• This record comes from PubMed

Bladder Microbiota Are Associated with Clinical Conditions That Extend beyond the Urinary Tract

. 2022 Apr 22 ; 10 (5) : . [epub] 20220422

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
TUH, 00064190 Ministry of Health

Links

PubMed 35630319
PubMed Central PMC9147640
DOI 10.3390/microorganisms10050874
PII: microorganisms10050874
Knihovny.cz E-resources

BACKGROUND: Since the discovery of the human urinary microbiota (UM), alterations in microbial community composition have been associated with various genitourinary conditions. The aim of this exploratory study was to examine possible associations of UM with clinical conditions beyond the urinary tract and to test some of the conclusions from previous studies on UM. METHODS: Catheterised urine samples from 87 men were collected prior to endoscopic urological interventions under anaesthesia. The composition of the bacterial community in urine was characterized using the hypervariable V4 region of the 16S rRNA gene. Samples from 58 patients yielded a sufficient amount of bacterial DNA for analysis. Alpha diversity measures (number of operational taxonomic units, ACE, iChao2, Shannon and Simpson indices) were compared with the Kruskal-Wallis test. Beta diversity (differences in microbial community composition) was assessed using non-metric dimensional scaling in combination with the Prevalence in Microbiome Analysis algorithm. RESULTS: Differences in bacterial richness and diversity were observed for the following variables: age, diabetes mellitus, dyslipidemia, smoking status and single-dose preoperative antibiotics. Differences in microbial community composition were observed in the presence of chronic kidney disease, lower urinary tract symptoms and antibiotic prophylaxis. CONCLUSIONS: UM appears to be associated with certain clinical conditions, including those unrelated to the urinary tract. Further investigation is needed before conclusions can be drawn for diagnostics and treatment.

See more in PubMed

Peterson J., Garges S., Giovanni M., McInnes P., Wang L., Schloss J.A., NIH HMP Working Group The NIH Human Microbiome Project. Genome Res. 2009;19:2317–2323. PubMed PMC

Loke Y.L., Chew M.T., Ngeow Y.F., Lim W.W.D., Peh S.C. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front. Cell. Infect. Microbiol. 2020;10:603086. doi: 10.3389/fcimb.2020.603086. PubMed DOI PMC

Belkaid Y., Hand T.W. Role of the Microbiota in Immunity and Inflammation. Cell. 2014;157:121–141. doi: 10.1016/j.cell.2014.03.011. PubMed DOI PMC

Łaniewski P., Ilhan Z.E., Herbst-Kralovetz M.M. The microbiome and gynaecological cancer development, prevention and therapy. Nat. Rev. Urol. 2020;17:232–250. doi: 10.1038/s41585-020-0286-z. PubMed DOI PMC

Siddiqui H., Nederbragt A.J., Lagesen K., Jeansson S.L., Jakobsen K.S. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 2011;11:244. doi: 10.1186/1471-2180-11-244. PubMed DOI PMC

Hilt E.E., McKinley K., Pearce M.M., Rosenfeld A.B., Zilliox M.J., Mueller E.R., Brubaker L., Gai X., Wolfe A.J., Schreckenberger P.C. Urine Is Not Sterile: Use of Enhanced Urine Culture Techniques to Detect Resident Bacterial Flora in the Adult Female Bladder. J. Clin. Microbiol. 2014;52:871–876. doi: 10.1128/JCM.02876-13. PubMed DOI PMC

Fouts D.E., Pieper R., Szpakowski S., Pohl H., Knoblach S., Suh M.-J., Huang S.-T., Ljungberg I., Sprague B.M., Lucas S.K., et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl. Med. 2012;10:174. doi: 10.1186/1479-5876-10-174. PubMed DOI PMC

Bajic P., Van Kuiken M.E., Burge B.K., Kirshenbaum E.J., Joyce C., Wolfe A.J., Branch J.D., Bresler L., Farooq A.V. Male Bladder Microbiome Relates to Lower Urinary Tract Symptoms. Eur. Urol. Focus. 2020;15:376–382. doi: 10.1016/j.euf.2018.08.001. PubMed DOI

Burnett L.A., Hochstedler B.R., Weldon K., Wolfe A.J., Brubaker L. Recurrent urinary tract infection: Association of clinical profiles with urobiome composition in women. Neurourol. Urodyn. 2021;40:1479–1489. doi: 10.1002/nau.24707. PubMed DOI PMC

Siddiqui H., Lagesen K., Nederbragt A.J., Jeansson S.L., Jakobsen K.S. Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol. 2012;12:205. doi: 10.1186/1471-2180-12-205. PubMed DOI PMC

