Comparison of the Concentration of Encephalitozoon cuniculi Genotypes I and III in Inflammatory Foci Under Experimental Conditions
Status PubMed-not-MEDLINE Language English Country New Zealand Media electronic-ecollection
Document type Journal Article
PubMed
35502243
PubMed Central
PMC9056047
DOI
10.2147/jir.s363509
PII: 363509
Knihovny.cz E-resources
- Keywords
- Encephalitozoon cuniculi genotype I, Encephalitozoon cuniculi genotype III, inflammation, targeted migration,
- Publication type
- Journal Article MeSH
BACKGROUND: Microsporidia of the genus Encephalitozoon are usually associated with severe infections in immunodeficient hosts while, in immunocompetent ones, microsporidiosis produces minimal clinically apparent disease. Despite their microscopic size, microsporidia are capable of causing systemic infection within a few days. However, the mechanisms by which microsporidia reach target tissues during acute infection remain unclear. Out of four genotypes of Encephalitozoon cuniculi, only three are available for experimental studies, with E. cuniculi genotype II being the best characterized. METHODS: In the present study, we tested the association between inflammation induction in immunocompetent and immunodeficient mice and the presence of spores of E. cuniculi genotypes I and III in selected organs using molecular methods and compared the results with previously published data on E. cuniculi genotype II. RESULTS: We reported the positive connection between inflammation induction and the significant increase of E. cuniculi genotypes I and III occurrence in inflammatory foci in both immunocompetent BALB/c and immunodeficient severe combined immunodeficient (SCID) mice in the acute phase of infection. The induction of inflammation resulted in increased concentration of E. cuniculi of both genotypes in the site of inflammation, as previously reported for E. cuniculi genotype II. Moreover, our study extended the spectrum of differences among E. cuniculi genotypes by the variations in dispersal rate within host bodies after experimentally induced inflammation. CONCLUSION: The results imply possible involvement of immune cells serving as vehicles transporting E. cuniculi towards inflammation foci. The elucidation of possible connection with pro-inflammatory immune responses represents an important challenge with implications for human health and the development of therapeutic strategies.
Department of Biology and Medical Parasitology Wroclaw Medical University Wroclaw Poland
Faculty of Science University of South Bohemia in České Budějovice České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Science České Budějovice Czech Republic
See more in PubMed
Canning EU, Lom J, Dyková I. The Microsporidia of Vertebrates. London: Academic Press; 1986:289.
Didier ES, Vossbrinck CR, Baker MD, et al. Identification and characterization of three Encephalitozoon cuniculi strains. Parasitology. 1995;111:411–421. doi:10.1017/S0031182000065914 PubMed DOI
Talabani H, Sarfati C, Pillebout E, et al. Disseminated infection with a new genovar of Encephalitozoon cuniculi in a renal transplant recipient. J Clin Microbiol. 2010;48:2651–2653. doi:10.1128/JCM.02539-09 PubMed DOI PMC
Kašičková D, Sak B, Kváč M, et al. Sources of potentially infectious human microsporidia: molecular characterisation of microsporidia isolates from exotic birds in the Czech Republic, prevalence study and importance of birds in epidemiology of the human microsporidial infections. Vet Parasitol. 2009;165:125–130. doi:10.1016/j.vetpar.2009.06.033 PubMed DOI
Engelhardt S, Buder A, Pfeil K, et al. Nephritis in a Staffordshire Terrier puppy caused by Encephalitozoon cuniculi genotype I. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2017;45(6). doi:10.15654/TPK-161123 PubMed DOI
