Trophic distribution of mercury from an abandoned cinnabar mine within the Záskalská reservoir ecosystem (Czech Republic)
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
19-11528S
Grantová Agentura České Republiky
PROFISH CZ.02.1.01/0.0/0.0/16_019/0000869
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
35445304
DOI
10.1007/s11356-022-20159-4
PII: 10.1007/s11356-022-20159-4
Knihovny.cz E-resources
- Keywords
- Aquatic ecosystem, Bioaccumulation, Hazard index, Mercury bioavailability, Mine waste,
- MeSH
- Water Pollutants, Chemical * analysis MeSH
- Ecosystem MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Mercury * analysis MeSH
- Fishes MeSH
- Fresh Water MeSH
- Mercury Compounds MeSH
- Water MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Water Pollutants, Chemical * MeSH
- cinnabar MeSH Browser
- Mercury * MeSH
- Mercury Compounds MeSH
- Water MeSH
The distribution of mercury species was studied in all aquatic ecosystem components (i.e., water, sediment, emergent aquatic plants, invertebrates and omnivorous and piscivorous fish) of the Záskalská water reservoir (Central Bohemia, Czech Republic) which is in the vicinity of an abandoned cinnabar mine. The results indicate that the transport of mercury from the cinnabar mine is the major source of mercury in the Záskalská reservoir. The legal maximum limit (0.07 μg/L) for total mercury concentration in water samples was exceeded only during rainy periods. The total mercury concentration in the surface sediments was in the range from 0.22 to 9.19 mg/kg in dry matter (up to 0.2% CH3Hg+) and was sample site-specific. The dominant form of mercury in sediments was mercury sulphide (22.9-79.2%). The emergent macrophytes accumulated mercury primarily by the roots from sediments, and no significant translocation of mercury to leaves was observed. The legal maximum limit for mercury content in fish muscle (0.5 mg/kg in the fresh matter) was exceeded up to 4.48 times for piscivorous fish. Hazard index values indicate a health risk concern for children and for people consuming more than 100 g of fish muscle per day. Our results emphasise the need to implement legal restrictions on the consumption of piscivorous fish caught in ecosystems downstream of abandoned cinnabar mines.
See more in PubMed
Ackerman JT, Eagles-Smith CA, Herzog MP, Hartman CA, Peterson SH, Evers DC, Jackson AK, Elliot JE, Vander Pol SS, Bryant CE (2016) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Total Environ 568:749–769. https://doi.org/10.1016/j.scitotenv.2016.03.071 DOI
Ambers RKR, Hygelund BN (2001) Contamination of two Oregon reservoirs by cinnabar mining and mercury amalgamation. Environ Geol 6: 699-707. https://doi.org/10.1007/s002540000173
Babiarz C, Hoffmann S, Wieben A, Hurley J, Andren A, Shafer M, Armstrong D (2012) Watershed and discharge influences on the phase distribution and tributary loading of total mercury and methylmercury into Lake Superior. Environ Pollut 161:299–310. https://doi.org/10.1016/j.envpol.2011.09.026 DOI
Biester H, Muller G, Scholer HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191–203. https://doi.org/10.1016/S0048-9697(01)00885-3 DOI
Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248. https://doi.org/10.1016/S0003-2670(02)01550-7 DOI
Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351. https://doi.org/10.1016/S0045-6535(99)00283-0 DOI
Bratkic A, Klun K, Gao Y (2019) Mercury speciation in various aquatic systems using passive sampling technique of diffusive gradients in thin-film. Sci Total Environ 663:297–306. https://doi.org/10.1016/j.scitotenv.2019.01.241 DOI
CAU (2022) Statistika úlovků (Catch stats), online: https://www.rybsvaz.cz/beta/index.php/reviry/statistiky-ulovku . Accessed 14 March 2022.
Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z (2002) Geologická minulost České republiky [Geological history of the Czech Republic], Academia Praha, 436 p., ISBN: 80–200–0914–0 (in Czech).
