Planktonic Aggregates as Hotspots for Heterotrophic Diazotrophy: The Plot Thickens
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
35464923
PubMed Central
PMC9019601
DOI
10.3389/fmicb.2022.875050
Knihovny.cz E-resources
- Keywords
- NCDs, aggregates, aquatic, heterotrophic bacteria, marine, nitrogen fixation,
- Publication type
- Journal Article MeSH
- Review MeSH
Biological dinitrogen (N2) fixation is performed solely by specialized bacteria and archaea termed diazotrophs, introducing new reactive nitrogen into aquatic environments. Conventionally, phototrophic cyanobacteria are considered the major diazotrophs in aquatic environments. However, accumulating evidence indicates that diverse non-cyanobacterial diazotrophs (NCDs) inhabit a wide range of aquatic ecosystems, including temperate and polar latitudes, coastal environments and the deep ocean. NCDs are thus suspected to impact global nitrogen cycling decisively, yet their ecological and quantitative importance remain unknown. Here we review recent molecular and biogeochemical evidence demonstrating that pelagic NCDs inhabit and thrive especially on aggregates in diverse aquatic ecosystems. Aggregates are characterized by reduced-oxygen microzones, high C:N ratio (above Redfield) and high availability of labile carbon as compared to the ambient water. We argue that planktonic aggregates are important loci for energetically-expensive N2 fixation by NCDs and propose a conceptual framework for aggregate-associated N2 fixation. Future studies on aggregate-associated diazotrophy, using novel methodological approaches, are encouraged to address the ecological relevance of NCDs for nitrogen cycling in aquatic environments.
Aix Marseille Univ Université de Toulon CNRS IRD MIO Marseille France
Department of Biological Oceanography Leibniz Institute for Baltic Sea Research Rostock Germany
Institute for Biochemistry and Biology Potsdam University Potsdam Germany
Institute of Microbiology CAS Centre ALGATECH Třeboň Czechia
Israel Oceanographic and Limnological Research Haifa Israel
Marine Biology Section University of Copenhagen Helsingør Denmark
Max Planck Institute for Marine Microbiology Bremen Germany
Ocean Science Centre Memorial University of Newfoundland St John's NL Canada
Turing Center for Living Systems Aix Marseille University Marseille France
See more in PubMed
Agawin N. S. R., Benavides M., Busquets A., Ferriol P., Stal L. J., Arístegui J. (2014). Dominance of unicellular cyanobacteria in the diazotrophic community in the Atlantic Ocean. Limnol. Oceanogr. 59, 623–637. doi: 10.4319/lo.2014.59.2.0623 DOI
Alldredge A. L., Cohen Y. (1987). Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235, 689–691. doi: 10.1126/science.235.4789.689, PMID: PubMed DOI
Alldredge A. L., Gotschalk C. (1988). In situ settling behavior of marine snow. Limnol. Oceanogr. 33, 339–351. doi: 10.4319/lo.1988.33.3.0339 DOI
Alldredge A. L., Silver M. W. (1988). Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20, 41–82. doi: 10.1016/0079-6611(88)90053-5 DOI
Angel R., Panhölzl C., Gabriel R., Herbold C., Wanek W., Richter A., et al. . (2018). Application of stable-isotope labelling techniques for the detection of active diazotrophs. Environ. Microbiol. 20, 44–61. doi: 10.1111/1462-2920.13954, PMID: PubMed DOI PMC
Arrieta J. M., Mayol E., Hansman R. L., Herndl G., Dittmar T., Duarte C. M. (2015). Dilution limits dissolved organic carbon utilization in the deep ocean. Sciencexpress 348:331. doi: 10.1126/science.1258955 PubMed DOI
Azam F. (1998). Microbial control of ocean carbon flux: the plot thickens. Science 280, 694–696. doi: 10.1126/science.280.5364.694 DOI
Azam F., Long R. A. (2001). Sea snow microcosms. Nature 414(6863), 495–498. doi: 10.1038/35107174 PubMed DOI
