Latent microsporidiosis caused by Encephalitozoon cuniculi in immunocompetent hosts: a murine model demonstrating the ineffectiveness of the immune system and treatment with albendazole
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23593356
PubMed Central
PMC3623998
DOI
10.1371/journal.pone.0060941
PII: PONE-D-13-00580
Knihovny.cz E-zdroje
- MeSH
- albendazol terapeutické užití MeSH
- Cercopithecus aethiops MeSH
- dexamethason MeSH
- Encephalitozoon cuniculi * MeSH
- encephalitozoonóza farmakoterapie imunologie MeSH
- feces mikrobiologie MeSH
- modely nemocí na zvířatech * MeSH
- myši inbrední BALB C MeSH
- myši SCID MeSH
- myši MeSH
- počet lymfocytů MeSH
- polymerázová řetězová reakce MeSH
- průtoková cytometrie MeSH
- Vero buňky MeSH
- vnitřnosti mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- albendazol MeSH
- dexamethason MeSH
BACKGROUND: Microsporidia are obligate intracellular parasites causing severe infections with lethal outcome in immunocompromised hosts. However, these pathogens are more frequently reported as latent infections in immunocompetent individuals and raises questions about the potential risk of reactivation following induced immunosuppression. AIMS: To evaluate the possibility latent microsporidiosis, efficacy or albendazole, and reactivation, the authors monitored the course of E. cuniculi infection in immunocompetent BALB/c mice and immunodeficient SCID mice using molecular methods. METHODS: Mice were per orally infected with 10(7) spores of E. cuniculi. Selected groups were treated with albendazole, re-infected or chemically immunosuppressed by dexamethasone. The presence of microsporidia in the host's organs and feces were determined using PCR methods. Changes in numbers of lymphocytes in blood and in spleen after induction of immunosuppression were confirmed using flow cytometry analysis. RESULTS: Whereas E. cuniculi caused lethal microsporidiosis in SCID mice, the infection in BABL/c mice remained asymptomatic despite parasite dissemination into many organs during the acute infection phase. Albendazole treatment led to microsporidia elimination from organs in BALB/c mice. In SCID mice, however, only a temporary reduction in number of affected organs was observed and infection re-established post-treatment. Dexamethasone treatment resulted in a chronic microsporidia infection disseminating into most organs in BALB/c mice. Although the presence of E. cuniculi in organs of albendazole- treated mice was undetectable by PCR, it was striking that infection was reactivated by immunosuppression treatment. CONCLUSION: Our results demonstrated that microsporidia can successfully survive in organs of immunocompetent hosts and are able to reactivate from undetectable levels and spread within these hosts after induction of immunosuppression. These findings stress the danger of latent microsporidiosis as a life-threatening risk factor especially for individuals undergoing chemotherapy and in transplant recipients of organs originating from infected donors.
Zobrazit více v PubMed
Canning EU, Lom J, Dyková I (1986) The microsporidia of vertebrates. Academic Press, London, 289 pp.
Cotte L, Rabodonirina M, Chapuis F, Bailly F, Bissuel F, et al. (1999) Waterborne outbreak of intestinal microsporidiosis in persons with and without human immunodeficiency virus infection. J Infect Dis 180: 2003–2008. PubMed
Dowd S, Gerba S, Pepper I (1998) Confirmation of the human pathogenic Microsporidia Enterocytozoon bieneusi, Encephalitozoon intestinalis, and Vittaforma corneae in water. Appl Environ Microbiol 64: 3332–3335. PubMed PMC
Fournier S, Liguory O, Santillana-Hayat M, Guillot E, Sarfati C, et al. (2000) Detection of microsporidia in surface water: a one-year follow-up study. FEMS Immunol Med Microbiol 29: 95–100. PubMed
Sinski E (2003) Environmental contamination with protozoan parasite infective stages: biology and risk assessment. Acta Microbiol Pol 52: 97–107. PubMed
Bryan RT, Schwartz DA (1999) Epidemiology of microsporidiosis. In: Wittner M, Weiss LM (eds.) The microsporidia and microsporidiosis. ASM, Washington DC, 502–516.
Deplazes P, Mathis A, Weber R (2000) Epidemiology and zoonotic aspects of microsporidia of mammals and birds. Contrib Microbiol 6: 236–260. PubMed
Matsubayashi H, Koike I, Mikata I, Takei H, Higiwara S (1959) A case of Encephalitozoon-like infection in man. Arch Pathol 67: 181–187. PubMed
Canning EU, Hollister WS (1992) Human infections with microsporidia. Rev Med Microbiol 2: 35–42.
