Investigation of the genome sizes and ploidy within the genus Monocercomonoides
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000759
Centre for research of pathogenicity and virulence of parasites
771592
H2020 European Research Council
PubMed
35598284
DOI
10.1111/jeu.12925
Knihovny.cz E-resources
- Keywords
- evolution, genome size variation, haploid, karyotype, oxymonads,
- MeSH
- Genome Size MeSH
- In Situ Hybridization, Fluorescence MeSH
- Oxymonadida * genetics MeSH
- Ploidies MeSH
- Plants genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Monocercomonoides is a genus of anaerobic flagellates found mainly in the gut of insects and vertebrates. We explored the ploidy of six strains of Monocercomonoides using fluorescence in situ hybridization (FISH) with probes against the SufDSU gene known to be in a single copy in M. exilis. Our results show that all investigated strains are haploid, with a single clear signal displayed in most of the analyzed nuclei. Staining of the telomeric repeats TTAGGG using FISH revealed that all investigated strains, except for strains of M. merkovicensis, exhibit a similar number of telomeric signals to those of M. exilis. DNA content of the nuclei in seven strains was assessed using flow cytometry. With the knowledge of the ploidy, their haploid genome sizes were estimated to vary from 60 to 161 Mbp. The genome size variation observed in Monocercomonoides is much larger than the variation within other genera of metamonads such as Trichomonas, Tritrichomonas, or Giardia, but similar to the variations observed within genera of algae or plants.
See more in PubMed
Biémont, C. (2008) Genome size evolution: within-species variation in genome size. Heredity, 101, 297-298.
Carlton, J.M., Hirt, R.P., Silva, J.C., Delcher, A.L., Schatz, M., Zhao, Q. et al. (2007) Draft genome sequence of the sexually transmitted pathogen trichomonas vaginalis. Science, 315, 207-212.
Cavalier-Smith, T. (1980) R- and K-tactics in the evolution of protist developmental systems: cell and genome size, phenotype diversifying selection, and cell cycle patterns. Biosystems, 12, 43-59.
Cavalier-Smith, T. (1982) Skeletal DNA and the evolution of genome size. Annual Review of Biophysics and Bioengineering, 11, 273-302.
Cavalier-Smith, T. (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany, 95, 147-175.
Čertnerová, D. & Škaloud, P. (2020) Substantial intraspecific genome size variation in golden-brown algae and its phenotypic consequences. Annals of Botany, 126, 1077-1087.
Cleveland, L.R. (1950a) Hormone-induced sexual cycles of flagellates. V. Fertilization in Eucomonympha. Journal of Morphology, 87, 349-367.
Cleveland, L.R. (1950b) Hormone-induced sexual cycles of flagellates. III. Gametogenesis, fertilization, and one-division meiosis in Saccinobaculus. Journal of Morphology, 86, 215-227.
Cleveland, L.R. (1950c) Hormone-induced sexual cycles of flagellates II. Gametggenesis, fertilization, and one-division meiosis in Oxymonas. Journal of Morphology, 86, 185-213.
Cleveland, L.R. (1950d) Hormone-induced sexual cycles of flagellates. IV. Meiosis after syngamy and before nuclear fusion in Notila. Journal of Morphology, 87, 317-347.
Criscuolo, A. & Gribaldo, S. (2010) BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 10, 210.
Diamond, L.S. (1982) A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen-dwelling protozoa. The Journal of Parasitology, 68, 958-959.
Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W. et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419, 498-511.
Gerstein, A.C., Cleathero, L.A., Mandegar, M.A. & Otto, S.P. (2011) Haploids adapt faster than diploids across a range of environments. Journal of Evolutionary Biology, 24, 531-540.
Gregory, T.R. (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews of the Cambridge Philosophical Society, 76, 65-101.
Gregory, T.R. (2002) Genome size and developmental complexity. Genetica, 115, 131-146.
Gregory, T.R. (2005) Genome size evolution in animals. In: The evolution of the genome. Burlington, MA: Academic Press, pp. 3-87.
Hampl, V. (2017) Preaxostyla. In: Archibald, J.M., Simpson, A.G.B. & Slamovits, C.H. (Eds.) Handbook of the Protists. Cham: Springer International Publishing, pp. 1139-1174.
Hampl, V., Horner, D.S., Dyal, P., Kulda, J., Flegr, J., Foster, P.G. et al. (2005) Inference of the phylogenetic position of oxymonads based on nine genes: support for metamonada and excavata. Molecular Biology and Evolution, 22, 2508-2518.
