Whole genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates collected in the Czech Republic, 2005-2020
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35505072
PubMed Central
PMC9062869
DOI
10.1038/s41598-022-11287-5
PII: 10.1038/s41598-022-11287-5
Knihovny.cz E-zdroje
- MeSH
- antituberkulotika farmakologie terapeutické užití MeSH
- fylogeneze MeSH
- genotyp MeSH
- isoniazid MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- multirezistentní tuberkulóza * diagnóza farmakoterapie epidemiologie MeSH
- mutace MeSH
- Mycobacterium tuberculosis * MeSH
- rifampin MeSH
- sekvenování celého genomu metody MeSH
- tuberkulóza * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antituberkulotika MeSH
- isoniazid MeSH
- rifampin MeSH
The emergence and spread of resistant tuberculosis (TB) pose a threat to public health, so it is necessary to diagnose the drug-resistant forms in a clinically short time frame and closely monitor their transmission. In this study, we carried out a first whole genome sequencing (WGS)-based analysis of multidrug resistant (MDR) M. tuberculosis strains to explore the phylogenetic lineages diversity, drug resistance mechanisms, and ongoing transmission chains within the country. In total, 65 isolates phenotypically resistant to at least rifampicin and isoniazid collected in the Czech Republic in 2005-2020 were enrolled for further analysis. The agreement of the results obtained by WGS with phenotypic drug susceptibility testing (pDST) in the determination of resistance to isoniazid, rifampicin, pyrazinamide, streptomycin, second-line injectables and fluoroquinolones was more than 80%. Phylogenetic analysis of WGS data revealed that the majority of MDR M. tuberculosis isolates were the Beijing lineage 2.2.1 (n = 46/65; 70.8%), while the remaining strains belonged to Euro-American lineage. Cluster analysis with a predefined cut-off distance of less than 12 single nucleotide polymorphisms between isolates showed 19 isolates in 6 clusters (clustering rate 29.2%), located mainly in the region of the capital city of Prague. This study highlights the utility of WGS as a high-resolution approach in the diagnosis, characterization of resistance patterns, and molecular-epidemiological analysis of resistant TB in the country.
Emerging Bacterial Pathogens Unit IRCCS San Raffaele Scientific Institute Milan Italy
Faculty of Health Catholic University Ružomberok Slovakia
International Reference Laboratory of Mycobacteriology Statens Serum Institut Copenhagen Denmark
National Institute of Tuberculosis Lung Diseases and Thoracic Surgery Vyšné Hágy Slovakia
Zobrazit více v PubMed
World Health Organization . Global Tuberculosis Report. Blood. World Health Organization; 2015.
Viney K, et al. New definitions of pre-extensively and extensively drug-resistant tuberculosis: Update from the World Health Organization. Eur. Respir. J. 2021;57:4. doi: 10.1183/13993003.00361-2021. PubMed DOI
Registr tuberkulózy. https://tbc.uzis.cz/. Accessed 9 Jan 2022.
WHO . Rapid Communication: Molecular Assays as Initial Tests for the Diagnosis of Tuberculosis and Rifampicin Resistance. World Health Organization; 2020. pp. 1–8.
Faksri K, et al. Comparisons of whole-genome sequencing and phenotypic drug susceptibility testing for Mycobacterium tuberculosis causing MDR-TB and XDR-TB in Thailand. Int. J. Antimicrob. Agents. 2019;54:109–116. doi: 10.1016/j.ijantimicag.2019.04.004. PubMed DOI
van Beek J, Haanperä M, Smit PW, Mentula S, Soini H. Evaluation of whole genome sequencing and software tools for drug susceptibility testing of Mycobacterium tuberculosis. Clin. Microbiol. Infect. 2019;25:82–86. doi: 10.1016/j.cmi.2018.03.041. PubMed DOI
Walker TM, et al. A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: A molecular epidemiological study. Lancet. Infect. Dis. 2018;18:431–440. doi: 10.1016/S1473-3099(18)30004-5. PubMed DOI PMC
Jabbar A, et al. Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-51562-6. PubMed DOI PMC
Prodinger WM, et al. Molecular epidemiology of tuberculosis in the Czech Republic, 2004: Analysis of M. tuberculosis complex isolates originating from the City of Prague, South Moravia and the Moravian-Silesian region. Central Eur. J. Public Health. 2006;14:168–174. doi: 10.21101/cejph.a3389. PubMed DOI
Kamerbeek J, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 1997;35:907–914. doi: 10.1128/jcm.35.4.907-914.1997. PubMed DOI PMC
Země narození | Registr tuberkulózy. https://tbc.uzis.cz/cs/browser/birth-country?type=czechiaVis&yearOfDisease=2020 (2020).
