Integrative Approach to Predict Severity in Nonketotic Hyperglycinemia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35616651
DOI
10.1002/ana.26423
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- glycin mozkomíšní mok genetika MeSH
- lidé MeSH
- mutace MeSH
- neketotická hyperglycinemie * diagnóza genetika patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glycin MeSH
OBJECTIVE: Glycine encephalopathy, also known as nonketotic hyperglycinemia (NKH), is an inherited neurometabolic disorder with variable clinical course and severity, ranging from infantile epileptic encephalopathy to psychiatric disorders. A precise phenotypic characterization and an evaluation of predictive approaches are needed. METHODS: Longitudinal clinical and biochemical data of 25 individuals with NKH from the patient registry of the International Working Group on Neurotransmitter Related Disorders were studied with in silico analyses, pathogenicity scores, and molecular modeling of GLDC and AMT variants. RESULTS: Symptom onset (p < 0.01) and diagnosis occur earlier in life in severe NKH (p < 0.01). Presenting symptoms affect the age at diagnosis. Psychiatric problems occur predominantly in attenuated NKH. Onset age ≥ 3 months (66% specificity, 100% sensitivity, area under the curve [AUC] = 0.87) and cerebrospinal fluid (CSF)/plasma glycine ratio ≤ 0.09 (57% specificity, 100% sensitivity, AUC = 0.88) are sensitive indicators for attenuated NKH, whereas CSF glycine concentration ≥ 116.5μmol/l (100% specificity, 93% sensitivity, AUC = 0.97) and CSF/plasma glycine ratio ≥ 0.15 (100% specificity, 64% sensitivity, AUC = 0.88) are specific for severe forms. A ratio threshold of 0.128 discriminates the overlapping range. We present 10 new GLDC variants. Two mild variants resulted in attenuated, whereas 2 severe variants or 1 mild and 1 severe variant led to severe phenotype. Based on clinical, biochemical, and genetic parameters, we propose a severity prediction model. INTERPRETATION: This study widens the phenotypic spectrum of attenuated NKH and expands the number of pathogenic variants. The multiparametric approach provides a promising tool to predict disease severity, helping to improve clinical management strategies. ANN NEUROL 2022;92:292-303.
1st Department of Pediatrics Aristotle University of Thessaloniki Thessaloniki Greece
Children's Hospital University Medical Center Hamburg Eppendorf Hamburg Germany
Department of Neurology Washington University School of Medicine St Louis MO USA
Department of Neurometabolism and Metabolic Disorders University Hospital of Nantes Nantes France
Department of Pediatric Neurology Virgen de la Arrixaca Hospital Murcia Spain
Dietmar Hopp Metabolic Center University Children's Hospital Heidelberg Heidelberg Germany
Metabolic Diseases Unit Miguel Servet University Hospital Zaragoza Spain
Zobrazit více v PubMed
Coughlin CR 2nd, Swanson MA, Kronquist K, et al. The genetic basis of classic nonketotic hyperglycinemia due to mutations in GLDC and AMT. Genet Med 2017;19:104-111.
Kure S, Kato K, Dinopoulos A, et al. Comprehensive mutation analysis of GLDC, AMT, and GCSH in nonketotic hyperglycinemia. Hum Mutat 2006;27:343-352.
Alfadhel M, Nashabat M, Qahtani HA, et al. Mutation in SLC6A9 encoding a glycine transporter causes a novel form of non-ketotic hyperglycinemia in humans. Hum Genet 2016;135:1263-1268.
Baker PR 2nd, Friederich MW, Swanson MA, et al. Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 2014;137:366-379.
Mills PB, Struys E, Jakobs C, et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 2006;12:307-309.
Van Hove JLK, Coughlin C II, Swanson M, et al. Nonketotic hyperglycinemia. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews® [Internet]. Seattle, WA: University of Washington, 1993-2021. November 14, 2002 (updated May 23, 2019).
Curtis DR, Hosli L, Johnston GA. Inhibition of spinal neurons by glycine. Nature 1967;215:1502-1503.
Hoover-Fong JE, Shah S, Van Hove JL, et al. Natural history of nonketotic hyperglycinemia in 65 patients. Neurology 2004;63:1847-1853.
Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987;325:529-531.
Tada K, Kure S. Non-ketotic hyperglycinaemia: molecular lesion, diagnosis and pathophysiology. J Inherit Metab Dis 1993;16:691-703.
Zhang XY, Ji F, Wang N, et al. Glycine induces bidirectional modifications in N-methyl-D-aspartate receptor-mediated synaptic responses in hippocampal CA1 neurons. J Biol Chem 2014;289:31200-31211.
Swanson MA, Coughlin CR Jr, Scharer GH, et al. Biochemical and molecular predictors for prognosis in nonketotic hyperglycinemia. Ann Neurol 2015;78:606-618.
Hennermann JB, Berger JM, Grieben U, et al. Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis 2012;35:253-261.
Hennermann JB. Clinical variability in glycine encephalopathy. Future Neurol 2006;1:621-630.
Boneh A, Allan S, Mendelson D, et al. Clinical, ethical and legal considerations in the treatment of newborns with non-ketotic hyperglycinaemia. Mol Genet Metab 2008;94:143-147.
Opladen T, Cortes-Saladelafont E, Mastrangelo M, et al. The international working group on neurotransmitter related disorders (iNTD): a worldwide research project focused on primary and secondary neurotransmitter disorders. Mol Genet Metab Rep 2016;9:61-66.