Bar-Zeev E., Eyal R. (2015). Microbial metabolism of transparent exopolymer particles during the summer months along a eutrophic estuary system. Front. Microbiol. 6:403. doi: 10.3389/fmicb.2015.00403 PubMed DOI PMC
Baumas C. M. J., Le Moigne F. A. C., Garel M., Bhairy N., Guasco S., Riou V., et al. . (2021). Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. Front. Microbiol. 6:403. doi: 10.3389/fmicb.2015.00403, PMID: PubMed DOI PMC
Benavides M., Bonnet S., Berman-frank I., Riemann L. (2018a). Deep into oceanic N2 fixation. Front. Mar. Sci. 5:108. doi: 10.3389/fmars.2018.00108 DOI
Benavides M., Martias C., Elifantz H., Berman-Frank I., Dupouy C., Bonnet S. (2018b). Dissolved organic matter influences N2 fixation in the new Caledonian lagoon (Western tropical South Pacific). Front. Mar. Sci. 5:89. doi: 10.3389/fmars.2018.00089 DOI
Benavides M., Moisander P. H., Berthelot H., Dittmar T., Grosso O., Bonnet S. (2015). Mesopelagic N2 fixation related to organic matter composition in the Solomon and Bismarck seas (Southwest Pacific). PLoS One 10:e0143775, 26659074. doi: 10.1371/journal.pone.0143775 PubMed DOI PMC
Benavides M., Moisander P. H., Daley M. C., Bode A., Arístegui J. (2016). Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean. J. Plankton Res. 38, 662–672. doi: 10.1093/plankt/fbv121 DOI
Bentzon-Tilia M., Traving S. J., Mantikci M., Knudsen-Leerbeck H., Hansen J. L. S., Markager S., et al. . (2015). Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J. 9, 273–285. doi: 10.1038/ismej.2014.119, PMID: PubMed DOI PMC
Berman-Frank I., Cullen J. T., Shaked Y., Sherrell R. M., Falkowski P. G. (2001). Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46, 1249–1260. doi: 10.4319/lo.2001.46.6.1249 DOI
Bianchi D., Weber T. S., Kiko R., Deutsch C. (2018). Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268. doi: 10.1038/s41561-018-0081-0 DOI
Biegala I. C., Raimbault P. (2008). High abundance of diazotrophic picocyanobacteria (<3 μm) in a Southwest Pacific coral lagoon. Aquat. Microb. Ecol. 51, 45–53. doi: 10.3354/ame01185 DOI
Boeuf D., Edwards B. R., Eppley J. M., Hu S. K., Poff K. E., Romano A. E., et al. . (2019). Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl. Acad. Sci. U. S. A. 116, 11824–11832. doi: 10.1073/pnas.1903080116, PMID: PubMed DOI PMC
Bombar D., Paerl R. W., Riemann L. (2016). Marine non-Cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol. 24, 916–927. doi: 10.1016/j.tim.2016.07.002, PMID: PubMed DOI
Boyd P. W., Claustre H., Levy M., Siegel D. A., Weber T. (2019). Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335. doi: 10.1038/s41586-019-1098-2, PMID: PubMed DOI
Braun S. T., Proctor L. M., Zani S., Mellon M. T., Zehr J. P. (1999). Molecular evidence for zooplankton-associated nitrogen-fixing anaerobes based on amplification of the nifH gene. FEMS Microbiol. Ecol. 28, 273–279. doi: 10.1111/j.1574-6941.1999.tb00582.x DOI
Briggs N., Dall’Olmo G., Claustre H. (2020). Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793. doi: 10.1126/science.aay1790, PMID: PubMed DOI
Cavender-Bares K. K., Karl D. M., Chisholm S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep-Sea Res. I Oceanogr. Res. Pap. 48, 2373–2395. doi: 10.1016/S0967-0637(01)00027-9 DOI
Chakraborty S., Andersen K. H., Visser A. W., Inomura K., Follows M. J., Riemann L. (2021). Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat. Commun. 12:4085. doi: 10.1038/s41467-021-23875-6, PMID: PubMed DOI PMC
Cornejo-Castillo F. M., Zehr J. P. (2020). Intriguing size distribution of the uncultured and globally widespread marine non-cyanobacterial diazotroph gamma-A. ISME J. 15, 124–128. doi: 10.1038/s41396-020-00765-1, PMID: PubMed DOI PMC
