Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35470094
PubMed Central
PMC9097615
DOI
10.1016/j.molmet.2022.101499
PII: S2212-8778(22)00068-0
Knihovny.cz E-resources
- Keywords
- Brown adipose tissue, Fatty acids, Futile substrate cycle, Lipolysis, Re-esterification, UCP1-independent thermogenesis,
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Adipose Tissue, Brown * metabolism MeSH
- Fatty Acids metabolism MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Thermogenesis * MeSH
- Triglycerides metabolism MeSH
- Uncoupling Protein 1 genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Fatty Acids MeSH
- Triglycerides MeSH
- Ucp1 protein, mouse MeSH Browser
- Uncoupling Protein 1 MeSH
OBJECTIVE: Classical ATP-independent non-shivering thermogenesis enabled by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) is activated, but not essential for survival, in the cold. It has long been suspected that futile ATP-consuming substrate cycles also contribute to thermogenesis and can partially compensate for the genetic ablation of UCP1 in mouse models. Futile ATP-dependent thermogenesis could thereby enable survival in the cold even when brown fat is less abundant or missing. METHODS: In this study, we explore different potential sources of UCP1-independent thermogenesis and identify a futile ATP-consuming triglyceride/fatty acid cycle as the main contributor to cellular heat production in brown adipocytes lacking UCP1. We uncover the mechanism on a molecular level and pinpoint the key enzymes involved using pharmacological and genetic interference. RESULTS: ATGL is the most important lipase in terms of releasing fatty acids from lipid droplets, while DGAT1 accounts for the majority of fatty acid re-esterification in UCP1-ablated brown adipocytes. Furthermore, we demonstrate that chronic cold exposure causes a pronounced remodeling of adipose tissues and leads to the recruitment of lipid cycling capacity specifically in BAT of UCP1-knockout mice, possibly fueled by fatty acids from white fat. Quantification of triglyceride/fatty acid cycling clearly shows that UCP1-ablated animals significantly increase turnover rates at room temperature and below. CONCLUSION: Our results suggest an important role for futile lipid cycling in adaptive thermogenesis and total energy expenditure.
See more in PubMed
Newsholme E.A., Crabtree B. Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp. 1976;(41):61–109. PubMed
Newsholme E.A. Substrate cycles: their metabolic, energetic and thermic consequences in man. Biochem Soc Symp. 1978;(43):183–205. PubMed
Newsholme E.A., Arch J.R., Brooks B., Surholt B. The role of substrate cycles in metabolic regulation. Biochem Soc Trans. 1983;11(1):52–56. PubMed
Newsholme E.A., Board Sounding. A possible metabolic basis for the control of body weight. N Engl J Med. 1980;302(7):400–405. PubMed
Newsholme E.A., Challiss R.A.J., Crabtree B. Substrate cycles: their role in improving sensitivity in metabolic control. Trends in Biochemical Sciences. 1984;9(6):277–280.
Newsholme E.A., Crabtree B., Higgins S.J., Thornton S.D., Start C. The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem J. 1972;128(1):89–97. PubMed PMC
Surholt B., Newsholme E.A. The rate of substrate cycling between glucose and glucose 6-phosphate in muscle and fat-body of the hawk moth (Acherontia atropos) at rest and during flight. Biochem J. 1983;210(1):49–54. PubMed PMC
Surholt B., Greive H., Baal T., Bertsch A. Warm-up and substrate cycling in flight muscles of male bumblebees, Bombus terrestris. Comparative Biochemistry and Physiology Part A: Physiology. 1991;98(2):299–303.
