Nanoporous Titanium (Oxy)nitride Films as Broadband Solar Absorbers
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
35436405
PubMed Central
PMC9052191
DOI
10.1021/acsami.2c01185
Knihovny.cz E-resources
- Keywords
- broadband solar absorption, hierarchical nanostructures, pulsed laser deposition, solar−thermal conversion, titanium oxynitride,
- Publication type
- Journal Article MeSH
Broadband absorption of solar light is a key aspect in many applications that involve an efficient conversion of solar energy to heat. Titanium nitride (TiN)-based materials, in the form of periodic arrays of nanostructures or multilayers, can promote significant heat generation upon illumination thanks to their efficient light absorption and refractory character. In this work, pulsed laser deposition was chosen as a synthesis technique to shift metallic bulk-like TiN to nanoparticle-assembled hierarchical oxynitride (TiOxNy) films by increasing the background gas deposition pressure. The nanoporous hierarchical films exhibit a tree-like morphology, a strong broadband solar absorption (∼90% from the UV to the near-infrared range), and could generate temperatures of ∼475 °C under moderate light concentration (17 Suns). The high heat generation achieved by treelike films is ascribed to their porous morphology, nanocrystalline structure, and oxynitride composition, which overall contribute to a superior light trapping and dissipation to heat. These properties pave the way for the implementation of such films as solar absorber structures.
See more in PubMed
Weinstein L. A.; Loomis J.; Bhatia B.; Bierman D. M.; Wang E. N.; Chen G. Concentrating Solar Power. Chem. Rev. 2015, 115, 12797–12838. 10.1021/acs.chemrev.5b00397. PubMed DOI
Deng H.; Li Z.; Stan L.; Rosenmann D.; Czaplewski D.; Gao J.; Yang X. Broadband Perfect Absorber Based on One Ultrathin Layer of Refractory Metal. Opt. Lett. 2015, 40, 2592–2595. 10.1364/OL.40.002592. PubMed DOI
Kajtár G.; Kafesaki M.; Economou E. N.; Soukoulis C. M. Theoretical Model of Homogeneous Metal–Insulator–Metal Perfect Multi-Band Absorbers for the Visible Spectrum. J. Phys. Appl. Phys. 2016, 49, 05510410.1088/0022-3727/49/5/055104. DOI
Chirumamilla M.; Roberts A. S.; Ding F.; Wang D.; Kristensen P. K.; Bozhevolnyi S. I.; Pedersen K. Multilayer Tungsten-Alumina-Based Broadband Light Absorbers for High-Temperature Applications. Opt. Mater. Express 2016, 6, 2704–2714. 10.1364/OME.6.002704. DOI
Lenert A.; Bierman D. M.; Nam Y.; Chan W. R.; Celanović I.; Soljačić M.; Wang E. N. A Nanophotonic Solar Thermophotovoltaic Device. Nat. Nanotechnol. 2014, 9, 126–130. 10.1038/nnano.2013.286. PubMed DOI
Patsalas P.; Kalfagiannis N.; Kassavetis S.; Abadias G.; Bellas D. V.; Lekka Ch.; Lidorikis E. Conductive Nitrides: Growth Principles, Optical and Electronic Properties, and Their Perspectives in Photonics and Plasmonics. Mater. Sci. Eng., R 2018, 123, 1–55. 10.1016/j.mser.2017.11.001. DOI
