Whole genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates collected in the Czech Republic, 2005-2020

. 2022 May 03 ; 12 (1) : 7149. [epub] 20220503

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35505072
Odkazy

PubMed 35505072
PubMed Central PMC9062869
DOI 10.1038/s41598-022-11287-5
PII: 10.1038/s41598-022-11287-5
Knihovny.cz E-zdroje

The emergence and spread of resistant tuberculosis (TB) pose a threat to public health, so it is necessary to diagnose the drug-resistant forms in a clinically short time frame and closely monitor their transmission. In this study, we carried out a first whole genome sequencing (WGS)-based analysis of multidrug resistant (MDR) M. tuberculosis strains to explore the phylogenetic lineages diversity, drug resistance mechanisms, and ongoing transmission chains within the country. In total, 65 isolates phenotypically resistant to at least rifampicin and isoniazid collected in the Czech Republic in 2005-2020 were enrolled for further analysis. The agreement of the results obtained by WGS with phenotypic drug susceptibility testing (pDST) in the determination of resistance to isoniazid, rifampicin, pyrazinamide, streptomycin, second-line injectables and fluoroquinolones was more than 80%. Phylogenetic analysis of WGS data revealed that the majority of MDR M. tuberculosis isolates were the Beijing lineage 2.2.1 (n = 46/65; 70.8%), while the remaining strains belonged to Euro-American lineage. Cluster analysis with a predefined cut-off distance of less than 12 single nucleotide polymorphisms between isolates showed 19 isolates in 6 clusters (clustering rate 29.2%), located mainly in the region of the capital city of Prague. This study highlights the utility of WGS as a high-resolution approach in the diagnosis, characterization of resistance patterns, and molecular-epidemiological analysis of resistant TB in the country.

Zobrazit více v PubMed

World Health Organization . Global Tuberculosis Report. Blood. World Health Organization; 2015.

Viney K, et al. New definitions of pre-extensively and extensively drug-resistant tuberculosis: Update from the World Health Organization. Eur. Respir. J. 2021;57:4. doi: 10.1183/13993003.00361-2021. PubMed DOI

Registr tuberkulózy. https://tbc.uzis.cz/. Accessed 9 Jan 2022.

WHO . Rapid Communication: Molecular Assays as Initial Tests for the Diagnosis of Tuberculosis and Rifampicin Resistance. World Health Organization; 2020. pp. 1–8.

Faksri K, et al. Comparisons of whole-genome sequencing and phenotypic drug susceptibility testing for Mycobacterium tuberculosis causing MDR-TB and XDR-TB in Thailand. Int. J. Antimicrob. Agents. 2019;54:109–116. doi: 10.1016/j.ijantimicag.2019.04.004. PubMed DOI

van Beek J, Haanperä M, Smit PW, Mentula S, Soini H. Evaluation of whole genome sequencing and software tools for drug susceptibility testing of Mycobacterium tuberculosis. Clin. Microbiol. Infect. 2019;25:82–86. doi: 10.1016/j.cmi.2018.03.041. PubMed DOI

Walker TM, et al. A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: A molecular epidemiological study. Lancet. Infect. Dis. 2018;18:431–440. doi: 10.1016/S1473-3099(18)30004-5. PubMed DOI PMC

Jabbar A, et al. Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-51562-6. PubMed DOI PMC

Prodinger WM, et al. Molecular epidemiology of tuberculosis in the Czech Republic, 2004: Analysis of M. tuberculosis complex isolates originating from the City of Prague, South Moravia and the Moravian-Silesian region. Central Eur. J. Public Health. 2006;14:168–174. doi: 10.21101/cejph.a3389. PubMed DOI

Kamerbeek J, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 1997;35:907–914. doi: 10.1128/jcm.35.4.907-914.1997. PubMed DOI PMC

Země narození | Registr tuberkulózy. https://tbc.uzis.cz/cs/browser/birth-country?type=czechiaVis&yearOfDisease=2020 (2020).