Morrissette J.M., Franck J.P.G., Block B.A. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans) Journal of Experimental Biology. 2003;206(5):805–812. PubMed
Brooks B., Arch J.R., Newsholme E.A. Effects of hormones on the rate of the triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat pads. FEBS Lett. 1982;146(2):327–330. PubMed
Guan H.P., Li Y., Jensen M.V., Newgard C.B., Steppan C.M., Lazar M.A. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med. 2002;8(10):1122–1128. PubMed
Wolfe R.R., Herndon D.N., Jahoor F., Miyoshi H., Wolfe M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med. 1987;317(7):403–408. PubMed
Reidy S.P., Weber J.-M. Accelerated substrate cycling: a new energy-wasting role for leptin in vivo. American Journal of Physiology-Endocrinology and Metabolism. 2002;282(2):E312–E317. PubMed
Elia M., Zed C., Neale G., Livesey G. The energy cost of triglyceride-fatty acid recycling in nonobese subjects after an overnight fast and four days of starvation. Metabolism. 1987;36(3):251–255. PubMed
Patel D., Kalhan S. Glycerol metabolism and triglyceride-fatty acid cycling in the human newborn: effect of maternal diabetes and intrauterine growth retardation. Pediatric Research. 1992;31(1):52–58. PubMed
Blondin D.P., Nielsen S., Kuipers E.N., Severinsen M.C., Jensen V.H., Miard S., et al. Human Brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 2020;32(2):287–300. e7. PubMed
Flachs P., Adamcova K., Zouhar P., Marques C., Janovska P., Viegas I., et al. Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. Int J Obes (Lond) 2017;41(3):372–380. PubMed
Bardova K., Funda J., Pohl R., Cajka T., Hensler M., Kuda O., et al. Additive effects of omega-3 fatty acids and thiazolidinediones in mice fed a high-fat diet: triacylglycerol/fatty acid cycling in adipose tissue. Nutrients. 2020;12(12) PubMed PMC
Hui S., Cowan A.J., Zeng X., Yang L., TeSlaa T., Li X., et al. Quantitative fluxomics of circulating metabolites. Cell Metabolism. 2020;32(4):676–688. e4. PubMed PMC
Kalderon B., Mayorek N., Berry E., Zevit N., Bar-Tana J. Fatty acid cycling in the fasting rat. Am J Physiol Endocrinol Metab. 2000;279(1):E221–E227. PubMed
Solinas G., Summermatter S., Mainieri D., Gubler M., Pirola L., Wymann M.P., et al. The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS Letters. 2004;577(3):539–544. PubMed
Bal N.C., Periasamy M. Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375(1793):20190135. PubMed PMC
Veliova M., Ferreira C.M., Benador I.Y., Jones A.E., Mahdaviani K., Brownstein A.J., et al. Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Rep. 2020;21(12):e49634. PubMed PMC
Ikeda K., Kang Q., Yoneshiro T., Camporez J.P., Maki H., Homma M., et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med. 2017;23(12):1454–1465. PubMed PMC
Kazak L., Chouchani E.T., Jedrychowski M.P., Erickson B.K., Shinoda K., Cohen P., et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell. 2015;163(3):643–655. PubMed PMC
Enerbäck S., Jacobsson A., Simpson E.M., Guerra C., Yamashita H., Harper M.-E., et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387(6628):90–94. PubMed
Keipert S., Kutschke M., Lamp D., Brachthäuser L., Neff F., Meyer C.W., et al. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion. Molecular Metabolism. 2015;4(7):537–542. PubMed PMC
Meyer C.W., Willershäuser M., Jastroch M., Rourke B.C., Fromme T., Oelkrug R., et al. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1396–R1406. PubMed PMC
Keipert S., Kutschke M., Ost M., Schwarzmayr T., van Schothorst E.M., Lamp D., et al. Long-term cold adaptation does not require FGF21 or UCP1. Cell Metab. 2017;26(2):437–446. e5. PubMed
Schweizer S., Oeckl J., Klingenspor M., Fromme T. Substrate fluxes in brown adipocytes upon adrenergic stimulation and uncoupling protein 1 ablation. Life Sci Alliance. 2018;1(6):e201800136. PubMed PMC