Coyne K. J., Parker A. E., Lee C. K., Sohm J. A., Kalmbach A., Gunderson T., et al. . (2020). The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo dry valleys, Antarctica. FEMS Microbiol. Ecol. 96:fiaa010. doi: 10.1093/femsec/fiaa010, PMID: PubMed DOI PMC
Dabundo R., Lehmann M. F., Treibergs L., Tobias C. R., Altabet M. A., Moisander P. H., et al. . (2014). The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS One 9:e110335. doi: 10.1371/journal.pone.0110335, PMID: PubMed DOI PMC
Daly K. L., Passow U., Chanton J., Hollander D. (2016). Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater horizon oil spill. Anthropocene 13, 18–33. doi: 10.1016/j.ancene.2016.01.006 DOI
Debeljak P., Blain S., Bowie A., Merwe P., Bayer B., Obernosterer I. (2021). Homeostasis drives intense microbial trace metal processing on marine particles. Limnol. Oceanogr. 66, 3842–3855. doi: 10.1002/lno.11923 DOI
Dekas A. E., Connon S. A., Chadwick G. L., Trembath-Reichert E., Orphan V. J. (2016). Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 10, 678–692. doi: 10.1038/ismej.2015.145, PMID: PubMed DOI PMC
del Giorgio P. A., Cole J. J. (1998). Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Evol. Syst. 29, 503–541. doi: 10.1146/annurev.ecolsys.29.1.503 DOI
Delmont T. O., Pierella Karlusich J. J., Veseli I., Fuessel J., Eren A. M., Foster R. A., et al. . (2021). Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME J. doi: 10.1038/s41396-021-01135-1, PMID: [Epub ahead of print] PubMed DOI PMC
Engel A., Thoms S., Riebesell U., Rochelle-Newall E., Zondervan I. (2004). Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428, 929–932. doi: 10.1038/nature02453, PMID: PubMed DOI
Farnelid H., Andersson A. F., Bertilsson S., Al-Soud W. A., Hansen L. H., Sørensen S., et al. . (2011). Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS One 6:e19223. doi: 10.1371/journal.pone.0019223, PMID: PubMed DOI PMC
Farnelid H., Tarangkoon W., Hansen G., Hansen P. J., Riemann L. (2010). Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat. Microb. Ecol. 61, 105–117. doi: 10.3354/ame01440 DOI
Farnelid H., Turk-Kubo K., Ploug H., Ossolinski J. E., Collins J. R., Van Mooy B. A. S., et al. . (2018). Diverse diazotrophs are present on sinking particles in the North Pacific subtropical gyre. ISME J. 13, 170–182. doi: 10.1038/s41396-018-0259-x, PMID: PubMed DOI PMC
Fernandez L., Bertilsson S., Peura S. (2020). Non-cyanobacterial diazotrophs dominate nitrogen-fixing communities in permafrost thaw ponds. Limnol. Oceanogr. 65, S180–S193. doi: 10.1002/lno.11243 DOI
Flintrop C. M., Rogge A., Miksch S., Thiele S., Waite A. M., Iversen M. H. (2018). Embedding and slicing of intact in situ collected marine snow. Limnol. Oceanogr. Methods 16, 339–355. doi: 10.1002/lom3.10251 DOI
Geisler E., Bogler A., Bar-Zeev E., Rahav E. (2020). Heterotrophic nitrogen fixation at the hyper-eutrophic Qishon River and estuary system. Front. Microbiol. 11:1370. doi: 10.3389/fmicb.2020.01370 PubMed DOI PMC
Geisler E., Bogler A., Rahav E., Bar-Zeev E. (2019). Direct detection of heterotrophic Diazotrophs associated with planktonic aggregates. Sci. Rep. 9, 1–9. doi: 10.1038/s41598-019-45505-4 PubMed DOI PMC
Geisler E., Rahav E., Bar Zeev E. (2022). Contribution of heterotrophic Diazotrophs to N2 fixation in a Eutrophic River: free-living vs Antarctica. Front. Microbiol. 13:779820. doi: 10.3389/fmicb.2022.779820, PMID: PubMed DOI PMC
Giering S. L. C., Cavan E. L., Basedow S. L., Briggs N., Burd A. B., Darroch L. J., et al. . (2020). Sinking organic particles in the ocean—flux estimates from in situ optical devices. Front. Mar. Sci. 6:834. doi: 10.3389/fmars.2019.00834 DOI
Goldberg I., Nadler V., Hochman A. (1987). Mechanism of nitrogenase switch-off by oxygen. J. Bacteriol. 169, 874–879. doi: 10.1128/jb.169.2.874-879.1987, PMID: PubMed DOI PMC