Sak B, Kváč M, Petrželková K, et al. Diversity of microsporidia (Fungi: microsporidia) among captive great apes in European zoos and African sanctuaries: evidence for zoonotic transmission? Folia Parasitol. 2011;58:81–86. doi:10.14411/fp.2011.008 PubMed DOI
Sak B, Petrželková KJ, Květoňová D, et al. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western Lowland Gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PLoS One. 2013;8:e71840. doi:10.1371/journal.pone.0071840 PubMed DOI PMC
Sak B, Petrželková KJ, Květoňová D, et al. Diversity of microsporidia, Cryptosporidium and Giardia in mountain gorillas (Gorilla beringei beringei) in Volcanoes National Park, Rwanda. PLoS One. 2014;9:e109751. doi:10.1371/journal.pone.0109751 PubMed DOI PMC
Sak B, Kváč M, Květoňová D, et al. The first report on natural Enterocytozoon bieneusi and Encephalitozoon spp. infections in wild East-European House Mice (Mus musculus musculus) and West-European House Mice (M. m. domesticus) in a hybrid zone across the Czech Republic–Germany border. Vet Parasitol. 2011;178:246–250. doi:10.1016/j.vetpar.2010.12.044 PubMed DOI
Tsukada R, Tsuchiyama A, Sasaki M, et al. Encephalitozoon infections in Rodentia and Soricomorpha in Japan. Vet Parasitol. 2013;198:193–196. doi:10.1016/j.vetpar.2013.08.018 PubMed DOI
Wagnerová P, Sak B, Květoňová D, et al. Enterocytozoon bieneusi and Encephalitozoon cuniculi in horses kept under different management systems in the Czech Republic. Vet Parasitol. 2012;190:573–577. doi:10.1016/j.vetpar.2012.07.013 PubMed DOI
Laatamna A, Wagnerová P, Sak B, et al. Microsporidia and Cryptosporidium in horses and donkeys in Algeria: detection of a novel Cryptosporidium hominis subtype family (Ik) in a horse. Vet Parasitol. 2015;208:135–142. doi:10.1016/j.vetpar.2015.01.007 PubMed DOI
Kimura M, Aoki M, Ichikawa-Seki M, et al. Detection and genotype of Encephalitozoon cuniculi DNA from urine and feces of pet rabbits in Japan. J Vet Med Sci. 2013;75:1017–1020. doi:10.1292/jvms.12-0567 PubMed DOI
Deng L, Chai Y, Xiang L, et al. First identification and genotyping of Enterocytozoon bieneusi and Encephalitozoon spp. in pet rabbits in China. BMC Vet Res. 2020;16:212. doi:10.1186/s12917-020-02434-z PubMed DOI PMC
Němejc K, Sak B, Květoňová D, et al. Prevalence and diversity of Encephalitozoon spp. and Enterocytozoon bieneusi in wild boars (Sus scrofa) in Central Europe. Parasitol Res. 2014;113:761–767. doi:10.1007/s00436-013-3707-6 PubMed DOI
Ditrich O, Chrdle A, Sak B, et al. Encephalitozoon cuniculi genotype I as a causative agent of brain abscess in an immunocompetent patient. J Clin Microbiol. 2011;49:2769–2771. doi:10.1128/JCM.00620-11 PubMed DOI PMC
Halánová M, Valenčáková A, Malčeková B, et al. Occurrence of microsporidia as emerging pathogens in Slovak Roma children and their impact on public health. Ann Agric Environ Med. 2013;20:695–698. PubMed
Tavalla M, Mardani-Kateki M, Abdizadeh R, et al. Molecular identification of Enterocytozoon bieneusi and Encephalitozoon spp. in immunodeficient patients in Ahvaz, Southwest of Iran. Acta Trop. 2017;172:107–112. doi:10.1016/j.actatropica.2017.04.015 PubMed DOI
Botha WS, Dormehl IC, Goosen DJ. Evaluation of kidney function in dogs suffering from canine encephalitozoonosis by standard clinical pathological and radiopharmaceutical techniques. J S Afr Vet Assoc. 1986;57:79–86. PubMed
Cutlip RC, Beall CW. Encephalitozoonosis in Arctic lemmings. Lab Anim Sci. 1989;39:331–333. PubMed
van Dellen AF, Stewart CG, Botha WS. Studies of encephalitozoonosis in vervet monkeys (Cercopithecus pygerythrus) orally inoculated with spores of Encephalitozoon cuniculi isolated from dogs (Canis familiaris). Onderstepoort J Vet Res. 1989;56:1–22. PubMed
Didier ES, Varner PW, Didier PJ, et al. Experimental microsporidiosis in immunocompetent and immunodeficient mice and monkeys. Folia Parasitol. 1994;41:1–11. PubMed