Ijdo, J.W., Wells, R.A., Baldini, A. & Reeders, S.T. (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Research, 19, 4780.
Karnkowska, A., Treitli, S.C., Brzoň, O., Novák, L., Vacek, V., Soukal, P. et al. (2019) The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Molecular Biology and Evolution, 36, 2292-2312.
Karnkowska, A., Vacek, V., Zubáčová, Z., Treitli, S.C., Petrželková, R., Eme, L. et al. (2016) A eukaryote without a mitochondrial organelle. Current Biology, 26, 1274-1284.
Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.
Keeling, P.J. & Slamovits, C.H. (2005) Causes and effects of nuclear genome reduction. Current Opinion in Genetics & Development, 15, 601-608.
Mable, B.K. & Otto, S.P. (2001) Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae). Genetical Research, 77, 9-26.
Mao, Y., Zhang, N., Nie, Y., Zhang, X., Li, X. & Huang, Y. (2020) Genome size of 17 species from Caelifera (orthoptera) and determination of internal standards with very large genome size in Insecta. Frontiers in Physiology, 11, 567125.
Michael, T.P. (2014) Plant genome size variation: bloating and purging DNA. Briefings in Functional Genomics, 13, 308-317.
Morrison, H.G., McArthur, A.G., Gillin, F.D., Aley, S.B., Adam, R.D., Olsen, G.J. et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science, 317, 1921-1926.
Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274.
Nohynková, E., Tumová, P. & Kulda, J. (2006) Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryotic Cell, 5, 753-761.
Olefeld, J.L., Majda, S., Albach, D.C., Marks, S. & Boenigk, J. (2018) Genome size of chrysophytes varies with cell size and nutritional mode. Organisms, Diversity and Evolution, 18, 163-173.
Souza, R.T., Lima, F.M., Barros, R.M., Cortez, D.R., Santos, M.F., Cordero, E.M. et al. (2011) Genome size, karyotype polymorphism and chromosomal evolution in Trypanosoma cruzi. PLoS One, 6, e23042.
Suda, J., Krahulcová, A., Trávnícek, P., Rosenbaumová, R., Peckert, T. & Krahulec, F. (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Annals of Botany, 100, 1323-1335.
Treitli, S.C., Kolisko, M., Husník, F., Keeling, P.J. & Hampl, V. (2019) Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proceedings of the National Academy of Sciences of the United States of America, 116, 19675-19684.
Treitli, S.C., Kotyk, M., Yubuki, N., Jirounková, E., Vlasáková, J., Smejkalová, P. et al. (2018) Molecular and morphological diversity of the oxymonad genera Monocercomonoides and Blattamonas gen. nov. Protist, 169, 744-783.
Treitli, S.C., Peña-Diaz, P., Hałakuc, P., Karnkowska, A. & Hampl, V. (2021) High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis. Microbial Genomics, 7, 000745.
Vacek, V., Novák, L.V.F., Treitli, S.C., Táborský, P., Čepička, I., Kolísko, M. et al. (2018) Fe-S cluster assembly in oxymonads and related protists. Molecular Biology and Evolution, 35, 2712-2718.
Voleman, L., Najdrová, V., Ástvaldsson, Á., Tumová, P., Einarsson, E., Švindrych, Z. et al. (2017) Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biology, 15, 27.
Xu, F., Jerlström-Hultqvist, J., Einarsson, E., Ástvaldsson, Á., Svärd, S.G. & Andersson, J.O. (2014) The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genetics, 10, e1004053.
Xu, F., Jiménez-González, A., Einarsson, E., Ástvaldsson, Á., Peirasmaki, D., Eckmann, L. et al. (2020) The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microbial Genomics, 6, e000402.
Zahradníček, J., Chrtek, J., Ferreira, M.Z., Krahulcová, A. & Fehrer, J. (2018) Genome size variation in the genus Andryala (Hieraciinae, Asteraceae). Folia Geobotanica, 53, 429-447.
Zubáčová, Z., Cimbůrek, Z. & Tachezy, J. (2008) Comparative analysis of trichomonad genome sizes and karyotypes. Molecular and Biochemical Parasitology, 161, 49-54.
Zubáčová, Z., Krylov, V. & Tachezy, J. (2011) Fluorescence in situ hybridization (FISH) mapping of single copy genes on trichomonas vaginalis chromosomes. Molecular and Biochemical Parasitology, 176, 135-137.