Sheed Khan A, et al. Characterization of rifampicin-resistant Mycobacterium tuberculosis in Khyber Pakhtunkhwa, Pakistan. Sci. Rep. 2021;11:14194. doi: 10.1038/s41598-021-93501-4. PubMed DOI PMC

De Vos M, et al. Putative compensatory mutations in the rpoc gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother. 2013;57:827–832. doi: 10.1128/AAC.01541-12. PubMed DOI PMC

Wu X, et al. Use of whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance in Shanghai, China. Int. J. Infect. Dis. 2020;96:48–53. doi: 10.1016/j.ijid.2020.04.039. PubMed DOI

Plinke C, et al. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J. Antimicrob. Chemother. 2010;65:1359–1367. doi: 10.1093/jac/dkq120. PubMed DOI

Ramaswamy SV, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2000;44:326–336. doi: 10.1128/AAC.44.2.326-336.2000. PubMed DOI PMC

World Health Organization . Catalogue of Mutations in Mycobacterium tuberculosis Complex and Their Association with Drug Resistance. World Health Organization; 2021.

Jagielski T, et al. Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS ONE. 2014;9:e100078. doi: 10.1371/journal.pone.0100078. PubMed DOI PMC

Ali A, et al. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from pakistan. PLoS ONE. 2015;10:e0117771. doi: 10.1371/journal.pone.0117771. PubMed DOI PMC

von Groll A, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. Antimicrob. Agents Chemother. 2009;53:4498–4500. doi: 10.1128/AAC.00287-09. PubMed DOI PMC

Schena E, et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system. J. Antimicrob. Chemother. 2016;71:1532–1539. doi: 10.1093/jac/dkw044. PubMed DOI

Casali N, et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 2012;22:735–745. doi: 10.1101/gr.128678.111. PubMed DOI PMC

Ford CB, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 2013;45:784–790. doi: 10.1038/ng.2656. PubMed DOI PMC

Merker M, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat. Genet. 2015;47:242–249. doi: 10.1038/ng.3195. PubMed DOI PMC

Merker M, et al. Multidrug- and extensively drug-resistant Mycobacterium tuberculosis Beijing clades, Ukraine, 2015—Volume 26, Number 3–March 2020—Emerging Infectious Diseases journal—CDC. Emerg. Infect. Dis. 2020;26:481–490. doi: 10.3201/eid2603.190525. PubMed DOI PMC

Leontiyeva Y. Ukrainians in the Czech Republic: On the pathway from temporary foreign workers to one of the largest minority groups. In: Fedyuk O, Kindler M, editors. Ukrainian Migration to the European Union. Springer; 2016. pp. 133–149.

Wiens KE, et al. Global variation in bacterial strains that cause tuberculosis disease: A systematic review and meta-analysis. BMC Med. 2018;16:1–13. doi: 10.1186/s12916-018-1180-x. PubMed DOI PMC

De Beer JL, Ködmön C, van der Werf MJ, van Ingen J, van Soolingen D. Molecular surveillance of multi- and extensively drug-resistant tuberculosis transmission in the European Union from 2003 to 2011. Eurosurveillance. 2014;19:20742. PubMed

Phelan JE, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019;11:1–7. doi: 10.1186/s13073-019-0650-x. PubMed DOI PMC

Coll F, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat. Genet. 2018;50:307–316. doi: 10.1038/s41588-017-0029-0. PubMed DOI

World Health Organization . Drug Resistance Profiles of Mycobacterium tuberculosis Complex and Factors Associated with Drug Resi. World Health Organization; 2021.

Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis. 2018;108:186–194. doi: 10.1016/j.tube.2017.12.006. PubMed DOI

Pang Y, et al. In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China. Antimicrob. Agents Chemother. 2017 doi: 10.1128/AAC.00900-17. PubMed DOI PMC

Nambiar R, et al. Linezolid resistance in Mycobacterium tuberculosis isolates at a tertiary care centre in Mumbai, India. Indian J. Med. Res. 2021;154:85. doi: 10.4103/ijmr.IJMR_1168_19. PubMed DOI PMC

The CRyPTIC Consortium and the 100,000 Genomes Project Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N. Engl. J. Med. 2018;379:1403–1415. doi: 10.1056/NEJMoa1800474. PubMed DOI PMC

Coll F, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7:1–10. doi: 10.1186/s13073-015-0164-0. PubMed DOI PMC