Grossart H.-P., Ploug H. (2000). Bacterial production and growth efficiencies: direct measurements on riverine aggregates. Limnol. Oceanogr. 45, 436–445. doi: 10.4319/lo.2000.45.2.0436 DOI
Grossart H. P., Ploug H. (2001). Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277. doi: 10.4319/lo.2001.46.2.0267 DOI
Grossart H.-P., Simon M. (1993). Limnetic macroscopic organic aggregates (lake snow): occurrence, characteristics, and microbial dynamics in Lake Constance. Limnol. Oceanogr. 38, 532–546. doi: 10.4319/lo.1993.38.3.0532 DOI
Guerinot M. L., Colwell R. R. (1985). Enumeration, isolation, and characterization of N2-fixing bacteria from seawater. Appl. Environ. Microbiol. 50, 350–355. doi: 10.1128/aem.50.2.350-355.1985, PMID: PubMed DOI PMC
Hallstrøm S., Benavides M., Salamon E. R., Evans C. W., Potts L. J., Granger J., et al. . (2021). Pelagic N 2 fixation dominated by sediment diazotrophic communities in a shallow temperate estuary. Limnol. Oceanogr. 67, 364–378. doi: 10.1002/lno.11997 DOI
Halm H., Lam P., Ferdelman T. G., Lavik G., Dittmar T., Laroche J., et al. . (2011). Heterotrophic organisms dominate nitrogen fixation in the South Pacific gyre. ISME J. 6, 1238–1249. doi: 10.1038/ismej.2011.182 PubMed DOI PMC
Hamersley M. R., Turk K. A., Leinweber A., Gruber N., Zehr J. P., Gunderson T., et al. . (2011). Nitrogen fixation within the water column associated with two hypoxic basins in the Southern California bight. Aquat. Microb. Ecol. 63, 193–205. doi: 10.3354/ame01494 DOI
Harding K. J. (2021). Insights Into marine unicellular Cyanobacterial and non-Cyanobacterial diazotrophs through single-cell analyses. Available at: https://escholarship.org/content/qt9886g5gm/qt9886g5gm.pdf (Accessed March 21, 2022).
Harding K., Turk-Kubo K. A., Sipler R. E., Mills M. M., Bronk D. A., Zehr J. P. (2018). Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proc. Natl. Acad. Sci. 115, 13371–13375. doi: 10.1073/pnas.1813658115 PubMed DOI PMC
Jackson G. A., Burd A. B. (1998). Aggregation in the marine environment. Environ. Sci. Technol. 32, 2805–2814. doi: 10.1021/es980251w DOI
Jiang H., Kilburn M. R., Decelle J., Musat N. (2016). NanoSIMS chemical imaging combined with correlative microscopy for biological sample analysis. Curr. Opin. Biotechnol. 41, 130–135. doi: 10.1016/j.copbio.2016.06.006, PMID: PubMed DOI
Karl D., Michaels A., Bergman B., Capone D., Carpenter E., Letelier R., et al. . (2002). Dinitrogen fixation in the World’s oceans. Biogeochemistry 57-58, 47–98. doi: 10.1023/A:1015798105851, PMID: PubMed DOI
Karlusich J. J. P., Pelletier E., Lombard F., Carsique M., Dvorak E., Colin S., et al. . (2021). Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat. Commun. 12, 1–18. doi: 10.1038/s41467-021-24299-y, PMID: PubMed DOI PMC
Klawonn I., Bonaglia S., Brüchert V., Ploug H. (2015). Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. ISME J. 9, 1456–1466. doi: 10.1038/ismej.2014.232, PMID: PubMed DOI PMC
Klawonn I., Eichner M. J., Wilson S. T., Moradi N., Thamdrup B., Kümmel S., et al. . (2019). Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies. ISME J. 14, 399–412. doi: 10.1038/s41396-019-0514-9, PMID: PubMed DOI PMC
Knapp A. N. (2012). The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. Microbiol. 3:374. doi: 10.3389/fmicb.2012.00374, PMID: PubMed DOI PMC
Kubota K., Morono Y., Ito M., Terada T., Itezono S., Harada H., et al. . (2014). Gold-ISH: A nano-size gold particle-based phylogenetic identification compatible with NanoSIMS. Syst. Appl. Microbiol. 37, 261–266. doi: 10.1016/j.syapm.2014.02.003, PMID: PubMed DOI
Langlois R., Großkopf T., Mills M., Takeda S., LaRoche J. (2015). Widespread distribution and expression of gamma A (UMB), an uncultured, diazotrophic, γ-proteobacterial nifH phylotype. PLoS One 10:e0128912. doi: 10.1371/journal.pone.0128912, PMID: PubMed DOI PMC