Spong CY. Defining "term" pregnancy: recommendations from the defining "term" pregnancy workgroup. JAMA 2013;309:2445-2446.
Leviton A, Holmes LB, Allred EN, Vargas J. Methodologic issues in epidemiologic studies of congenital microcephaly. Early Hum Dev 2002;69:91-105.
Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr 2016;10:67-83.
Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr 2013;13:59.
Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 2016;99:877-885.
Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310-315.
Okamura-Ikeda K, Hosaka H, Yoshimura M, et al. Crystal structure of human T-protein of glycine cleavage system at 2.0 A resolution and its implication for understanding non-ketotic hyperglycinemia. J Mol Biol 2005;351:1146-1159.
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1-2:19-25.
PyMOL. Volume 2021. Available at: pymol.org. Accessed August 20, 2021.
Parthiban V, Gromiha MM, Schomburg D. CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 2006;34:W239-W242.
Bromberg Y, Rost B. Correlating protein function and stability through the analysis of single amino acid substitutions. BMC Bioinformatics 2009;10:S8.
Nanao K, Okamura-Ikeda K, Motokawa Y, et al. Identification of the mutations in the T-protein gene causing typical and atypical nonketotic hyperglycinemia. Hum Genet 1994;93:655-658.
Pardal-Fernandez JM, Carrascosa-Romero MC, de Cabo-de la Vega C, et al. Atypical glycine encephalopathy in an extremely low birth weight infant: description of a new mutation and clinical and electroencephalographic analysis. Epileptic Disord 2009;11:48-53.
McGuire S, Chanchani S, Khurana DS. Paroxysmal dyskinesias. Semin Pediatr Neurol 2018;25:75-81.
Stence NV, Fenton LZ, Levek C, et al. Brain imaging in classic nonketotic hyperglycinemia: quantitative analysis and relation to phenotype. J Inherit Metab Dis 2019;42:438-450.
Van Hove JL, Vande Kerckhove K, Hennermann JB, et al. Benzoate treatment and the glycine index in nonketotic hyperglycinaemia. J Inherit Metab Dis 2005;28:651-663.
Riché R, Liao M, Pena IA, et al. Glycine decarboxylase deficiency-induced motor dysfunction in zebrafish is rescued by counterbalancing glycine synaptic level. JCI Insight 2018;3:e124642.
Chattipakorn SC, McMahon LL. Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J Neurophysiol 2002;87:1515-1525.
Vyklicky L Jr, Benveniste M, Mayer ML. Modulation of N-methyl-D-aspartic acid receptor desensitization by glycine in mouse cultured hippocampal neurones. J Physiol 1990;428:313-331.
Leipnitz G, Solano AF, Seminotti B, et al. Glycine provokes lipid oxidative damage and reduces the antioxidant defenses in brain cortex of young rats. Cell Mol Neurobiol 2009;29:253-261.
Moura AP, Grings M, dos Santos PB, et al. Glycine Intracerebroventricular administration disrupts mitochondrial energy homeostasis in cerebral cortex and striatum of young rats. Neurotox Res 2013;24:502-511.
Moura AP, Parmeggiani B, Gasparotto J, et al. Glycine administration alters MAPK signaling pathways and causes neuronal damage in rat brain: putative mechanisms involved in the neurological dysfunction in nonketotic hyperglycinemia. Mol Neurobiol 2018;55:741-750.
Moura AP, Parmeggiani B, Grings M, et al. Intracerebral glycine administration impairs energy and redox homeostasis and induces glial reactivity in cerebral cortex of newborn rats. Mol Neurobiol 2016;53:5864-5875.
Duman CH, Schlesinger L, Kodama M, et al. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 2007;61:661-670.
Dwivedi Y, Rizavi HS, Roberts RC, et al. Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 2001;77:916-928.
Yufune S, Satoh Y, Takamatsu I, et al. Transient blockade of ERK phosphorylation in the critical period causes autistic phenotypes as an adult in mice. Sci Rep 2015;5:10252.
Leung K-Y, De Castro SCP, Santos C, et al. Regulation of glycine metabolism by the glycine cleavage system and conjugation pathway in mouse models of non-ketotic hyperglycinemia. J Inherit Metab Dis 2020;43:1186-1198.
Farris J, Calhoun B, Alam MS, et al. Large scale analyses of genotype-phenotype relationships of glycine decarboxylase mutations and neurological disease severity. PLoS Comput Biol 2020;16:e1007871.
Bjoraker KJ, Swanson MA, Coughlin CR 2nd, et al. Neurodevelopmental outcome and treatment efficacy of benzoate and dextromethorphan in siblings with attenuated nonketotic hyperglycinemia. J Pediatr 2016;170:234-239.
Korman SH, Boneh A, Ichinohe A, et al. Persistent NKH with transient or absent symptoms and a homozygous GLDC mutation. Ann Neurol 2004;56:139-143.
Tan ES, Wiley V, Carpenter K, Wilcken B. Non-ketotic hyperglycinemia is usually not detectable by tandem mass spectrometry newborn screening. Mol Genet Metab 2007;90:446-448.
Brunel-Guitton C, Casey B, Coulter-Mackie M, et al. Late-onset nonketotic hyperglycinemia caused by a novel homozygous missense mutation in the GLDC gene. Mol Genet Metab 2011;103:193-196.
Conter C, Rolland MO, Cheillan D, et al. Genetic heterogeneity of the GLDC gene in 28 unrelated patients with glycine encephalopathy. J Inherit Metab Dis 2006;29:135-142.