Guscetti F, Mathis A, Hatt JM, et al. Overt fatal and chronic subclinical Encephalitozoon cuniculi microsporidiosis in a colony of captive emperor tamarins (Saguinus imperator). J Med Primatol. 2003;32:111–119. doi:10.1034/j.1600-0684.2003.00016.x PubMed DOI
Reetz J, Wiedemann M, Aue A, et al. Disseminated lethal Encephalitozoon cuniculi (genotype III) infections in cotton-top tamarins (Oedipomidas oedipus)-a case report. Parasitol Int. 2004;53:29–34. doi:10.1016/j.parint.2003.10.003 PubMed DOI
Reetz J, Nöckler K, Reckinger S, et al. Identification of Encephalitozoon cuniculi genotype III and two novel genotypes of Enterocytozoon bieneusi in swine. Parasitol Int. 2009;58:285–292. doi:10.1016/j.parint.2009.03.002 PubMed DOI
Mathis A, Weber R, Deplazes P. Zoonotic potential of the microsporidia. Clin Microbiol Rev. 2005;18:423–445. doi:10.1128/CMR.18.3.423-445.2005 PubMed DOI PMC
Asakura T, Nakamura S, Ohta M, et al. Genetically unique microsporidian Encephalitozoon cuniculi strain type III isolated from squirrel monkeys. Parasitol Int. 2006;55:159–162. doi:10.1016/j.parint.2006.02.002 PubMed DOI
Juan-Sallés C, Garner MM, Didier ES, et al. Disseminated encephalitozoonosis in captive, juvenile, cotton-top (Saguinus oedipus) and neonatal emperor (Saguinus imperator) tamarins in North America. Vet Pathol. 2006;43:438–446. doi:10.1354/vp.43-4-438 PubMed DOI
Snowden KF, Lewis BC, Hoffman J, et al. Encephalitozoon cuniculi infections in dogs: a case series. J Am Anim Hosp Assoc. 2009;45:225–231. doi:10.5326/0450225 PubMed DOI
Valencakova A, Balent P, Ravaszova P, et al. Molecular identification and genotyping of Microsporidia in selected hosts. Parasitol Res. 2011;110:689–693. doi:10.1007/s00436-011-2543-9 PubMed DOI
Hocevar SN, Paddock CD, Spak CW, et al. Microsporidiosis acquired through solid organ transplantation: a public health investigation. Ann Intern Med. 2014;160:213–220. doi:10.7326/M13-2226 PubMed DOI PMC
Hofmannová L, Sak B, Jekl V, et al. Lethal Encephalitozoon cuniculi genotype III infection in Steppe lemmings (Lagurus lagurus). Vet Parasitol. 2014;205:357–360. doi:10.1016/j.vetpar.2014.07.008 PubMed DOI
Meng X, Zheng J, He X, et al. First characterization in China of Encephalitozoon cuniculi in the blue fox (Alopex lagopus). J Eukaryot Microbiol. 2014;61:580–585. doi:10.1111/jeu.12135 PubMed DOI
Scurrell EJ, Holding E, Hopper J, et al. Bilateral lenticular Encephalitozoon cuniculi infection in a snow leopard (Panthera uncia). Vet Ophthalmol. 2015;18:143–147. doi:10.1111/vop.12218 PubMed DOI
Weber R, Bryan RT. Microsporidial infections in immunodeficient and immunocompetent patients. Clin Infect Dis. 1994;19:517–521. doi:10.1093/clinids/19.3.517 PubMed DOI
Weber R, Bryan RT, Schwartz DA, et al. Human microsporidial infections. Clin Microbiol Rev. 1994;7:426–461. doi:10.1128/CMR.7.4.426 PubMed DOI PMC
Mertens RB, Didier ES, Fishbein MC, et al. Encephalitozoon cuniculi microsporidiosis: infection of the brain, heart, kidneys, trachea, adrenal glands, and urinary bladder in a patient with AIDS. Mod Pathol. 1997;10:68–77. PubMed
Didier ES, Snowden KF, Shadduck JA. Biology of microsporidian species infecting mammals. Adv Parasitol. 1998;40:283–320. doi:10.1016/S0065-308X(08)60125-6 PubMed DOI
Didier ES. Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop. 2005;94:61–76. doi:10.1016/j.actatropica.2005.01.010 PubMed DOI
Perec-Matysiak A, Leśniańska K, Buńkowska-Gawlik K, et al. The opportunistic pathogen Encephalitozoon cuniculi in wild living Murinae and Arvicolinae in Central Europe. Eur J Protistol. 2019;69:14–19. doi:10.1016/j.ejop.2019.02.004 PubMed DOI
Nell B, Fuchs-Baumgartinger A, Fritsche J, et al. Distribution of Encephalitozoon cuniculi infections in the cat resulting in ophthalmological symptoms in Europe. Vet Ophthalmol. 2014;17:E24.