Li W.; Guler U.; Kinsey N.; Naik G. V.; Boltasseva A.; Guan J.; Shalaev V. M.; Kildishev A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26, 7959–7965. 10.1002/adma.201401874. PubMed DOI
Krekeler T.; Rout S. S.; Krishnamurthy G. V.; Störmer M.; Arya M.; Ganguly A.; Sutherland D. S.; Bozhevolnyi S. I.; Ritter M.; Pedersen K.; Petrov A. Y.; Eich M.; Chirumamilla M. Unprecedented Thermal Stability of Plasmonic Titanium Nitride Films up to 1400 °C. Adv. Opt. Mater. 2021, 9, 210032310.1002/adom.202100323. DOI
Guler U.; Shalaev V. M.; Boltasseva A. Nanoparticle Plasmonics: Going Practical with Transition Metal Nitrides. Mater. Today 2015, 18, 227–237. 10.1016/j.mattod.2014.10.039. DOI
Ishii S.; Shinde S. L.; Nagao T. Nonmetallic Materials for Plasmonic Hot Carrier Excitation. Adv. Opt. Mater. 2019, 7, 180060310.1002/adom.201800603. DOI
Baffou G.; Quidant R. Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat. Laser Photonics Rev. 2013, 7, 171–187. 10.1002/lpor.201200003. DOI
Baffou G.; Cichos F.; Quidant R. Applications and Challenges of Thermoplasmonics. Nat. Mater. 2020, 19, 946–958. 10.1038/s41563-020-0740-6. PubMed DOI
Naldoni A.; Shalaev V. M.; Brongersma M. L. Applying Plasmonics to a Sustainable Future. Science 2017, 356, 908–909. 10.1126/science.aan5802. PubMed DOI
Neumann O.; Urban A. S.; Day J.; Lal S.; Nordlander P.; Halas N. J. Solar Vapor Generation Enabled by Nanoparticles. ACS Nano 2013, 7, 42–49. 10.1021/nn304948h. PubMed DOI
Ndukaife J. C.; Kildishev A. V.; Nnanna A. G. A.; Shalaev V. M.; Wereley S. T.; Boltasseva A. Long-Range and Rapid Transport of Individual Nano-Objects by a Hybrid Electrothermoplasmonic Nanotweezer. Nat. Nanotechnol. 2016, 11, 53–59. 10.1038/nnano.2015.248. PubMed DOI
Naldoni A.; Kudyshev Z. A.; Mascaretti L.; Sarmah S. P.; Rej S.; Froning J. P.; Tomanec O.; Yoo J. E.; Wang D.; Kment Š.; Montini T.; Fornasiero P.; Shalaev V. M.; Schmuki P.; Boltasseva A.; Zbořil R. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Lett. 2020, 20, 3663–3672. 10.1021/acs.nanolett.0c00594. PubMed DOI
Zhou L.; Martirez J. M. P.; Finzel J.; Zhang C.; Swearer D. F.; Tian S.; Robatjazi H.; Lou M.; Dong L.; Henderson L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Light-Driven Methane Dry Reforming with Single Atomic Site Antenna-Reactor Plasmonic Photocatalysts. Nat. Energy 2020, 5, 61–70. 10.1038/s41560-019-0517-9. DOI
Mascaretti L.; Schirato A.; Zbořil R.; Kment Š.; Schmuki P.; Alabastri A.; Naldoni A. Solar Steam Generation on Scalable Ultrathin Thermoplasmonic TiN Nanocavity Arrays. Nano Energy 2021, 83, 10582810.1016/j.nanoen.2021.105828. DOI
Ishii S.; Higashino M.; Goya S.; Shkondin E.; Tanaka K.; Nagao T.; Takayama O.; Murai S. Extreme Thermal Anisotropy in High-Aspect-Ratio Titanium Nitride Nanostructures for Efficient Photothermal Heating. Nanophotonics 2021, 10, 1487–1494. 10.1515/nanoph-2020-0569. DOI
