA-based MIMs design. Compos B Eng. 2020;198:108123. doi: 10.1016/j.compositesb.2020.108123. DOI
Wulff G, Schauhoff S. Enzyme-analog-built polymers. 27. Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements. J Org Chem. 1991;56:395–400. doi: 10.1021/jo00001a071. DOI
Wulff G, Vietmeier J. Enzyme-analogue built polymers, 26. Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules. Die Makromol Chem. 1989;190:1727–1735. doi: 10.1002/macp.1989.021900724. DOI
Wulff G, Wolf G. Zur Chemie von Haftgruppen, VI. Über die Eignung verschiedener Aldehyde und Ketone als Haftgruppen für Monoalkohole. Chem Ber. 1986;119:1876–1889. doi: 10.1002/cber.19861190610. DOI
Xu D, Xiao Y, Pan H, Mei Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol Environ Saf. 2019;174:43–47. doi: 10.1016/j.ecoenv.2019.02.063. PubMed DOI
Xu L, Zhang H, Xiong P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci Total Environ. 2021;753:141975. doi: 10.1016/j.scitotenv.2020.141975. PubMed DOI
Yahaya N, Zain NNM, Miskam M, Kamaruzaman S. Molecularly imprinted polymer composites in wastewater treatment. In: Mathew MP, Beena, Nair, Archana S, Thomas S, editors. Molecularly imprinted polymer composites. 1. Amsterdam: Elsevier; 2021. pp. 381–413.
Yang Y, Ok YS, Kim KH, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ. 2017;596–597:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI
Yang Y, Song W, Lin H, et al. Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environ Int. 2018;116:60–73. doi: 10.1016/j.envint.2018.04.011. PubMed DOI
Yang Z, Lu T, Zhu Y, et al. Aquatic ecotoxicity of an antidepressant, sertraline hydrochloride, on microbial communities. Sci Total Environ. 2019;654:129–134. doi: 10.1016/j.scitotenv.2018.11.164. PubMed DOI
Yilmaz G, Kaya Y, Vergili I, et al. Characterization and toxicity of hospital wastewaters in Turkey. Environ Monit Assess. 2017;189:55. doi: 10.1007/s10661-016-5732-2. PubMed DOI
Yu M, Li H, Xie J, et al. A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta. 2022;236:122875. doi: 10.1016/j.talanta.2021.122875. PubMed DOI
Yuan Y, Yang Y, Zhu G. Molecularly imprinted porous aromatic frameworks for molecular recognition. ACS Cent Sci. 2020;6:1082–1094. doi: 10.1021/acscentsci.0c00311. PubMed DOI PMC
Zare EN, Mudhoo A, Khan MA, et al. Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents. Environ Chem Lett. 2021;19:3075–3114. doi: 10.1007/s10311-021-01207-w. DOI
Zeng G, Liu Y, Ma X, Fan Y. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water. Front Environ Sci Eng. 2021;15:107. doi: 10.1007/s11783-021-1395-5. DOI
Zeng H, Yu X, Wan J, Cao X. Synthesis of molecularly imprinted polymers based on boronate affinity for diol-containing macrolide antibiotics with hydrophobicity-balanced and pH-responsive cavities. J Chromatogr A. 2021;1642:461969. doi: 10.1016/j.chroma.2021.461969. PubMed DOI
Zhang Z, Cao X, Zhang Z, et al. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta. 2020;208:120385. doi: 10.1016/j.talanta.2019.120385. PubMed DOI
Zhao Q, Zhao H, Huang W, et al. Dual functional monomer surface molecularly imprinted microspheres for polysaccharide recognition in aqueous solution. Anal Methods. 2019;11:2800–2808. doi: 10.1039/C9AY00132H. DOI
Zhao X, Wang Y, Zhang P, et al. Recent advances of molecularly imprinted polymers based on cyclodextrin. Macromol Rapid Commun. 2021;42:1–19. doi: 10.1002/marc.202100004. PubMed DOI
Zhu G, Cheng G, Wang L, et al. A new ionic liquid surface-imprinted polymer for selective solid-phase-extraction and determination of sulfonamides in environmental samples. J Sep Sci. 2019;42:725–735. doi: 10.1002/jssc.201800759. PubMed DOI
Zivna D, Sehonova P, Plhalova L, et al. Effect of salicylic acid on early life stages of common carp (Cyprinus carpio) Environ Toxicol Pharmacol. 2015;40:319–325. doi: 10.1016/j.etap.2015.06.018. PubMed DOI
Zounková R, Odráska P, Dolezalová L, et al. Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environ Toxicol Chem. 2007;26:2208–2214. doi: 10.1897/07-137R.1. PubMed DOI
Zounkova R, Kovalova L, Blaha L, Dott W. Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere. 2010;81:253–260. doi: 10.1016/j.chemosphere.2010.06.029. PubMed DOI