Weber R, Deplazes P, Flepp M, Mathis A, Baumann R, et al. (1997) Cerebral microsporidiosis due to Encephalitozoon cuniculi in a patient with human immunodeficient virus infection. New Eng J Med 336: 474–478. PubMed
Wright JH, Craighead EM (1922) Infectious motor paralysis in young rabbits. J Exp Med 36: 135–140. PubMed PMC
Levaditi C, Nicolau S, Schoen R (1923) Etiology of epizootic rabbit encephalitis in reports with experimental studies of encephalitis lethargica. Encephalitozoon cuniculi (nov spec). Ann Inst Pasteur (Paris) 38: 675–711.
Shadduck JA (1969) Nosema cuniculi: in vitro isolation. Science 166: 516–517. PubMed
Didier ES (1995) Reactive nitrogen intermediates implicated in the inhibition of Encephalitozoon cuniculi replication in murine peritoneal macrophages. Parasite Immunol 17: 405–412. PubMed
Didier ES, Snowden KF, Shadduck JA (1998) Biology of microsporidian species infecting mammals. Adv Parasitol 40: 283–320. PubMed
Mertens RB, Didier ES, Fishbein MC, Bertucci DC, Rogers LB, et al. (1997) Encephalitozoon cuniculi microsporidiosis: infection of the brain, heart, kidneys, trachea, adrenal glands, and urinary bladder in a patient with AIDS. Mod Pathol 10: 68–77. PubMed
Weber R, Bryan RT, Schwartz DA, Owen RL (1994) Human microsporidial infections. Clin Microbiol Rev 7: 426–461. PubMed PMC
Didier ES (2005) Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop 94: 61–76. PubMed
Pozio E, Morales MA (2005) The impact of HIV-protease inhibitors on opportunistic parasites. Trends Parasitol 21: 58–63. PubMed
Gannon J (1980) The course of infection of Encephalitozoon cuniculi in immunodeficient and immunocompetent mice. Lab Anim 14: 189–192. PubMed
Koudela B, Vítovec J, Kučerová Z, Ditrich O, Trávníček J (1993) The severe combined immunodeficient mouse as model for Encephalitozoon cuniculi microsporidiosis. Folia Parasitol 40: 279–286. PubMed
Schmidt EC, Shadduck JA (1983) Murine encephalitozoonosis model for studying the host-parasite relationship of chronic infection. Infect Immun 40: 936–942. PubMed PMC
Waywa D, Kongkriengdaj S, Chaidatch S, Tiengrim S, Kowadisaiburana B, et al. (2001) Protozoan enteric infection in AIDS-related diarrhea in Thailand. Southeast Asian J Trop Med Public Health 32: 151–155. PubMed
Canning EU, Hollister WS (1991) In vitro and in vivo investigations of human microsporidia. J Protozool 38: 631–635. PubMed
De Groote MA, Visvesvara G, Wilson ML, Pieniazek NJ, Slemenda SB, et al. (1995) Polymerase chain reaction and culture confirmation of disseminated Encephalitozoon cuniculi in a patient with AIDS: successful therapy with albendazole. J Infect Dis 171: 1375–1378. PubMed
Koudela B, Lom J, Vítovec J, Kučerová Z, Ditrich O, et al. (1994) In vivo efficacy of albendazole against Encephalitozoon cuniculi in SCID mice. J Eukaryot Microbiol 41: 49–50. PubMed
De Bosscuere H, Wang Z, Orlandi PA (2007) First diagnosis of Encephalitozoon intestinalis and E. hellem in a European brown hare (Lepus europaeus) with kidney lesions. Zoonoses Public Health 54: 131–134. PubMed
Katzwinkel-Wladarsch S, Lieb M, Helse W, Löscher T, Rinder H (1996) Direct amplification and species determination of microsporidian DNA from stool specimens. Trop Med Int Health 1: 373–378. PubMed
Jalovecká M, Sak B, Kváč M, Květoňová D, Kučerová Z, et al. (2010) Activation of protective cell-mediated immune response in gastric mucosa during Cryptosporidium muris infection and re-infection in immunocompetent mice. Parasitol Res 106: 1159–1166. PubMed
Didier ES, Stovall ME, Green LC, Brindley PJ, Sestak K, et al. (2004) Epidemiology of microsporidiosis: sources and modes of transmission. Vet Par 126: 145–166. PubMed