Thi Le T.-L.; Nguyen L. T.; Nguyen H.-H.; Nghia N. V.; Vuong N. M.; Hieu H. N.; Thang N. V.; Le V. T.; Nguyen V. H.; Lin P.-C.; Yadav A.; Madarevic I.; Janssens E.; Bui H. V.; Ngoc L. L. T. Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material. Nanomaterials 2021, 11, 76.10.3390/nano11010076. PubMed DOI PMC
Chirumamilla M.; Chirumamilla A.; Yang Y.; Roberts A. S.; Kristensen P. K.; Chaudhuri K.; Boltasseva A.; Sutherland D. S.; Bozhevolnyi S. I.; Pedersen K. Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars. Adv. Opt. Mater. 2017, 5, 170055210.1002/adom.201700552. DOI
Yan J.; Liu P.; Ma C.; Lin Z.; Yang G. Plasmonic Near-Touching Titanium Oxide Nanoparticles to Realize Solar Energy Harvesting and Effective Local Heating. Nanoscale 2016, 8, 8826–8838. 10.1039/C6NR01295G. PubMed DOI
Li Y.; Lin C.; Wu Z.; Chen Z.; Chi C.; Cao F.; Mei D.; Yan H.; Tso C. Y.; Chao C. Y. H.; Huang B. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar–Thermal Conversion over 100–727 °C. Adv. Mater. 2021, 33, 200507410.1002/adma.202005074. PubMed DOI
Yang N.; Xu X.; Zhang G.; Li B. Thermal Transport in Nanostructures. AIP Adv. 2012, 2, 04141010.1063/1.4773462. DOI
Chang C.-C.; Kuo S.-C.; Cheng H.-E.; Chen H.-T.; Yang Z.-P. Broadband Titanium Nitride Disordered Metasurface Absorbers. Opt. Express 2021, 29, 42813–42826. 10.1364/OE.445247. DOI
Zhou L.; Tan Y.; Ji D.; Zhu B.; Zhang P.; Xu J.; Gan Q.; Yu Z.; Zhu J. Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Sci. Adv. 2016, 2, e150122710.1126/sciadv.1501227. PubMed DOI PMC
Braic L.; Vasilantonakis N.; Mihai A.; Villar Garcia I. J.; Fearn S.; Zou B.; Alford N. McN.; Doiron B.; Oulton R. F.; Maier S. A.; Zayats A. V.; Petrov P. K. Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications. ACS Appl. Mater. Interfaces 2017, 9, 29857–29862. 10.1021/acsami.7b07660. PubMed DOI
Kharitonov A.; Kharintsev S. Tunable Optical Materials for Multi-Resonant Plasmonics: From TiN to TiON [Invited]. Opt. Mater. Express 2020, 10, 513–531. 10.1364/OME.382160. DOI
Patsalas P.; Logothetidis S. Optical, Electronic, and Transport Properties of Nanocrystalline Titanium Nitride Thin Films. J. Appl. Phys. 2001, 90, 4725–4734. 10.1063/1.1403677. DOI
Reddy H.; Guler U.; Kudyshev Z.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films. ACS Photonics 2017, 4, 1413–1420. 10.1021/acsphotonics.7b00127. DOI
Mascaretti L.; Barman T.; Bricchi B. R.; Münz F.; Li Bassi A.; Kment Š.; Naldoni A. Controlling the Plasmonic Properties of Titanium Nitride Thin Films by Radiofrequency Substrate Biasing in Magnetron Sputtering. Appl. Surf. Sci. 2021, 554, 14954310.1016/j.apsusc.2021.149543. DOI
Khan R. K.; Farghaly A. A.; Silva T. A.; Ye D.; Collinson M. M. Gold-Nanoparticle-Decorated Titanium Nitride Electrodes Prepared by Glancing-Angle Deposition for Sensing Applications. ACS Appl. Nano Mater. 2019, 2, 1562–1569. 10.1021/acsanm.8b02354. DOI
Jen Y.-J.; Lin M.-J.; Cheang H.-L.; Chan T.-L. Obliquely Deposited Titanium Nitride Nanorod Arrays as Surface-Enhanced Raman Scattering Substrates. Sensors 2019, 19, 4765.10.3390/s19214765. PubMed DOI PMC