Chen X, et al. Evaluation of whole-genome sequence method to diagnose resistance of 13 anti-tuberculosis drugs and characterize resistance genes in clinical multi-drug resistance Mycobacterium tuberculosis isolates from China. Front. Microbiol. 2019;10:1741. doi: 10.3389/fmicb.2019.01741. PubMed DOI PMC

Cheng S, Cui Z, Li Y, Hu Z. Diagnostic accuracy of a molecular drug susceptibility testing method for the antituberculosis drug ethambutol: A systematic review and meta-analysis. J. Clin. Microbiol. 2014;52:2913–2924. doi: 10.1128/JCM.00560-14. PubMed DOI PMC

Engström A, Morcillo N, Imperiale B, Hoffner SE, Juréen P. Detection of first- and second-line drug resistance in Mycobacterium tuberculosis clinical isolates by pyrosequencing. J. Clin. Microbiol. 2012;50:2026–2033. doi: 10.1128/JCM.06664-11. PubMed DOI PMC

Plinke C, Walter K, Aly S, Ehlers S, Niemann S. Mycobacterium tuberculosis embB codon 306 mutations confer moderately increased resistance to ethambutol in vitro and in vivo. Antimicrob. Agents Chemother. 2011;55:2891–2896. doi: 10.1128/AAC.00007-10. PubMed DOI PMC

Iglesias MJ, et al. The value of the continuous genotyping of multi-drug resistant tuberculosis over 20 years in Spain. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC

Tagliani E, et al. Use of a whole genome sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017–2019: An ECDC pilot study. Eur. Respir. J. 2021;57:2002272. PubMed PMC

Nonghanphithak D, et al. Clusters of drug-resistant Mycobacterium tuberculosis detected by whole-genome sequence analysis of nationwide sample, Thailand, 2014–2017. Emerg. Infect. Dis. 2021;27:813–822. doi: 10.3201/eid2703.204364. PubMed DOI PMC

Liu Y, et al. The study on the association between Beijing genotype family and drug susceptibility phenotypes of Mycobacterium tuberculosis in Beijing. Sci. Rep. 2017;7:1–7. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Sun LL, et al. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int. J. Infect. Dis. 2018;76:109–119. doi: 10.1016/j.ijid.2018.06.009. PubMed DOI

Alaridah N, et al. Transmission dynamics study of tuberculosis isolates with whole genome sequencing in southern Sweden. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-39971-z. PubMed DOI PMC

Li K, et al. Characterization of pncA mutations and prediction of PZA resistance in Mycobacterium tuberculosis clinical isolates from Chongqing, China. Front. Microbiol. 2021;11:3252. PubMed PMC

Allana S, et al. PncA gene mutations associated with pyrazinamide resistance in drug-resistant Tuberculosis, South Africa and Georgia. Emerg. Infect. Dis. 2017;23:491–495. doi: 10.3201/eid2303.161034. PubMed DOI PMC

Zhang Z, Pang Y, Wang Y, Liu C, Zhao Y. Beijing genotype of Mycobacterium tuberculosis is significantly associated with linezolid resistance in multidrug-resistant and extensively drug-resistant tuberculosis in China. Int. J. Antimicrob. Agents. 2014;43:231–235. doi: 10.1016/j.ijantimicag.2013.12.007. PubMed DOI

Wasserman S, Meintjes G, Maartens G. Linezolid in the treatment of drug-resistant tuberculosis: The challenge of its narrow therapeutic index. Expert Rev. Anti Infect. Ther. 2016;14:901–915. doi: 10.1080/14787210.2016.1225498. PubMed DOI

Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis. https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5. Accessed 9 Jan 2022.

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:1–13. doi: 10.1186/s13059-019-1891-0. PubMed DOI PMC

Shen W, Le S, Li Y, Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE. 2016;11:e0163962. doi: 10.1371/journal.pone.0163962. PubMed DOI PMC

Cancino-Muñoz I, et al. Cryptic resistance mutations associated with misdiagnoses of multidrug-resistant tuberculosis. J. Infect. Dis. 2019;220:316–320. doi: 10.1093/infdis/jiz104. PubMed DOI PMC

Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

Letunic I, Bork P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Zhou Z, et al. Grapetree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28:1395–1404. doi: 10.1101/gr.232397.117. PubMed DOI PMC

Walker TM, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet. Infect. Dis. 2013;13:137–146. doi: 10.1016/S1473-3099(12)70277-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...