Clarisse O, Hintelmann H (2006) Measurements of dissolved methylmercury in natural waters using diffusive gradients in thin film (DGT). J Environ Monit 8:1242–1247. https://doi.org/10.1039/b614560d DOI
Clarisse O, Foucher D, Hintelmann H (2009) Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique. Environ Pollut 157:987–993. https://doi.org/10.1016/J.ENVPOL.2008.10.012 DOI
Clarisse O, Lotufo GR, Hintelmann H, Best EPH (2012) Biomonitoring and assessment of monomethylmercury exposure in aqueous systems using the DGT technique. Sci Total Environ 416:449–454. https://doi.org/10.1016/j.scitotenv.2011.11.077 DOI
Clarkson TW (1993) Mercury – major issues in environmental health. Environ Health Perspect 100:31–38. https://doi.org/10.1289/ehp.9310031 DOI
Clesceri LS, Greenberg AE, Eaton AD (1998) Standards methods for the examination of water and wastewater, 20th ed. American Public Health Association Inc., Washington D.C., USA.
Coquery M, Welbourn PM (1995) The relationship between metal concentration and organic-matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare. Water Res 29:2094–2102. https://doi.org/10.1016/0043-1354(95)00015-D DOI
CSO, Czech Statistical Office (2020) Consumption of food and non-alcoholic beverages (annual per capita averages) https://www.czso.cz/documents/10180/143060175/2701392101.pdf/2ce49a95-08ea-47c0-92b2-e5db7c812165?version=1.1 . Accessed 12 December 2021
Dadova J, Andras P, Kupka J, Krnac J, Andras P, Hroncova E, Midula P (2016) Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia). Environ Sci Pollut Res 23:2914–2927. https://doi.org/10.1007/s11356-015-5527-y DOI
Davison W, Zhang H (1994) In-situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 367:546–548. https://doi.org/10.1038/367546a0 DOI
Dietz R, Fort J, Sonne C, Albert C, Bustnes JO, Christensen TK et al (2021) A risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalves. Environ Int 146:106178. https://doi.org/10.1016/j.envint.2020.106178 DOI
Docekal B, Rezacova-Smetkova V, Docekalova H (2005) Effect of humic acid on metal uptake measured by diffusive gradients in thin films technique. Chem Pap 59:298–303
Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C (2020) The assessment and remediation of mercury contaminated sites: a review of current approaches. Sci Total Environ 707:136031. https://doi.org/10.1016/j.scitotenv.2019.136031 DOI
Erickson RJ, Nichols JW, Sook PM, Ankley GT (2008) Bioavailability of chemicals contaminants in aquatic systems. In: DiGiulio RT, Hinton DE (Eds.) The Toxicology of Fishes, CRC Press, London, pp 9–54. https://doi.org/10.1080/03067319.2011.581369
Fernandez-Gomez C, Bayona JM, Diez S (2012) Laboratory and field evaluation of diffusive gradient in thin films (DGT) for monitoring levels of dissolved mercury in natural river water. Int J Environ Anal Chem 92(15):1689–1698. https://doi.org/10.1080/03067319.2011.581369 DOI
Fernandez-Martinez R, Rucandio I (2014) Total mercury, organic mercury and mercury fractionation in soil profiles from the Almaden mercury mine area. Environ Sci Process Impacts 16:333–340. https://doi.org/10.1039/C3EM00445G DOI
Fernandez-Martinez R, Loredo J, Ordonez A, Rucandio MI (2006) Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environ Pollut 142:217–226. https://doi.org/10.1016/j.envpol.2005.10.034 DOI
Ferrara R (1999) Mercury mines in Europe: assessment of emissions and environmental contamination. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W (eds) Mercury Contaminated Sites. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03754-6_2
Garcia-Ordiale E, Higueras P, Esbri JM, Roqueni N, Loredo J (2019) Seasonal and spatial distribution of mercury in stream sediments from Almaden mining district. Geochem Explor Environ Anal 19(2):121–128. https://doi.org/10.1144/geochem2018-029 DOI
Gosar M, Tersic T (2012) Environmental geochemistry studies in the area of Idrija mercury mine, Slovenia. Environ Geochem Health 34:27–41. https://doi.org/10.1007/s10653-011-9410-6 DOI
Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull 45:46–52. https://doi.org/10.1016/S0025-326X(01)00323-X DOI
Gray JE, Theodorakos PM, Bailey EA, Turner RR (2000) Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. Sci Total Environ 260:21–33. https://doi.org/10.1016/S0048-9697(00)00539-8 DOI
Gray JE, Crock JG, Fey DL (2002) Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl Geochem 17:1069–1079. https://doi.org/10.1016/S0883-2927(02)00004-5 DOI
Gray JE, Theodorakos PM, Fey DL, Krabbenhoft DP (2015) Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ Geochem Health 37:35–48. https://doi.org/10.1007/s10653-014-9628-1 DOI
Guedron S, Arnouroux D, Tessier E, Grirnaldi C, Barre J, Berail S, Perrot V, Grimaldi M (2018) Mercury isotopic fractionation during pedogenesis in a tropical forest soil catena (French Guiana): Deciphering the Impact of Historical Gold Mining. Environ Sci Technol 52:11573–11582. https://doi.org/10.1021/acs.est.8b02186 DOI
Guidelines (2002) National Guidelines and Standards Office Environmental Quality Branch Environment Canada, Ottawa. Canadian Tissue Residue Guidelines for the Protection of Wildlife Consumers of Aquatic Biota: Methylmercury. ISBN 0–662–29602–8.