Shoskes D.A., Altemus J., Polackwich A.S., Tucky B., Wang H., Eng C. The Urinary Microbiome Differs Significantly Between Patients with Chronic Prostatitis/Chronic Pelvic Pain Syndrome and Controls as Well as Between Patients with Different Clinical Phenotypes. Urology. 2016;92:26–32. doi: 10.1016/j.urology.2016.02.043. PubMed DOI

Wu P., Zhang G., Zhao J., Chen J., Chen Y., Huang W., Zeng J. Profiling the Urinary Microbiota in Male Patients with Bladder Cancer in China. Front. Cell. Infect. Microbiol. 2018;8:167. doi: 10.3389/fcimb.2018.00167. PubMed DOI PMC

Scher J.U., Sczesnak A., Longman R.S., Segata N., Ubeda C., Bielski C., Littman D.R. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202. doi: 10.7554/eLife.01202. PubMed DOI PMC

Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proin fl ammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA. 2011;108((Suppl. 1)):4615–4622. doi: 10.1073/pnas.1000082107. PubMed DOI PMC

Dahlin M., Prast-Nielsen S. EBioMedicine The gut microbiome and epilepsy. EBioMedicine. 2019;44:741–746. doi: 10.1016/j.ebiom.2019.05.024. PubMed DOI PMC

Barandouzi Z.A., Starkweather A.R., Henderson W., Gyamfi A., Cong X.S. Altered Composition of Gut Microbiota in Depression: A Systematic Review. Front. Psychiatry. 2020;11:541. doi: 10.3389/fpsyt.2020.00541. PubMed DOI PMC

Wu P., Chen Y., Zhao J., Zhang G., Chen J., Wang J., Zhang H. Urinary Microbiome and Psychological Factors in Women with Overactive Bladder. Front. Cell. Infect. Microbiol. 2017;7:488. doi: 10.3389/fcimb.2017.00488. PubMed DOI PMC

Lewis D.A., Brown R., Williams J., White P., Jacobson S.K., Marchesi J.R., Drake M.J. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell. Infect. Microbiol. 2013;3:41. doi: 10.3389/fcimb.2013.00041. PubMed DOI PMC

Kramer H., Kuffel G., Thomas-White K., Wolfe A.J., Vellanki K., Leehey D.J., Bansal V.K., Brubaker L., Flanigan R., Koval J., et al. Diversity of the midstream urine microbiome in adults with chronic kidney disease. Int. Urol. Nephrol. 2018;50:1123–1130. doi: 10.1007/s11255-018-1860-7. PubMed DOI PMC

Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N., Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108((Suppl. 1)):4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC

Větrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platfomr for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Aronesty E. Comparison of Sequencing Utility Programs. Open Bioinform. J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI

Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Větrovský T., Baldrian P. Analysis of soil fungal communities by amplicon pyrosequencing: Current approaches to data analysis and the introduction of the pipeline SEED. Biol. Fertil. Soils. 2013;49:1027–1037. doi: 10.1007/s00374-013-0801-y. DOI

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Glöckner F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Wright E.S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–359. doi: 10.32614/RJ-2016-025. DOI

Kim B.-R., Shin J., Guevarra R.B., Lee J.H., Kim D.W., Seol K.-H., Lee J.-H., Kim H.B., Isaacson R.E. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017;27:2089–2093. doi: 10.4014/jmb.1709.09027. PubMed DOI

Willis A. Rarefaction, Alpha Diversity, and Statistics. Front. Microbiol. 2019;10:2407. doi: 10.3389/fmicb.2019.02407. PubMed DOI PMC

Su X. Elucidating the Beta-Diversity of the Microbiome: From Global Alignment to Local Alignment. mSystems. 2021;6 doi: 10.1128/mSystems.00363-21. PubMed DOI PMC

Bylemans J., Gleeson D.M., Lintermans M., Hardy C.M., Beitzel M., Gilligan D.M., Furlan E.M. Package ‘vegan. Community Ecol. Packag. 2018;5:2017.

McMurdie P., Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

R Core Team R: A Language and Environment for Statistical Computing. 2021. [(accessed on 22 September 2021)]. Available online: http://www.r-project.org/

Chiu C.-H., Wang Y.-T., Walther B.A., Chao A. An improved nonparametric lower bound of species richness via a modified good-turing frequency formula. Biometrics. 2014;70:671–682. doi: 10.1111/biom.12200. PubMed DOI

O’Hara R.B., O’Hara R. Species richness estimators: How many species can dance on the head of a pin? J. Anim. Ecol. 2005;74:375–386. doi: 10.1111/j.1365-2656.2005.00940.x. DOI