Mathis A, Weber R, Deplazes P (2005) Zoonotic potential of the microsporidia. Clin Microbiol Rev 18: 423–445. PubMed PMC
Orenstein JM (1991) Microsporidiosis in the acquired immunodeficiency syndrome. J Parasitol 77: 843–864. PubMed
Franzen C, Hartmann P, Salzberger B (2005) Cytokine and nitric oxide responses of monocyte-derived human macrophages to microsporidian spores. Exp Parasitol 109: 1–6. PubMed
Khan IA, Moretto M, Weiss LM (2001) Immune response to Encephalitozoon cuniculi infection. Microbes Infect 3: 401–405. PubMed PMC
Valencakova A, Halanova M (2012) Immune response to Encephalitozoon infection review. Comp Immunol Microbiol Infect Dis 35: 1–7. PubMed
Braunfuchsová P, Salát J, Kopecký J (2001) CD8+ T-lymphocytes protect SCID mice against Encephalitozoon cuniculi infection. Int J Parasitol 15: 681–686. PubMed
Khan IA, Schwartzman JD, Kasper LH, Moretto M (1999) CD8+ CTLs are essential for protective immunity against Encephalitozoon cuniculi infection. J Immunol 162: 6086–6091. PubMed
Moretto M, Casciotti L, Durell B, Khan IA (2000) Lack of CD4(+) T-cells does not affect induction of CD8(+) T-cell immunity against Encephalitozoon cuniculi infection. Infect Immun 68: 6223–6232. PubMed PMC
Didier ES, Shadduck JA (1994) IFN-γ and LPS induce murine macrophages to kill Encephalitozoon cuniculi in vitro. J Eukaryot Microbiol 41: 43. PubMed
Sak B, Salát J, Horká H, Saková K, Ditrich O (2006) Antibodies enhance the protective effect of CD4+ T-lymphocytes in SCID mice p.o. infected with Encephalitozoon cuniculi . Parasite Immunol 28: 95–99. PubMed
Salát J, Horká H, Sak B, Kopecký J (2006) Pure CD4+ T-lymphocytes fail to protect perorally infected SCID mice from lethal microsporidiosis caused by Encephalitozoon cuniculi . Parasitol Res 99: 682–686. PubMed
Sak B, Brady D, Pelikánová M, Květoňová D, Rost M, et al. (2011) Unapparent microsporidial infection among immunocompetent humans in the Czech Republic. J Clin Microbiol 49: 1064–1070. PubMed PMC
Sak B, Kváč M, Kučerová Z, Květoňová D, Saková K (2011) Latent microsporidial infection in immunocompetent individuals - a longitudinal study. PLoS Negl Trop Dis 5: e1162. PubMed PMC
Kakrania R, Joseph J, Vaddavalli PK, Gangopadhyay N, Sharma S (2006) Microsporidia keratoconjunctivitis in a corneal graft. Eye (Lond) 20: 1314–1315. PubMed
Ditrich O, Chrdle A, Sak B, Chmelík V, Kubále J, et al. (2011) Encephalitozoon cuniculi genotype I as a causative agent of brain abscess in an immunocompetent patien. J Clin Microbiol 49: 2769–2771. PubMed PMC
Anete Lallo M, Porta Miche Hirschfeld M (2012) Encephalitozoonosis in pharmacologically immunosuppressed mice. Exp Parasitol 131: 339–343. PubMed
Hollister WS, Canning EU, Willcox A (1991) Evidence for widespread occurrence of antibodies to Encephalitozoon cuniculi (Microspora) in man provided by ELISA and other serological tests. Parasitology 102: 33–43. PubMed
Van Gool T, Vetter JCM, Weinmayr B, Van Dam A, Derouin F, et al. (1997) High seroprevalence of Encephalitozoon species in immunocompetent subjects. J Infect Dis 175: 1020–1024. PubMed
Breitenmoser A, Mathis A, Bürgi E, Weber R, Deplazes P (1999) High prevalence of Enterocytozoon bieneusi in swine with four genotypes that differ from those identified in humans. Parasitology 118: 447–453. PubMed
Sak B, Kašičková D, Kváč M, Květoňová D, Ditrich O (2010) Microsporidia in exotic birds: intermittent spore excretion of Encephalitozoon spp. in naturally infected budgerigars (Melopsittacus undulatus). Vet Parasitol 168: 196–200. PubMed
Chronic Infections in Mammals Due to Microsporidia
Encephalitozoon cuniculi Genotype II Concentrates in Inflammation Foci