Havelkova M, Dusek L, Nemethova D, Poleszczuk G, Svobodova Z (2008) Comparison of mercury distribution between liver and muscle – a biomonitoring of fish from lightly and heavily contaminated localities. Sensors 8:4095–4109. https://doi.org/10.3390/s8074095 DOI
Hojdova M, Navratil T, Rohovec J, Penizek V, Grygar T (2009) Mercury distribution and speciation in soils affected by historic mercury mining. Water Air Soil Pollut 200:89–99. https://doi.org/10.1007/s11270-008-9895-5 DOI
Hong YS, Rifkin E, Bouwer EJ (2011) Combination of diffusive gradient in a thin film probe and IC-ICP-MS for the simultaneous determination of CH DOI
Houserova P, Kuban V, Kracmar S, Sitko J (2007) Total mercury and mercury species in birds and fish in an aquatic ecosystem in the Czech Republic. Environ Pollut 145:185–194. https://doi.org/10.1016/j.envpol.2006.03.027 DOI
Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47(6):2441–2456. https://doi.org/10.1021/es304370g DOI
Jackson TA (2018) Isotopic and chemical characteristics of mercury in organs and tissues of fish in a mercury-polluted lake: evidence for fractionation of mercury isotopes by physiological processes. Environ Toxicol Chem 37:515–529. https://doi.org/10.1002/etc.3987 DOI
Jiang B, Xing Y, Zhang BG, Cai RQ, Zhang DY, Sun GD (2018) Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China. Environ Sci Pollut Res 25:31272–31282. https://doi.org/10.1007/s11356-018-3069-9 DOI
Kannan K, Smith RG, Lee RF, Windom HL, Heitmuller PT, Macauley JM, Summers JK (1998) Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Arch Environ Conta Toxicol 34:109–118. https://doi.org/10.1007/s002449900294 DOI
Kocman D, Horvat M, Kotnik J (2004) Mercury fractionation in contaminated soils from the Idrija mercury mine region. J Environ Monit 6:696–703. https://doi.org/10.1039/b403625e DOI
Koron N, Faganeli J (2012) Benthic fluxes of mercury during redox changes in pristine coastal marine sediments from the Gulf of Trieste (northern Adriatic Sea). J Soils Sediments 12:1604–1614. https://doi.org/10.1007/s11368-012-0602-1 DOI
LeBlanc ME, Parsons MB, Chapman EEV, Campbell LM (2020) Review of ecological mercury and arsenic bioaccumulation within historical gold mining districts of Nova Scotia. Environ Rev 28:187–198. https://doi.org/10.1139/er-2019-0042 DOI
Lominchar MA, Sierra MJ, Jimenez-Moreno M, Guirado M, Martin-Doimeadios RCR, Millan R (2019) Mercury species accumulation and distribution in Typha domingensis under real field conditions (Almaden, Spain). Environ Sci Pollut Res 26:3138–3144. https://doi.org/10.1007/s11356-018-1861-1 DOI
Loredo J, Alvarez R, Ordonez A (2005) Release of toxic metals and metalloids from Los Rueldos mercury mine (Asturias, Spain). Sci Total Environ 340:247–260. https://doi.org/10.1016/j.scitotenv.2004.08.019 DOI
Loredo J, Ordonez A, Alvarez R (2006) Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). J Hazard Mater A136:455–467. https://doi.org/10.1016/j.jhazmat.2006.01.048 DOI
Lyons WB, Fitzgibbon TO, Welch KA, Carey AE (2006) Mercury geochemistry of the Scioto River, Ohio: impact of agriculture and urbanization. Appl Geochem 21(11):1880–1888. https://doi.org/10.1016/j.apgeochem.2006.08.005 DOI
Ma M, Du H, Wang D (2019) Mercury methylation by anaerobic microorganisms: a review. Crit Rev Environ Sci Technol 49:1893–1936. https://doi.org/10.1080/10643389.2019.1594517 DOI