Loussert-Fonta C., Toullec G., Paraecattil A. A., Jeangros Q., Krueger T., Escrig S., et al. . (2020). Correlation of fluorescence microscopy, electron microscopy, and NanoSIMS stable isotope imaging on a single tissue section. Commun. Biol. 3:362. doi: 10.1038/s42003-020-1095-x, PMID: PubMed DOI PMC
Marcarelli A. M., Fulweiler R. W., Scott J. T. (2022). Nitrogen fixation: a poorly understood process along the freshwater-marine continuum. Limnol. Oceanogr. Lett. 7, 1–10. doi: 10.1002/lol2.10220 PubMed DOI PMC
Marino R., Howarth R. W., Chan F., Cole J. J., Likens G. E. (2003). “Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under sea water conditions: a non-reversible effect,” in Aquatic Biodiversity: A Celebratory Volume in Honour of Henri J. Dumont. ed. Martens K. (Dordrecht: Springer Netherlands; ), 277–293. PMID:
Martínez-Pérez C., Mohr W., Schwedt A., Dürschlag J., Callbeck C. M., Schunck H., et al. . (2018). Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone. Environ. Microbiol. 20, 755–768. doi: 10.1111/1462-2920.14008, PMID: PubMed DOI
McDonnell A. M. P., Lam P. J., Lamborg C. H., Buesseler K. O., Sanders R., Riley J. S., et al. . (2015). The oceanographic toolbox for the collection of sinking and suspended marine particles. Prog. Oceanogr. 133, 17–31. doi: 10.1016/j.pocean.2015.01.007 DOI
Messer L. F., Brown M. V., Van Ruth P. D., Doubell M., Seymour J. R. (2021). Temperate southern Australian coastal waters are characterised by surprisingly high rates of nitrogen fixation and diversity of diazotrophs. PeerJ 9:e10809. doi: 10.7717/peerj.10809, PMID: PubMed DOI PMC
Mestre M., Borrull E., Sala M., Gasol J. M. (2017). Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010. doi: 10.1038/ismej.2016.166, PMID: PubMed DOI PMC
Meyer N. R., Fortney J. L., Dekas A. E. (2020). NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ. Microbiol. 23, 81–98. doi: 10.1111/1462-2920.15264, PMID: PubMed DOI
Mise K., Masuda Y., Senoo K., Itoh H. (2021). Undervalued pseudo-nifHSequences in public databases distort metagenomic insights into biological nitrogen fixers. Comput. Biol. 6, e00785–e00721. doi: 10.1128/msphere.00785-21 PubMed DOI PMC
Mohr W., Grosskopf T., Wallace D. W. R., LaRoche J. (2010). Methodological underestimation of oceanic nitrogen fixation rates. PLoS One 5:e12583. doi: 10.1371/journal.pone.0012583, PMID: PubMed DOI PMC
Moisander P. H., Benavides M., Bonnet S., Berman-Frank I., White A. E., Riemann L. (2017). Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Front. Microbiol. 8:1736. doi: 10.3389/fmicb.2017.01736, PMID: PubMed DOI PMC
Moisander P. H., Serros T., Paerl R. W., Beinart R. A., Zehr J. P. (2014). Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of the South Pacific Ocean. ISME J. 8, 1962–1973. doi: 10.1038/ismej.2014.49, PMID: PubMed DOI PMC
Moraru C., Lam P., Fuchs B. M., Kuypers M. M. M., Amann R. (2010). GeneFISH - an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ. Microbiol. 12, 3057–3073. doi: 10.1111/j.1462-2920.2010.02281.x, PMID: PubMed DOI
Mulholland M. R., Bernhardt P. W., Blanco-Garcia J. L., Mannino A., Hyde K., Mondragon E., et al. . (2012). Rates of dinitrogen fixation and the abundance of diazotrophs in north American coastal waters between Cape Hatteras and Georges Bank. Limnol. Oceanogr. 57, 1067–1083. doi: 10.4319/lo.2012.57.4.1067 DOI
Musat N., Foster R., Vagner T., Adam B., Kuypers M. M. M. (2012). Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36, 486–511. doi: 10.1111/j.1574-6976.2011.00303.x, PMID: PubMed DOI