Langereis E.; Heil S. B. S.; van de Sanden M. C. M.; Kessels W. M. M. In Situ Spectroscopic Ellipsometry Study on the Growth of Ultrathin TiN Films by Plasma-Assisted Atomic Layer Deposition. J. Appl. Phys. 2006, 100, 02353410.1063/1.2214438. DOI
Van Bui H.; Kovalgin A. Y.; Wolters R. A. M. On the Difference between Optically and Electrically Determined Resistivity of Ultra-Thin Titanium Nitride Films. Appl. Surf. Sci. 2013, 269, 45–49. 10.1016/j.apsusc.2012.09.074. DOI
Sugavaneshwar R. P.; Ishii S.; Dao T. D.; Ohi A.; Nabatame T.; Nagao T. Fabrication of Highly Metallic TiN Films by Pulsed Laser Deposition Method for Plasmonic Applications. ACS Photonics 2018, 5, 814–819. 10.1021/acsphotonics.7b00942. DOI
Perego A.; Giuffredi G.; Mazzolini P.; Colombo M.; Brescia R.; Prato M.; Sabarirajan D. C.; Zenyuk I. V.; Bossola F.; Dal Santo V.; Casalegno A.; Di Fonzo F. Hierarchical TiN Nanostructured Thin Film Electrode for Highly Stable PEM Fuel Cells. ACS Appl. Energy Mater. 2019, 2, 1911–1922. 10.1021/acsaem.8b02030. DOI
Kölbach M.; Harbauer K.; Ellmer K.; van de Krol R. Elucidating the Pulsed Laser Deposition Process of BiVO4 Photoelectrodes for Solar Water Splitting. J. Phys. Chem. C 2020, 124, 4438–4447. 10.1021/acs.jpcc.9b11265. DOI
Misra S.; Li L.; Jian J.; Huang J.; Wang X.; Zemlyanov D.; Jang J.-W.; Ribeiro F. H.; Wang H. Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties. ACS Appl. Mater. Interfaces 2018, 10, 32895–32902. 10.1021/acsami.8b12210. PubMed DOI
Ghidelli M.; Mascaretti L.; Bricchi B. R.; Zapelli A.; Russo V.; Casari C. S.; Li Bassi A. Engineering Plasmonic Nanostructured Surfaces by Pulsed Laser Deposition. Appl. Surf. Sci. 2018, 434, 1064–1073. 10.1016/j.apsusc.2017.11.025. DOI
Mahjouri-Samani M.; Tian M.; Puretzky A. A.; Chi M.; Wang K.; Duscher G.; Rouleau C. M.; Eres G.; Yoon M.; Lasseter J.; Xiao K.; Geohegan D. B. Nonequilibrium Synthesis of TiO2 Nanoparticle “Building Blocks” for Crystal Growth by Sequential Attachment in Pulsed Laser Deposition. Nano Lett. 2017, 17, 4624–4633. 10.1021/acs.nanolett.7b01047. PubMed DOI
Noh J. H.; Park J. H.; Han H. S.; Kim D. H.; Han B. S.; Lee S.; Kim J. Y.; Jung H. S.; Hong K. S. Aligned Photoelectrodes with Large Surface Area Prepared by Pulsed Laser Deposition. J. Phys. Chem. C 2012, 116, 8102–8110. 10.1021/jp211233s. DOI
Yang B.; Mahjouri-Samani M.; M Rouleau C.; B Geohegan D.; Xiao K. Low Temperature Synthesis of Hierarchical TiO2 Nanostructures for High Performance Perovskite Solar Cells by Pulsed Laser Deposition. Phys. Chem. Chem. Phys. 2016, 18, 27067–27072. 10.1039/C6CP02896A. PubMed DOI
Mascaretti L.; Niorettini A.; Bricchi B. R.; Ghidelli M.; Naldoni A.; Caramori S.; Li Bassi A.; Berardi S. Syngas Evolution from CO2 Electroreduction by Porous Au Nanostructures. ACS Appl. Energy Mater. 2020, 3, 4658–4668. 10.1021/acsaem.0c00301. PubMed DOI PMC