Roesch L.F.W., Dobbler P.T., Pylro V.S., Kolaczkowski B., Drew J.C., Triplett E.W. Pime: A package for discovery of novel differences among microbial communities. Mol. Ecol. Resour. 2020;20:415–428. doi: 10.1111/1755-0998.13116. PubMed DOI

Whiteside S.A., Razvi H., Dave S., Reid G., Burton J. The microbiome of the urinary tract—A role beyond infection. Nat. Rev. Urol. 2015;12:81–90. doi: 10.1038/nrurol.2014.361. PubMed DOI

Odamaki T., Kato K., Sugahara H., Hashikura N., Takahashi S., Xiao J.-Z., Abe F., Osawa R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016;16:90. doi: 10.1186/s12866-016-0708-5. PubMed DOI PMC

Thomas-White K.J., Kliethermes S., Rickey L., Lukacz E.S., Richter H.E., Moalli P., Zimmern P., Norton P., Kusek J.W., Wolfe A.J., et al. Evaluation of the urinary microbiota of women with uncomplicated stress urinary incontinence. Am. J. Obstet. Gynecol. 2017;216:55.e1–55.e16. doi: 10.1016/j.ajog.2016.07.049. PubMed DOI PMC

Harman S.M., Metter E.J., Tobin J.D., Pearson J., Blackman M.R. Longitudinal Effects of Aging on Serum Total and Free Testosterone Levels in Healthy Men. J. Clin. Endocrinol. Metab. 2001;86:724–731. doi: 10.1210/jcem.86.2.7219. PubMed DOI

Grishina I., Fenton A., Sankaran-Walters S. Gender differences, aging and hormonal status in mucosal injury and repair. Aging Dis. 2014;5:160–169. doi: 10.14336/AD.2014.0500160. PubMed DOI PMC

Ragonnaud E., Biragyn A. Gut microbiota as the key controllers of ‘healthy’ aging of elderly people. Immun. Ageing. 2021;18:2. doi: 10.1186/s12979-020-00213-w. PubMed DOI PMC

Yang T., Richards E.M., Pepine C.J., Raizada M.K. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018;14:442–456. doi: 10.1038/s41581-018-0018-2. PubMed DOI PMC

Yang T., Santisteban M.M., Rodriguez V., Li E., Ahmari N., Carvajal J.M., Zadeh M., Gong M., Qi Y., Zubcevic J., et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension. 2015;65:1331–1340. doi: 10.1161/HYPERTENSIONAHA.115.05315. PubMed DOI PMC

Li J., Zhao F., Wang Y., Chen J., Tao J., Tian G., Wu S., Liu W., Cui Q., Geng B., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14. doi: 10.1186/s40168-016-0222-x. PubMed DOI PMC

Larsen N., Vogensen F.K., Berg F.W.J.V.D., Nielsen D.S., Andreasen A.S., Pedersen B.K., Abu Al-Soud W., Sørensen S.J., Hansen L.H., Jakobsen M. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE. 2010;5:e9085. doi: 10.1371/journal.pone.0009085. PubMed DOI PMC

Liu F., Ling Z., Xiao Y., Lv L., Yang Q., Wang B., Lu H., Zheng L., Jiang P., Wang W., et al. Dysbiosis of urinary microbiota is positively correlated with Type 2 diabetes mellitus. Oncotarget. 2017;8:3798–3810. doi: 10.18632/oncotarget.14028. PubMed DOI PMC

Hu Z.B., Lu J., Chen P.P., Lu C.C., Zhang J.X., Li X.Q., Yuan B.Y., Huang S.J., Ruan X.Z., Liu B.C., et al. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis. Theranostics. 2020;10:2803–2816. doi: 10.7150/thno.40571. PubMed DOI PMC

Ma W., Zhang W., Shen L., Liu J., Yang F., Maskey N., Wang H., Zhang J., Yan Y., Yao X. Can Smoking Cause Differences in Urine Microbiome in Male Patients with Bladder Cancer? A Retrospective Study. Front. Oncol. 2021;11:677605. doi: 10.3389/fonc.2021.677605. PubMed DOI PMC

Moynihan M.J., Sullivan T., Provenzano K., Rieger-Christ K. Urinary Microbiome Evaluation in Patients Presenting with Hematuria with a Focus on Exposure to Tobacco Smoke. Res. Rep. Urol. 2019;11:359–367. doi: 10.2147/RRU.S233386. PubMed DOI PMC

Reid G., Denstedt J.D., Kang Y.S., Lam D., Nause C. Microbial Adhesion and Biofilm Formation on Ureteral Stents in Vitro and in Vivo. J. Urol. 1992;148:1592–1594. doi: 10.1016/S0022-5347(17)36976-8. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...