Musat N., Stryhanyuk H., Bombach P., Adrian L., Audinot J.-N., Richnow H. H. (2014). The effect of FISH and CARD-FISH on the isotopic composition of 13 C- and 15 N-labeled pseudomonas putida cells measured by nanoSIMS. Syst. Appl. Microbiol. 37, 267–276. doi: 10.1016/j.syapm.2014.02.002, PMID: PubMed DOI
Paerl H. W. (1985). Microzone formation: its role in the enhancement of aquatic N2 fixation. Limnol. Oceanogr. 30, 1246–1252. doi: 10.4319/lo.1985.30.6.1246 DOI
Paerl R. W., Hansen T. N. G., Henriksen N. N. S. E., Olesen A. K., Riemann L. (2018). N-fixation and related O2 constraints on model marine diazotroph pseudomonas stutzeri BAL361. Aquat. Microb. Ecol. 81, 125–136. doi: 10.3354/ame01867 DOI
Paerl H. W., Prufert L. E. (1987). Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Appl. Environ. Microbiol. 53, 1078–1087. doi: 10.1128/aem.53.5.1078-1087.1987, PMID: PubMed DOI PMC
Pedersen J. N., Bombar D., Paerl R. W., Riemann L. (2018). Diazotrophs and N2-fixation associated with particles in coastal estuarine waters. Front. Microbiol. 9:2759. doi: 10.3389/fmicb.2018.02759, PMID: PubMed DOI PMC
Piontek J., Händel N., Langer G., Wohlers J., Riebesell U., Engel A. (2009). Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates. Aquat. Microb. Ecol. 54, 305–318. doi: 10.3354/ame01273 DOI
Planquette H., Sherrell R. M. (2012). Sampling for particulate trace element determination using water sampling bottles: methodology and comparison to in situ pumps. Limnol. Oceanogr. Methods 10, 367–388. doi: 10.4319/lom.2012.10.367 DOI
Ploug H. (2001). Small-scale oxygen fluxes and remineralization in sinking aggregates. Limnol. Oceanogr. 46, 1624–1631. doi: 10.4319/lo.2001.46.7.1624 DOI
Ploug H., Grossart H.-P. (2000). Bacterial growth and grazing on diatom aggregates: respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475. doi: 10.4319/lo.2000.45.7.1467 DOI
Ploug H., Kuhl M., Buchholz-Cleven B., Jorgensen B. B. (1997). Anoxic aggregates-an ephermeral phenomenon in the pelagic environment? Aquat. Microb. Ecol. 13, 285–294. doi: 10.3354/ame013285 DOI
Proctor L. M. (1997). Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquat. Microb. Ecol. 12, 105–113. doi: 10.3354/ame012105 DOI
Puigcorbé V., Ruiz-González C., Masqué P., Gasol J. M. (2020). Sampling device-dependence of prokaryotic community structure on marine particles: higher diversity recovered by in situ pumps Than by oceanographic bottles. Front. Microbiol. 11:1645. doi: 10.3389/fmicb.2020.01645, PMID: PubMed DOI PMC
Rahav E., Bar-Zeev E., Ohayon S., Elifantz H., Belkin N., Herut B., et al. . (2013). Dinitrogen fixation in aphotic oxygenated marine environments. Front. Microbiol. 4:227. doi: 10.3389/fmicb.2013.00227, PMID: PubMed DOI PMC
Rahav E., Giannetto M. J., Bar-Zeev E. (2016). Contribution of mono and polysaccharides to heterotrophic N2 fixation at the eastern Mediterranean coastline. Sci. Rep. 6:27858. doi: 10.1038/srep27858, PMID: PubMed DOI PMC
Rahav E., Herut B., Mulholland M. R., Belkin N., Elifantz H., Berman-Frank I. (2015). Heterotrophic and autotrophic contribution to dinitrogen fixation in the Gulf of Aqaba. Mar. Ecol. Prog. Ser. 522, 67–77. doi: 10.3354/meps11143 DOI
Riemann L., Farnelid H., Steward G. F. (2010). Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat. Microb. Ecol. 61, 235–247. doi: 10.3354/ame01431 DOI
Rogge A., Flintrop C. M., Iversen M. H., Salter I., Fong A. A., Vogts A., et al. . (2018). Hard and soft plastic resin embedding for single-cell element uptake investigations of marine-snow-associated microorganisms using nano-scale secondary ion mass spectrometry. Limnol. Oceanogr. Methods 16, 484–503. doi: 10.1002/lom3.10261 DOI
Santinelli C. (2015). “Chapter 13 – DOC in the Mediterranean Sea,” in Biogeochemistry of Marine Dissolved Organic Matter. eds. Hansell D. A., Carlson C. A. 2nd Edn. (Boston: Academic Press; ), 579–608.