Marrugo-Negrete J, Pinedo-Hernandez J, Diez S (2015) Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere 134:44–51. https://doi.org/10.1016/j.chemosphere.2015.03.012 DOI
Martian-Doimeadios RCR, Wasserman JC, Bermejo LFG, Amouroux D, Nevado JJB, Donard OFX (2000) Chemical availability of mercury in stream sediments from the Almaden area, Spain. J Environ Monit 2:360–366. https://doi.org/10.1039/A909597G DOI
Miserendino RA, Guimardes JRD, Schudel G, Ghosh S, Godoy JM, Silbergeld EK, Lees PSJ, Bergquist BA (2018) Mercury pollution in Amapa, Brazil: mercury amalgamation in artisanal and small-scale gold mining or land-cover and land-use changes? ACS Earth Space Chem 2:441–450. https://doi.org/10.1021/acsearthspacechem.7b00089 DOI
Morway ED, Thodal CE, Marvin-DiPasquale M (2017) Long-term trends of surface water mercury and methylmercury concentrations downstream of historic mining within the Carson River watershed. Environ Pollut 229:1006–1018. https://doi.org/10.1016/j.envpol.2017.07.090 DOI
Napaldet JT, Buot IE (2020) Absorption of lead and mercury in dominant aquatic macrophytes of Balili River and its implication to phytoremediation of water bodies. Trop Life Sci Res 31:19–32. https://doi.org/10.21315/tlsr2020.31.2.2 DOI
Opiso EM, Aseneiro JPJ, Banda MHT, Tabelin CB (2018) Solid-phase partitioning of mercury in artisanal gold mine tailings from selected key areas in Mindanao, Philippines, and its implications for mercury detoxification. Waste Manag Res 36:269–276. https://doi.org/10.1177/0734242X17753534 DOI
Parkman H, Meili M (1993) Mercury in macroinvertebrates from Swedish forest lakes-influence of lake type, habitat, life-cycle, and food. Can J Fish Aquat Sci 50:521–534. https://doi.org/10.1139/f93-061 DOI
Pelcova P, Docekalova H, Kleckerova A (2014) Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters. Anal Chim Acta 819:42–48. https://doi.org/10.1016/j.aca.2014.02.013 DOI
Pelcova P, Docekalova H, Kleckerova A (2015) Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography – atomic fluorescence spectrometry after microwave extraction. Anal Chim Acta 866:21–26. https://doi.org/10.1016/j.aca.2015.01.043 DOI
Pelcova P, Vicarova P, Docekalova H, Postulkova E, Kopp R, Mares J, Smolikova V (2018) The prediction of mercury bioavailability for common carp (Cyprinus carpio L.) using the DGT technique in the presence of chloride ions and humic acid. Chemosphere 211:1109–1112. https://doi.org/10.1016/j.chemosphere.2018.07.202 DOI
Pelcova P, Ridoskova A, Hrachovinova J, Grmela J (2020) Fractionation analysis of mercury in soils: a comparison of three techniques for bioavailable mercury fraction determination. Environ Toxicol Chem 39:1670–1677. https://doi.org/10.1002/etc.4797 DOI
Pelcova P, Kopp R, Ridoskova A, Grmela J, Sterbova D (2022) Evaluation of mercury bioavailability and phytoaccumulation by means of a DGT technique and of submerged aquatic plants in an aquatic ecosystem situated in the vicinity of a cinnabar mine. Chemosphere 288(2):132545. https://doi.org/10.1016/j.chemosphere.2021.132545 DOI
Pinedo-Hernandez J, Marrugo-Negrete J, Diez S (2015) Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere 119:1289–1295. https://doi.org/10.1016/j.chemosphere.2014.09.044 DOI
Quitt E (1971) Klimatické oblasti Československa. Studia Geographica, Vol. 16, 73 Brno: Geografický ústav ČSAV (in Czech).