Maffini A.; Pazzaglia A.; Dellasega D.; Russo V.; Passoni M. Growth Dynamics of Pulsed Laser Deposited Nanofoams. Phys. Rev. Mater. 2019, 3, 08340410.1103/PhysRevMaterials.3.083404. DOI
Geohegan D. B.; Puretzky A. A. Dynamics of Laser Ablation Plume Penetration through Low Pressure Background Gases. Appl. Phys. Lett. 1995, 67, 197–199. 10.1063/1.114665. DOI
Gondoni P.; Mazzolini P.; Russo V.; Petrozza A.; Srivastava A. K.; Li Bassi A.; Casari C. S. Enhancing Light Harvesting by Hierarchical Functionally Graded Transparent Conducting Al-Doped ZnO Nano- and Mesoarchitectures. Sol. Energy Mater. Sol. Cells 2014, 128, 248–253. 10.1016/j.solmat.2014.05.035. DOI
Schou J. Physical Aspects of the Pulsed Laser Deposition Technique: The Stoichiometric Transfer of Material from Target to Film. Appl. Surf. Sci. 2009, 255, 5191–5198. 10.1016/j.apsusc.2008.10.101. DOI
Canulescu S.; Döbeli M.; Yao X.; Lippert T.; Amoruso S.; Schou J. Nonstoichiometric Transfer during Laser Ablation of Metal Alloys. Phys. Rev. Mater. 2017, 1, 07340210.1103/PhysRevMaterials.1.073402. DOI
Patsalas P.; Gravalidis C.; Logothetidis S. Surface Kinetics and Subplantation Phenomena Affecting the Texture, Morphology, Stress, and Growth Evolution of Titanium Nitride Films. J. Appl. Phys. 2004, 96, 6234–6246. 10.1063/1.1811389. DOI
Leichtweiss T.; Henning R. A.; Koettgen J.; Schmidt R. M.; Holländer B.; Martin M.; Wuttig M.; Janek J. Amorphous and Highly Nonstoichiometric Titania (TiOx) Thin Films Close to Metal-like Conductivity. J. Mater. Chem. A 2014, 2, 6631–6640. 10.1039/C3TA14816E. DOI
Geohegan D. B.; Puretzky A. A.; Duscher G.; Pennycook S. J. Time-Resolved Imaging of Gas Phase Nanoparticle Synthesis by Laser Ablation. Appl. Phys. Lett. 1998, 72, 2987–2989. 10.1063/1.121516. DOI
Trenczek-Zajac A.; Radecka M.; Zakrzewska K.; Brudnik A.; Kusior E.; Bourgeois S.; de Lucas M. C. M.; Imhoff L. Structural and Electrical Properties of Magnetron Sputtered Ti(ON) Thin Films: The Case of TiN Doped in Situ with Oxygen. J. Power Sources 2009, 194, 93–103. 10.1016/j.jpowsour.2008.12.112. DOI
Sluban M.; Umek P.; Jagličić Z.; Buh J.; Šmitek P.; Mrzel A.; Bittencourt C.; Guttmann P.; Delville M.-H.; Mihailović D.; Arčon D. Controlling Disorder and Superconductivity in Titanium Oxynitride Nanoribbons with Anion Exchange. ACS Nano 2015, 9, 10133–10141. 10.1021/acsnano.5b03742. PubMed DOI
Andersson S.; Collén B.; Kuylenstierna U.; Magnéli A.; Magnéli A.; Pestmalis H.; Åsbrink S. Phase Analysis Studies on the Titanium-Oxygen System. Acta Chem. Scand. 1957, 11, 1641–1652. 10.3891/acta.chem.scand.11-1641. DOI
Milošev I.; Strehblow H.-H.; Navinšek B. Comparison of TiN, ZrN and CrN Hard Nitride Coatings: Electrochemical and Thermal Oxidation. Thin Solid Films 1997, 303, 246–254. 10.1016/S0040-6090(97)00069-2. DOI
Ernsberger C.; Nickerson J.; Smith T.; Miller A. E.; Banks D. Low Temperature Oxidation Behavior of Reactively Sputtered TiN by X-ray Photoelectron Spectroscopy and Contact Resistance Measurements. J. Vac. Sci. Technol., A 1986, 4, 2784–2788. 10.1116/1.573679. DOI