Scavotto R. E., Dziallas C., Bentzon-Tilia M., Riemann L., Moisander P. H. (2015). Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean. Environ. Microbiol. 17, 3754–3765. doi: 10.1111/1462-2920.12777, PMID: PubMed DOI
Schneider B., Schlitzer R., Fischer G., Nöthig E.-M. (2003). Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Global Biogeochem. Cycles 17:1032 doi: 10.1029/2002GB001871 DOI
Simon M., Grossart H., Schweitzer B., Ploug H. (2002). Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175–211. doi: 10.3354/ame028175 DOI
Singh A., Bach L. T., Löscher C. R., Paul A. J., Ojha N., Riebesell U. (2021). Impact of increasing carbon dioxide on dinitrogen and carbon fixation rates under oligotrophic conditions and simulated upwelling. Limnol. Oceanogr. 66, 2855–2867. doi: 10.1002/lno.11795 DOI
Smith D. C., Simon M., Alldredge A. L., Azam F. (1992). Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142. doi: 10.1038/359139a0 DOI
Sohm J. A., Webb E. A., Capone D. G. (2011). Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9, 499–508. doi: 10.1038/nrmicro2594, PMID: PubMed DOI
Sprent J. I., Sprent P. (eds.) (1990). Nitrogen Fixing Organisms Pure and Applied Aspects. Chapman and Hall: Springer Dordrecht.
Stemmann L., Picheral M., Guidi L., Lombard F., Prejger F., Claustre H., et al. . (2012). “Assessing the Spatial and Temporal Distributions of Zooplankton and Marine Particles using the Underwater Vision Profiler,” in Sensors for Ecology: Towards Integrated Knowledge of Ecosystems. eds. Le Gailliard J.-F., Guarini J.-M., Gaill Plouzane F. (France: Centre National de la recherche scientifique (CNRS) Institut Écologie et Environnement (INEE)), 119–137.
Thompson A. W., Foster R. A., Krupke A., Carter B. J., Musat N., Vaulot D., et al. . (2012). Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337, 1546–1550. doi: 10.1126/science.1222700, PMID: PubMed DOI
Turley C. M., Mackie P. J. (1994). Biogeochemical significance of attached and free-living bacteria and the flux of particles in the NE Atlantic Ocean. Mar. Ecol. Prog. Ser. 115, 191–203. doi: 10.3354/meps115191 DOI
Waite A. M., Safi K. A., Hall J. A., Nodder S. D. (2000). Mass sedimentation of picoplankton embedded in organic aggregates. Limnol. Oceanogr. 45, 87–97. doi: 10.4319/lo.2000.45.1.0087 DOI
Walcutt N. L., Knörlein B., Cetinić I., Ljubesic Z., Bosak S., Sgouros T., et al. . (2020). Assessment of holographic microscopy for quantifying marine particle size and concentration. Limnol. Oceanogr. Methods 18, 516–530. doi: 10.1002/lom3.10379 PubMed DOI PMC
White A. E., Granger J., Selden C., Gradoville M. R., Potts L., Bourbonnais A., et al. . (2020). A critical review of the 15N2 tracer method to measure diazotrophic production in pelagic ecosystems. Limnol. Oceanogr. Methods 18, 129–147. doi: 10.1002/lom3.10353 DOI
Wright J. J., Konwar K. M., Hallam S. J. (2012). Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394. doi: 10.1038/nrmicro2778, PMID: PubMed DOI
Zehr J. P. (2011). Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 19, 162–173. doi: 10.1016/j.tim.2010.12.004 PubMed DOI
Zehr J. P., Turner P. J. (2001). Nitrogen fixation: Nitrogenase genes and gene expression. Methods Microbiol. 30, 271–286. doi: 10.1016/S0580-9517(01)30049-1 DOI