Sheed Khan A, et al. Characterization of rifampicin-resistant Mycobacterium tuberculosis in Khyber Pakhtunkhwa, Pakistan. Sci. Rep. 2021;11:14194. doi: 10.1038/s41598-021-93501-4. PubMed DOI PMC
De Vos M, et al. Putative compensatory mutations in the rpoc gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother. 2013;57:827–832. doi: 10.1128/AAC.01541-12. PubMed DOI PMC
Wu X, et al. Use of whole-genome sequencing to predict Mycobacterium tuberculosis drug resistance in Shanghai, China. Int. J. Infect. Dis. 2020;96:48–53. doi: 10.1016/j.ijid.2020.04.039. PubMed DOI
Plinke C, et al. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J. Antimicrob. Chemother. 2010;65:1359–1367. doi: 10.1093/jac/dkq120. PubMed DOI
Ramaswamy SV, et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2000;44:326–336. doi: 10.1128/AAC.44.2.326-336.2000. PubMed DOI PMC
World Health Organization . Catalogue of Mutations in Mycobacterium tuberculosis Complex and Their Association with Drug Resistance. World Health Organization; 2021.
Jagielski T, et al. Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS ONE. 2014;9:e100078. doi: 10.1371/journal.pone.0100078. PubMed DOI PMC
Ali A, et al. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from pakistan. PLoS ONE. 2015;10:e0117771. doi: 10.1371/journal.pone.0117771. PubMed DOI PMC
von Groll A, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. Antimicrob. Agents Chemother. 2009;53:4498–4500. doi: 10.1128/AAC.00287-09. PubMed DOI PMC
Schena E, et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system. J. Antimicrob. Chemother. 2016;71:1532–1539. doi: 10.1093/jac/dkw044. PubMed DOI
Casali N, et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 2012;22:735–745. doi: 10.1101/gr.128678.111. PubMed DOI PMC
Ford CB, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 2013;45:784–790. doi: 10.1038/ng.2656. PubMed DOI PMC
Merker M, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat. Genet. 2015;47:242–249. doi: 10.1038/ng.3195. PubMed DOI PMC
Merker M, et al. Multidrug- and extensively drug-resistant Mycobacterium tuberculosis Beijing clades, Ukraine, 2015—Volume 26, Number 3–March 2020—Emerging Infectious Diseases journal—CDC. Emerg. Infect. Dis. 2020;26:481–490. doi: 10.3201/eid2603.190525. PubMed DOI PMC
Leontiyeva Y. Ukrainians in the Czech Republic: On the pathway from temporary foreign workers to one of the largest minority groups. In: Fedyuk O, Kindler M, editors. Ukrainian Migration to the European Union. Springer; 2016. pp. 133–149.
Wiens KE, et al. Global variation in bacterial strains that cause tuberculosis disease: A systematic review and meta-analysis. BMC Med. 2018;16:1–13. doi: 10.1186/s12916-018-1180-x. PubMed DOI PMC
De Beer JL, Ködmön C, van der Werf MJ, van Ingen J, van Soolingen D. Molecular surveillance of multi- and extensively drug-resistant tuberculosis transmission in the European Union from 2003 to 2011. Eurosurveillance. 2014;19:20742. PubMed
Phelan JE, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019;11:1–7. doi: 10.1186/s13073-019-0650-x. PubMed DOI PMC
Coll F, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat. Genet. 2018;50:307–316. doi: 10.1038/s41588-017-0029-0. PubMed DOI
World Health Organization . Drug Resistance Profiles of Mycobacterium tuberculosis Complex and Factors Associated with Drug Resi. World Health Organization; 2021.
Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis. 2018;108:186–194. doi: 10.1016/j.tube.2017.12.006. PubMed DOI
Pang Y, et al. In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China. Antimicrob. Agents Chemother. 2017 doi: 10.1128/AAC.00900-17. PubMed DOI PMC
Nambiar R, et al. Linezolid resistance in Mycobacterium tuberculosis isolates at a tertiary care centre in Mumbai, India. Indian J. Med. Res. 2021;154:85. doi: 10.4103/ijmr.IJMR_1168_19. PubMed DOI PMC
The CRyPTIC Consortium and the 100,000 Genomes Project Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N. Engl. J. Med. 2018;379:1403–1415. doi: 10.1056/NEJMoa1800474. PubMed DOI PMC
Coll F, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;7:1–10. doi: 10.1186/s13073-015-0164-0. PubMed DOI PMC
Chen X, et al. Evaluation of whole-genome sequence method to diagnose resistance of 13 anti-tuberculosis drugs and characterize resistance genes in clinical multi-drug resistance Mycobacterium tuberculosis isolates from China. Front. Microbiol. 2019;10:1741. doi: 10.3389/fmicb.2019.01741. PubMed DOI PMC
Cheng S, Cui Z, Li Y, Hu Z. Diagnostic accuracy of a molecular drug susceptibility testing method for the antituberculosis drug ethambutol: A systematic review and meta-analysis. J. Clin. Microbiol. 2014;52:2913–2924. doi: 10.1128/JCM.00560-14. PubMed DOI PMC
Engström A, Morcillo N, Imperiale B, Hoffner SE, Juréen P. Detection of first- and second-line drug resistance in Mycobacterium tuberculosis clinical isolates by pyrosequencing. J. Clin. Microbiol. 2012;50:2026–2033. doi: 10.1128/JCM.06664-11. PubMed DOI PMC
Plinke C, Walter K, Aly S, Ehlers S, Niemann S. Mycobacterium tuberculosis embB codon 306 mutations confer moderately increased resistance to ethambutol in vitro and in vivo. Antimicrob. Agents Chemother. 2011;55:2891–2896. doi: 10.1128/AAC.00007-10. PubMed DOI PMC
Iglesias MJ, et al. The value of the continuous genotyping of multi-drug resistant tuberculosis over 20 years in Spain. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC
Tagliani E, et al. Use of a whole genome sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017–2019: An ECDC pilot study. Eur. Respir. J. 2021;57:2002272. PubMed PMC
Nonghanphithak D, et al. Clusters of drug-resistant Mycobacterium tuberculosis detected by whole-genome sequence analysis of nationwide sample, Thailand, 2014–2017. Emerg. Infect. Dis. 2021;27:813–822. doi: 10.3201/eid2703.204364. PubMed DOI PMC
Liu Y, et al. The study on the association between Beijing genotype family and drug susceptibility phenotypes of Mycobacterium tuberculosis in Beijing. Sci. Rep. 2017;7:1–7. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Sun LL, et al. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int. J. Infect. Dis. 2018;76:109–119. doi: 10.1016/j.ijid.2018.06.009. PubMed DOI
Alaridah N, et al. Transmission dynamics study of tuberculosis isolates with whole genome sequencing in southern Sweden. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-39971-z. PubMed DOI PMC
Li K, et al. Characterization of pncA mutations and prediction of PZA resistance in Mycobacterium tuberculosis clinical isolates from Chongqing, China. Front. Microbiol. 2021;11:3252. PubMed PMC
Allana S, et al. PncA gene mutations associated with pyrazinamide resistance in drug-resistant Tuberculosis, South Africa and Georgia. Emerg. Infect. Dis. 2017;23:491–495. doi: 10.3201/eid2303.161034. PubMed DOI PMC
Zhang Z, Pang Y, Wang Y, Liu C, Zhao Y. Beijing genotype of Mycobacterium tuberculosis is significantly associated with linezolid resistance in multidrug-resistant and extensively drug-resistant tuberculosis in China. Int. J. Antimicrob. Agents. 2014;43:231–235. doi: 10.1016/j.ijantimicag.2013.12.007. PubMed DOI
Wasserman S, Meintjes G, Maartens G. Linezolid in the treatment of drug-resistant tuberculosis: The challenge of its narrow therapeutic index. Expert Rev. Anti Infect. Ther. 2016;14:901–915. doi: 10.1080/14787210.2016.1225498. PubMed DOI
Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis. https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5. Accessed 9 Jan 2022.
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:1–13. doi: 10.1186/s13059-019-1891-0. PubMed DOI PMC
Shen W, Le S, Li Y, Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE. 2016;11:e0163962. doi: 10.1371/journal.pone.0163962. PubMed DOI PMC
Cancino-Muñoz I, et al. Cryptic resistance mutations associated with misdiagnoses of multidrug-resistant tuberculosis. J. Infect. Dis. 2019;220:316–320. doi: 10.1093/infdis/jiz104. PubMed DOI PMC
Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI
Letunic I, Bork P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Zhou Z, et al. Grapetree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28:1395–1404. doi: 10.1101/gr.232397.117. PubMed DOI PMC
Walker TM, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet. Infect. Dis. 2013;13:137–146. doi: 10.1016/S1473-3099(12)70277-3. PubMed DOI PMC