Milnes E, Delnatte P, Cai HY, et al. Systemic Encephalitozoonosis due to Encephalitozoon cuniculi strain IV in a Vancouver Island Marmot (Marmota Vancouverensis). J Zoo Wildl Med. 2018;49:484–488. doi:10.1638/2017-0175.1 PubMed DOI
Didier ES, Stovall ME, Green LC, et al. Epidemiology of microsporidiosis: sources and modes of transmission. Vet Parasitol. 2004;126:145–166. doi:10.1016/j.vetpar.2004.09.006 PubMed DOI
Weiss LM. and now microsporidiosis. Ann Intern Med. 1995;123:954–956. doi:10.7326/0003-4819-123-12-199512150-00012 PubMed DOI
Weiss LM, Keohane EM. Microsporidia at the turn of the millenium: Raleigh 1999. J Eukaryot Microbiol. 1999;46:3S–5S. doi:10.1111/j.1550-7408.1999.tb06055.x PubMed DOI
Wittner M, Weiss L. The Microsporidia and Microsporidiosis. Washington DC: ASM Press; 1995.
Kicia M, Weselowska M, Kopacz Z, et al. Disseminated infection of Encephalitozoon cuniculi associated with osteolysis of hip periprosthetic tissue. Clin Infect Dis. 2018;67:1228–1234. doi:10.1093/cid/ciy256 PubMed DOI
Brdíčková K, Sak B, Holubová N, et al. Encephalitozoon cuniculi genotype II concentrates in inflammation foci. J Inflamm Res. 2020;13:583–593. doi:10.2147/JIR.S271628 PubMed DOI PMC
Kotková M, Sak B, Květoňová D, et al. Latent microsporidiosis caused by Encephalitozoon cuniculi in immunocompetent hosts: a murine model demonstrating the ineffectiveness of the immune system and treatment with albendazole. PLoS One. 2013;8:e60941. doi:10.1371/journal.pone.0060941 PubMed DOI PMC
De Bosscuere H, Wang Z, Orlandi PA. First diagnosis of Encephalitozoon intestinalis and E. hellem in a European brown hare (Lepus europaeus) with kidney lesions. Zoonoses Public Health. 2007;54:131–134. doi:10.1111/j.1863-2378.2007.01034.x PubMed DOI
Katzwinkel-Wladarsch S, Lieb M, Helse W, et al. Direct amplification and species determination of microsporidian DNA from stool specimens. Trop Med Int Health. 1996;1:373–378. doi:10.1046/j.1365-3156.1996.d01-51.x PubMed DOI
Wolk DM, Schneider SK, Wengenack NL, et al. Real-time PCR method for detection of Encephalitozoon intestinalis from stool specimens. J Clin Microbiol. 2002;40:3922–3928. doi:10.1128/JCM.40.11.3922-3928.2002 PubMed DOI PMC
Dai J, Wang P, Adusumilli S, et al. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009;6:482–492. doi:10.1016/j.chom.2009.10.006 PubMed DOI PMC
Sak B, Jandová A, Doležal K, et al. Effects of selected Indonesian plant extracts on E. cuniculi infection in vivo. Exp Parasitol. 2017;181:94–101. doi:10.1016/j.exppara.2017.07.014 PubMed DOI
Sak B, Kotková M, Hlásková L, et al. Limited effect of adaptive immune response to control encephalitozoonosis. Parasite Immunol. 2017;39:e12496. doi:10.1111/pim.12496 PubMed DOI
Gannon J. A survey of Encephalitozoon cuniculi in laboratory animal colonies in the United Kingdom. Lab Anim. 1980;14:91–94. doi:10.1258/002367780780942917 PubMed DOI
Kotková M, Sak B, Kváč M. Differences in the intensity of infection caused by Encephalitozoon cuniculi genotype II and III – comparison using quantitative real-time PCR. Exp Parasitol. 2018;192:93–97. doi:10.1016/j.exppara.2018.07.019 PubMed DOI