Ukropec J., Anunciado R.P., Ravussin Y., Hulver M.W., Kozak L.P. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. Journal of Biological Chemistry. 2006;281(42):31894–31908. PubMed
Grimpo K., Völker M.N., Heppe E.N., Braun S., Heverhagen J.T., Heldmaier G. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance. Journal of Lipid Research. 2014;55(3):398–409. PubMed PMC
Antonacci M.A., McHugh C., Kelley M., McCallister A., Degan S., Branca R.T. Direct detection of brown adipose tissue thermogenesis in UCP1-/- mice by hyperpolarized (129)Xe MR thermometry. Sci Rep. 2019;9(1):14865. PubMed PMC
Chondronikola M., Volpi E., Børsheim E., Porter C., Saraf M.K., Annamalai P., et al. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab. 2016;23(6):1200–1206. PubMed PMC
Dieckmann S., Strohmeyer A., Willershäuser M., Maurer S.F., Wurst W., Marschall S., et al. Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1. American Journal of Physiology-Endocrinology and Metabolism. 2022;322(2):E85–E100. PubMed
Kroupova P., van Schothorst E.M., Keijer J., Bunschoten A., Vodicka M., Irodenko I., et al. Omega-3 phospholipids from krill oil enhance intestinal fatty acid oxidation more effectively than omega-3 triacylglycerols in high-fat diet-fed obese mice. Nutrients. 2020;12(7):2037. PubMed PMC
Kuda O., Brezinova M., Rombaldova M., Slavikova B., Posta M., Beier P., et al. Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes. 2016;65(9):2580–2590. PubMed
Flachs P., Rossmeisl M., Kuda O., Kopecky J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. Biochim Biophys Acta. 2013;1831(5):986–1003. PubMed
Bederman I.R., Foy S., Chandramouli V., Alexander J.C., Previs S.F. Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources. J Biol Chem. 2009;284(10):6101–6108. PubMed PMC
Oeckl J., Bast-Habersbrunner A., Fromme T., Klingenspor M., Li Y. Isolation, culture, and functional analysis of murine thermogenic adipocytes. STAR Protocols. 2020;1(3):100118. PubMed PMC
Schweiger M., Schreiber R., Haemmerle G., Lass A., Fledelius C., Jacobsen P., et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem. 2006;281(52):40236–40241. PubMed
Adamcova K., Horakova O., Bardova K., Janovska P., Brezinova M., Kuda O., et al. Reduced number of adipose lineage and endothelial cells in epididymal fat in response to omega-3 PUFA in mice fed high-fat diet. Mar Drugs. 2018;16(12) PubMed PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. PubMed
Zouhar P., Janovska P., Stanic S., Bardova K., Funda J., Haberlova B., et al. A pyrexic effect of FGF21 independent of energy expenditure and UCP1. Molecular Metabolism. 2021;53:101324. PubMed PMC
Ruprecht B., Wang D., Chiozzi R.Z., Li L.H., Hahne H., Kuster B. Hydrophilic strong anion exchange (hSAX) chromatography enables deep fractionation of tissue proteomes. Methods Mol Biol. 2017;1550:69–82. PubMed
Yu P., Petzoldt S., Wilhelm M., Zolg D.P., Zheng R., Sun X., et al. Trimodal mixed mode chromatography that enables efficient offline two-dimensional peptide fractionation for proteome analysis. Analytical Chemistry. 2017;89(17):8884–8891. PubMed
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology. 2008;26(12):1367–1372. PubMed
Käll L., Canterbury J.D., Weston J., Noble W.S., MacCoss M.J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nature Methods. 2007;4(11):923–925. PubMed
Vizcaíno J.A., Côté R.G., Csordas A., Dianes J.A., Fabregat A., Foster J.M., et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Research. 2012;41(D1):D1063–D1069. PubMed PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods. 2016;13(9):731–740. PubMed
Team R.C. 2013. R: a language and environment for statistical computing.