Meng L.-J.; Santos M. P. dos. Characterization of Titanium Nitride Films Prepared by d.c. Reactive Magnetron Sputtering at Different Nitrogen Pressures. Surf. Coat. Technol. 1997, 90, 64–70. 10.1016/S0257-8972(96)03094-0. DOI
Quijorna E. P.; Costa V. T.; Agulló-Rueda F.; Fernández P. H.; Climent A.; Rossi F.; Silván M. M. TiNxOy/TiN Dielectric Contrasts Obtained by Ion Implantation of O2+; Structural, Optical and Electrical Properties. J. Phys. Appl. Phys. 2011, 44, 23550110.1088/0022-3727/44/23/235501. DOI
Yamaguchi M.; Ishii A.; Oikawa I.; Takamura H. Black Titanium Oxynitride Thin Films Prepared by Nitrogen Plasma-Assisted Pulsed Laser Deposition for Flat-Panel Displays. Appl. Surf. Sci. 2020, 534, 14761610.1016/j.apsusc.2020.147616. DOI
Prodan E.; Radloff C.; Halas N. J.; Nordlander P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 2003, 302, 419–422. 10.1126/science.1089171. PubMed DOI
Lassiter J. B.; Aizpurua J.; Hernandez L. I.; Brandl D. W.; Romero I.; Lal S.; Hafner J. H.; Nordlander P.; Halas N. J. Close Encounters between Two Nanoshells. Nano Lett. 2008, 8, 1212–1218. 10.1021/nl080271o. PubMed DOI
Tompkins H. G.; Hilfiker J. N.. Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization; Momentum Press, 2016.
Rinnerbauer V.; Lenert A.; Bierman D. M.; Yeng Y. X.; Chan W. R.; Geil R. D.; Senkevich J. J.; Joannopoulos J. D.; Wang E. N.; Soljačić M.; Celanovic I. Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics. Adv. Energy Mater. 2014, 4, 140033410.1002/aenm.201400334. DOI
Li Y.; Li D.; Zhou D.; Chi C.; Yang S.; Huang B. Efficient, Scalable, and High-Temperature Selective Solar Absorbers Based on Hybrid-Strategy Plasmonic Metamaterials. Sol. RRL 2018, 2, 180005710.1002/solr.201870196. DOI
Guler U.; Kildishev A. V.; Boltasseva A.; Shalaev V. M. Plasmonics on the Slope of Enlightenment: The Role of Transition Metal Nitrides. Faraday Discuss. 2015, 178, 71–86. 10.1039/C4FD00208C. PubMed DOI
Goya S.; Murai S.; Tanaka K. Thermal Oxidation of TiN Nanocylinder Arrays: Effects of Insulator Coatings by Atomic Layer Deposition. Opt. Mater. Express 2019, 9, 4751–4764. 10.1364/OME.9.004751. DOI
Mutlu M.; Kang J.-H.; Raza S.; Schoen D.; Zheng X.; Kik P. G.; Brongersma M. L. Thermoplasmonic Ignition of Metal Nanoparticles. Nano Lett. 2018, 18, 1699–1706. 10.1021/acs.nanolett.7b04739. PubMed DOI
Gao H.; Peng W.; Cui W.; Chu S.; Yu L.; Yang X. Ultraviolet to near Infrared Titanium Nitride Broadband Plasmonic Absorber. Opt. Mater. 2019, 97, 10937710.1016/j.optmat.2019.109377. DOI
Passoni L.; Criante L.; Fumagalli F.; Scotognella F.; Lanzani G.; Di Fonzo F. Self-Assembled Hierarchical Nanostructures for High-Efficiency Porous Photonic Crystals. ACS Nano 2014, 8, 12167–12174. 10.1021/nn5037202. PubMed DOI
Guler U.; Zemlyanov D.; Kim J.; Wang Z.; Chandrasekar R.; Meng X.; Stach E.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. Adv. Opt. Mater. 2017, 5, 160071710.1002/adom.201600717. DOI