Rimondi V, Gray JE, Costagliola P, Vaselli O, Lattanzi P (2012) Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. Sci Total Environ 414:318–327. https://doi.org/10.1016/j.scitotenv.2011.10.065 DOI
Riscassi A, Miller C, Brooks S (2016) Seasonal and flow-driven dynamics of particulate and dissolved mercury and methylmercury in a stream impacted by an industrial mercury source. Environ Toxicol Chem 35(6):1386–1400. https://doi.org/10.1002/etc.3310 DOI
Saeki K, Okabe Y, Kim EY, Tanabe S, Fukuda M, Tatsukawa M (2000) Mercury and cadmium in common cormorants (Phalacrocorax carbo). Environ Pollut 108:249–255. https://doi.org/10.1016/S0269-7491(99)00181-5 DOI
Saniewska D, Bełdowska M, Bełdowski J, Saniewski M, Szubska M, Romanowski A, Falkowska L (2014) The impact of land use and season on the riverine transport of mercury into the marine coastal zone. Environ Monit Assess 186(11):7593–7604. https://doi.org/10.1007/s10661-014-3950-z DOI
Savinov VM, Gabrielsen GW, Savinova TN (2002) Cadmium, zinc, copper, arsenic, selenium and mercury in seabirds from the Barents Sea: levels, inter-specific and geographical differences. Sci Total Environ 306:133–158. https://doi.org/10.1016/S0048-9697(02)00489-8 DOI
Sedlackova L, Kruzikova K, Svobodova Z (2014) Mercury speciation in fish muscles from major Czech rivers and assessment of health risks. Food Chem 150:360–365. https://doi.org/10.1016/j.foodchem.2013.10.041 DOI
Seelen EA, Massey GM, Mason RP (2018) Role of sediment resuspension on estuarine suspended particulate mercury dynamics. Environ Sci Technol 52(14):7736–7744. https://doi.org/10.1021/acs.est.8b01920 DOI
Švátora M (1990) The dynamics of fish populations in the Záskalská reservoir, Czechoslovakia, with special regard to Eurasian perch. Acta Universitatis Carolinae - Biologica 33:141–255
Tomiyasu T, Kodamatani H, Hamada YK, Matsuyama A, Imura R, Taniguchi Y, Hidayati N, Rahajoe JS (2017) Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia. Environ Sci Pollut Res 24:2643–2652. https://doi.org/10.1007/s11356-016-7998-x DOI
Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293. https://doi.org/10.1080/20016491089226 DOI
USEPA, United States Environmental Protection Agency (2002) A guidance manual to support the assessment of contaminated sediments in freshwater ecosystems https://www.cerc.usgs.gov/pubs/sedtox/volumeiii.pdf . Accessed 14 December 2021
USEPA, United States Environmental Protection Agency (2009) National recommended water quality criteria – human health criteria table https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table . Accessed 14 December 2021
USEPA, United States Environmental Protection Agency (2016) Mercury compounds. https://www.epa.gov/sites/default/files/2016-09/documents/mercury-compounds.pdf . Accessed 14 December 2021
Velebil D (2003) Jedová hora (Dědova hora) near Neřežín. Bull mineral-petrolog Odd. Nár. Muz. 11, 86–99 http://www.velebil.net/clanky/jedova-hora/ (in Czech). Accessed 12 December 2021
Vlček V (1984) Watercourses and reservoirs. Academia, Praha (in Czech)
Vondráková A, Vávra A, Voženílek V (2013) Climatic regions of the Czech Republic. J Maps 9(3):425–430. https://doi.org/10.1080/17445647.2013.800827 DOI
Williams TM, Weeks JM, Apostol AN, Miranda CR (1999) Assessment of mercury contamination and human exposure associated with coastal disposal of waste from a cinnabar mining operation, Palawan, Philippines. Environ. Geol. 39 (1): 51–60. https://doi.org/10.1007/s002540050436
Zhang H, Davison W (1995) Performance-characteristics of diffusion gradients in thin-films for the in-situ measurement of trace metals in aqueous-solution. Anal Chem 67:3391–3400. https://doi.org/10.1021/ac00115a005 DOI
Zhang L, Jin YQ, Lu JL, Zhang CX (2009) Concentration, distribution and bioaccumulation of mercury in the Xunyang mercury mining area, Shaanxi Province, China. Appl Geochem 24:950–956. https://doi.org/10.1016/j.apgeochem.2009.02.027 DOI
Zverina O, Coufalik P, Komarek J, Gadas P, Sysalova J (2014) Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic. Chem Pap 68:197–202. https://doi.org/10.2478/s11696-013-0436-3 DOI