Cox J., Mann M. 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics. 2012;13(16):1–11. PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676–682. PubMed PMC
Ball E.G., Jungas R.L. On the action of hormones which accelerate the rate of oxygen consumption and fatty acid release in rat adipose tissue in vitro. Proc Natl Acad Sci U S A. 1961;47(7):932–941. PubMed PMC
Li Y., Fromme T., Schweizer S., Schöttl T., Klingenspor M. Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes. EMBO Rep. 2014;15(10):1069–1076. PubMed PMC
Braun K., Oeckl J., Westermeier J., Li Y., Klingenspor M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. The Journal of Experimental Biology. 2018;221(Suppl 1):jeb165381. PubMed
Edens N.K., Leibel R.L., Hirsch J. Mechanism of free fatty acid re-esterification in human adipocytes in vitro. J Lipid Res. 1990;31(8):1423–1431. PubMed
Yu X.X., Lewin D.A., Forrest W., Adams S.H. Cold elicits the simultaneous induction of fatty acid synthesis and β-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. The FASEB Journal. 2002;16(2):155–168. PubMed
Chitraju C., Walther T.C., Farese R.V., Jr. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J Lipid Res. 2019;60(6):1112–1120. PubMed PMC
Yen C.-L.E., Stone S.J., Koliwad S., Harris C., Farese R.V., Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. Journal of Lipid Research. 2008;49(11):2283–2301. PubMed PMC
Chitraju C., Mejhert N., Haas J.T., Diaz-Ramirez L.G., Grueter C.A., Imbriglio J.E., et al. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metabolism. 2017;26(2):407–418. e3. PubMed PMC
Li Y., Li Z., Ngandiri D.A., Llerins Perez M., Wolf A., Wang Y. The molecular brakes of adipose tissue lipolysis. Frontiers in Physiology. 2022;13 PubMed PMC
Maurer S.F., Fromme T., Mocek S., Zimmermann A., Klingenspor M. Uncoupling protein 1 and the capacity for nonshivering thermogenesis are components of the glucose homeostatic system. American Journal of Physiology-Endocrinology and Metabolism. 2020;318(2):E198–E215. PubMed
Olsen J.M., Csikasz R.I., Dehvari N., Lu L., Sandström A., Öberg A.I., et al. β(3)-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol Metab. 2017;6(6):611–619. PubMed PMC
Hankir M.K., Klingenspor M. Brown adipocyte glucose metabolism: a heated subject. EMBO Reports. 2018;19(9):e46404. PubMed PMC
Houstĕk J., Cannon B., Lindberg O. Gylcerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue. Eur J Biochem. 1975;54(1):11–18. PubMed
Benador I.Y., Veliova M., Mahdaviani K., Petcherski A., Wikstrom J.D., Assali E.A., et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 2018;27(4):869–885. e6. PubMed PMC
Schreiber R., Diwoky C., Schoiswohl G., Feiler U., Wongsiriroj N., Abdellatif M., et al. Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not Brown adipose tissue. Cell Metabolism. 2017;26(5):753–763. e7. PubMed PMC
Shin H., Ma Y., Chanturiya T., Cao Q., Wang Y., Kadegowda A.K.G., et al. Lipolysis in Brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metabolism. 2017;26(5):764–777. e5. PubMed PMC
Rosell M., Kaforou M., Frontini A., Okolo A., Chan Y.-W., Nikolopoulou E., et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. American Journal of Physiology-Endocrinology and Metabolism. 2014;306(8):E945–E964. PubMed PMC
Kazak L., Chouchani E.T., Stavrovskaya I.G., Lu G.Z., Jedrychowski M.P., Egan D.F., et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci U S A. 2017;114(30):7981–7986. PubMed PMC
Yehuda-Shnaidman E., Buehrer B., Pi J., Kumar N., Collins S. Acute stimulation of white adipocyte respiration by PKA-induced lipolysis. Diabetes. 2010;59(10):2474–2483. PubMed PMC
Keipert S., Jastroch M. Brite/beige fat and UCP1 - is it thermogenesis? Biochim Biophys Acta. 2014;1837(7):1075–1082. PubMed