Sak B, Brdíčková K, Holubová N, et al. Encephalitozoon cuniculi genotype III evinces a resistance to albendazole treatment in both immunodeficient and immunocompetent Mice. Antimicrob Agents Chemother. 2020;64:e00058–20. doi:10.1128/AAC.00058-20 PubMed DOI PMC
Couzinet S, Cejas E, Schittny J, et al. Phagocytic uptake of Encephalitozoon cuniculi by nonprofessional phagocytes. Infect Immun. 2000;68:6939–6945. doi:10.1128/IAI.68.12.6939-6945.2000 PubMed DOI PMC
Nassonova E, Tokarev YS, Trammer T, et al. Phagocytosis of Nosema grylli (Microsporidia, Nosematidae) spores in vivo and in vitro. J Eukar Microbiol. 2001;48:83–84. doi:10.1111/j.1550-7408.2001.tb00462.x PubMed DOI
Fischer J, Tran D, Juneau R, et al. Kinetics of Encephalitozoon spp. infection of human macrophages. J Parasitol. 2008;94:169–175. doi:10.1645/GE-1303.1 PubMed DOI
Niederkorn JY, Shadduck JA. Role of antibody and complement in the control of Encephalitozoon cuniculi infections by rabbit macrophages. Infect Immun. 1980;27:995–1002. doi:10.1128/iai.27.3.995-1002.1980 PubMed DOI PMC
Weidner E. Interactions between Encephalitozoon cuniculi and macrophages. Parasitophorous vacuole growth and the absence of lysosomal fusion. Z Parasitenkd. 1975;47:1–9. doi:10.1007/BF00418060 PubMed DOI
Didier ES, Weiss LM. Microsporidiosis: not just in AIDS patients. Curr Opin Infect Dis. 2011;24:490–495. doi:10.1097/QCO.0b013e32834aa152 PubMed DOI PMC
Zender HO, Arrigoni E, Eckert J, et al. A case of Encephalitozoon cuniculi peritonitis in a patient with AIDS. Am J Clin Pathol. 1989;92:352–356. doi:10.1093/ajcp/92.3.352 PubMed DOI
Tosoni A, Nebuloni M, Ferri A, et al. Disseminated microsporidiosis caused by Encephalitozoon cuniculi III (dog type) in an Italian AIDS patient: a retrospective study. Mod Pathol. 2002;15:577–583. doi:10.1038/modpathol.3880566 PubMed DOI
Torres G, Izquierdo F, Capo V, et al. Genital microsporidiosis in women with AIDS: a post-mortem study. Rev Iberoam Micol. 2013;30:47–50. doi:10.1016/j.riam.2012.04.001 PubMed DOI
Kicia M, Wesolowska M, Jakuszko K, et al. Concurrent infection of the urinary tract with Encephalitozoon cuniculi and Enterocytozoon bieneusi in a renal transplant recipient. J Clin Microbiol. 2014;52:1780–1782. doi:10.1128/JCM.03328-13 PubMed DOI PMC
Ladapo TA, Nourse P, Pillay K, et al. Microsporidiosis in pediatric renal transplant patients in Cape Town, South Africa: two case reports. Pediatr Transplant. 2014;8:E220–226. doi:10.1111/petr.12327 PubMed DOI
Neumayerová H, Juránková J, Jeklová E, et al. Seroprevalence of Toxoplasma gondii and Encephalitozoon cuniculi in rabbits from different farming systems. Vet Parasitol. 2014;204:184–190. doi:10.1016/j.vetpar.2014.04.020 PubMed DOI
Kotková M, Sak B, Hlásková L, et al. The course of infection caused by Encephalitozoon cuniculi genotype III in immunocompetent and immunodeficient mice. Exp Parasitol. 2017;182:16–21. doi:10.1016/j.exppara.2017.09.022 PubMed DOI
Sak B, Brdíčková K, Holubová N, et al. The course of infection of Encephalitozoon cuniculi genotype I in mice possess combination of features reported in genotypes II and III. Exp Parasitol. 2021;224:108101. doi:10.1016/j.exppara.2021.108101 PubMed DOI