Wojtczak L., Lehninger A.L. Formation and disappearance of an endogenous uncoupling factor during swelling and contraction of mitochondria. Biochim Biophys Acta. 1961;51:442–456. PubMed
Wojtczak L., Schönfeld P. Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta. 1993;1183(1):41–57. PubMed
Penzo D., Tagliapietra C., Colonna R., Petronilli V., Bernardi P. Effects of fatty acids on mitochondria: implications for cell death. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2002;1555(1):160–165. PubMed
Di Paola M., Lorusso M. Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta. 2006;1757(9–10):1330–1337. PubMed
Sorger D., Athenstaedt K., Hrastnik C., Daum G. A yeast strain lacking lipid particles bears a defect in ergosterol formation∗. Journal of Biological Chemistry. 2004;279(30):31190–31196. PubMed
Dubey R., Stivala C.E., Nguyen H.Q., Goo Y.-H., Paul A., Carette J.E., et al. Lipid droplets can promote drug accumulation and activation. Nature Chemical Biology. 2020;16(2):206–213. PubMed PMC
Gülden M., Mörchel S., Tahan S., Seibert H. Impact of protein binding on the availability and cytotoxic potency of organochlorine pesticides and chlorophenols in vitro. Toxicology. 2002;175(1–3):201–213. PubMed
Lewin T.M., Kim J.-H., Granger D.A., Vance J.E., Coleman R.A. Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can Be inhibited independently∗. Journal of Biological Chemistry. 2001;276(27):24674–24679. PubMed
Golozoubova V., Cannon B., Nedergaard J. UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. American Journal of Physiology-Endocrinology and Metabolism. 2006;291(2):E350–E357. PubMed
Golozoubova V., Hohtola E., Matthias A., Jacobsson A., Cannon B., Nedergaard J. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. The FASEB Journal. 2001;15(11):2048–2050. PubMed
Matthias A., Ohlson K.B.E., Fredriksson J.M., Jacobsson A., Nedergaard J., Cannon B. Thermogenic responses in Brown fat cells are fully UCP1-dependent. Journal of Biological Chemistry. 2000;275(33):25073–25081. PubMed
Essen G.v., Lindsund E., Cannon B., Nedergaard J. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. American Journal of Physiology-Endocrinology and Metabolism. 2017;313(5):E515–E527. PubMed
Festuccia W.T., Blanchard P.G., Turcotte V., Laplante M., Sariahmetoglu M., Brindley D.N., et al. The PPARgamma agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1327–R1335. PubMed
Lasar D., Rosenwald M., Kiehlmann E., Balaz M., Tall B., Opitz L., et al. Peroxisome proliferator activated receptor gamma controls mature Brown adipocyte inducibility through glycerol kinase. Cell Rep. 2018;22(3):760–773. PubMed
Festuccia W.T.L., Guerra-Sá R., Kawashita N.H., Garófalo M.A.R., Evangelista E.A., Rodrigues V., et al. Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2003;284(6):R1536–R1541. PubMed
Palmisano B.T., Zhu L., Eckel R.H., Stafford J.M. Sex differences in lipid and lipoprotein metabolism. Molecular Metabolism. 2018;15:45–55. PubMed PMC
Wang H., Willershäuser M., Karlas A., Gorpas D., Reber J., Ntziachristos V., et al. A dual Ucp1 reporter mouse model for imaging and quantitation of brown and brite fat recruitment. Mol Metab. 2019;20:14–27. PubMed PMC
Wang H., Willershäuser M., Li Y., Fromme T., Schnabl K., Bast-Habersbrunner A., et al. Uncoupling protein-1 expression does not protect mice from diet-induced obesity. Am J Physiol Endocrinol Metab. 2021;320(2):E333–E345. PubMed PMC
Rohm M., Schäfer M., Laurent V., Üstünel B.E., Niopek K., Algire C., et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat Med. 2016;22(10):1120–1130. PubMed
Granneman J.G., Burnazi M., Zhu Z., Schwamb L.A. White adipose tissue contributes to UCP1-independent thermogenesis. American Journal of Physiology-Endocrinology and Metabolism. 2003;285(6):E1230–E1236. PubMed