Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/17_048/0007421
NANOBIO
Research area HEAS
Cooperatio Program
PubMed
35630937
PubMed Central
PMC9144754
DOI
10.3390/nano12101716
PII: nano12101716
Knihovny.cz E-resources
- Keywords
- MWCNT, carbon nanoparticles, graphene, nanotoxicity, reproduction,
- Publication type
- Journal Article MeSH
- Review MeSH
The presented review aims to summarize the knowledge regarding the reproductive and developmental toxicity of different types of carbon nanoparticles, such as graphene, graphene oxide, multi- and single-walled nanotubes, fullerenes, and nanodiamonds. Carbon nanoparticles have unique chemical and physical properties that make them an excellent material that can be applied in many fields of human activity, including industry, food processing, the pharmaceutical industry, or medicine. Although it has a high degree of biocompatibility, possible toxic effects on different tissue types must also be taken into account. Carbon nanoparticles are known to be toxic to the respiratory, cardiovascular, nervous, digestive system, etc., and, according to current studies, they also have a negative effect on reproduction and offspring development.
See more in PubMed
Choudhary N., Hwang S., Choi W. Handbook of Nanomaterials Properties. Springer; Berlin/Heidelberg, Germany: 2014. Carbon Nanomaterials: A Review; pp. 709–769. DOI
Zielińska A., Costa B., Ferreira M.V., Miguéis D., Louros J.M.S., Durazzo A., Lucarini M., Eder P., Chaud M.V., Morsink M., et al. Nanotoxicology and nanosafety: Safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health. 2020;17:4657. doi: 10.3390/ijerph17134657. PubMed DOI PMC
Bilal M., Iqbal H.M.N. New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics. 2020;7:24. doi: 10.3390/cosmetics7020024. DOI
Ahmed H.M., Roy A., Wahab M., Ahmed M., Othman-Qadir G., Elesawy B.H., Khandaker M.U., Islam M.N., Emran T. Bin Applications of Nanomaterials in Agrifood and Pharmaceutical Industry. J. Nanomater. 2021;2021:1472096. doi: 10.1155/2021/1472096. DOI
Park S.-J., Deshmukh M.A., Kang B.-C., Jeon J.-Y., Chen C., Ha T.-J. Review—A Review of Advanced Electronic Applications Based on Carbon Nanomaterials. ECS J. Solid State Sci. Technol. 2020;9:071002. doi: 10.1149/2162-8777/abb035. DOI
Skákalová V., Kaiser A.B. Graphene: Properties, Preparation, Characterisation and Applications. Woodhead Publishing; Duxford, UK: 2021.
Brisebois P.P., Siaj M. Harvesting graphene oxide-years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C. 2020;8:1517–1547. doi: 10.1039/C9TC03251G. DOI
Lawal A.T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019;141:111384. doi: 10.1016/j.bios.2019.111384. PubMed DOI
Vakhrushev A.V., Kodolov V.I. In: Carbon Nanotubes and Nanoparticles: Current and Potential Applications. Vladimir I., Haghi A.K., Ameta S.C., editors. Apply Academic Press Inc.; Oakville, ON, USA: 2019. [(accessed on 11 May 2022)]. Available online: https://www.routledge.com/Carbon-Nanotubes-and-Nanoparticles-Current-and-Potential-Applications/Vakhrushev-Kodolov-Haghi-Ameta/p/book/
Rozhina E., Batasheva S., Miftakhova R., Yan X., Vikulina A., Volodkin D., Fakhrullin R. Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide. Appl. Clay Sci. 2021;205:106041. doi: 10.1016/j.clay.2021.106041. DOI
Semenov K.N., Charykov N.A., Keskinov V.A., Piartman A.K., Blokhin A.A., Kopyrin A.A. Solubility of light fullerenes in organic solvents. J. Chem. Eng. Data. 2010;55:13–36. doi: 10.1021/je900296s. DOI
Shanbogh P.P., Sundaram N.G. Fullerenes revisited: Materials chemistry and applications of C60 molecules. Resonance. 2015;20:123–135. doi: 10.1007/s12045-015-0160-0. DOI
Namadr F., Bahrami F., Bahari Z., Ghanbari B., Shahyad S., Mohammadi M. Fullerene C60 Nanoparticles Decrease Liver Oxidative Stress through Increment of Liver Antioxidant Capacity in Streptozotocin-Induced Diabetes in Rats. React. Oxyg. Species. 2020;26:70–80. doi: 10.20455/ros.2020.809. DOI
Grebowski J., Konopko A., Krokosz A., DiLabio G.A., Litwinienko G. Antioxidant activity of highly hydroxylated fullerene C60 and its interactions with the analogue of α-tocopherol. Free Radic. Biol. Med. 2020;160:734–744. doi: 10.1016/j.freeradbiomed.2020.08.017. PubMed DOI
Dolmatov V.Y., Ozerin A.N., Kulakova I.I., Bochechka O.O., Lapchuk N.M., Myllymäki V., Vehanen A. Detonation nanodiamonds: New aspects in the theory and practice of synthesis, properties and applications. Russ. Chem. Rev. 2020;89:1428–1462. doi: 10.1070/RCR4924. DOI
Qin J.X., Yang X.G., Lv C.F., Li Y.Z., Liu K.K., Zang J.H., Yang X., Dong L., Shan C.X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021;210:110091. doi: 10.1016/j.matdes.2021.110091. DOI
Bacon M., Bradley S.J., Nann T. Graphene quantum dots. Part. Part. Syst. Charact. 2014;31:415–428. doi: 10.1002/ppsc.201300252. DOI
Chung S., Revia R.A., Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021;33:1904362. doi: 10.1002/adma.201904362. PubMed DOI PMC
Raja I.S., Song S.-J., Kang M.S., Lee Y.B., Kim B., Hong S.W., Jeong S.J., Lee J.-C., Han D.-W. Toxicity of zero-and one-dimensional carbon nanomaterials. Nanomaterials. 2019;9:1214. doi: 10.3390/nano9091214. PubMed DOI PMC
Yuan X., Zhang X., Sun L., Wei Y., Wei X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 2019;16:18. doi: 10.1186/s12989-019-0299-z. PubMed DOI PMC
Meyer J.D., McDiarmid M., Diaz J.H., Baker B.A., Hieb M. Reproductive and Developmental Hazard Management. Reprod. Dev. Hazard Manag. 2016;58:e94–e102. doi: 10.1097/JOM.0000000000000669. PubMed DOI
Alliance . Hazard Communication Information Sheet Reflecting the US OSHA Implementation of the Globally Harmonized System (GHS) of Classification and Labelling of Chemicals. SCHC-OSHA Alliance; Washington, DC, USA: 2017. [(accessed on 4 February 2022)]. pp. 1–4. Available online: https://www.osha.gov/dsg/hazcom/index.html.
Tyl R.W. Encyclopedia of Toxicology. 3rd ed. Academic Press; Cambridge, MA, USA: 2014. Toxicity Testing, Reproductive; pp. 682–692. DOI
Buerki-Thurnherr T., Schaepper K., Aengenheister L., Wick P. Developmental Toxicity of Nanomaterials: Need for a Better Understanding of Indirect Effects. Chem. Res. Toxicol. 2018;31:641–642. doi: 10.1021/acs.chemrestox.8b00177. PubMed DOI
Dugershaw B.B., Aengenheister L., Hansen S.S.K., Hougaard K.S., Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part. Fibre Toxicol. 2020;17:31. doi: 10.1186/s12989-020-00359-x. PubMed DOI PMC
Qu Y., Yang B., Jiang X., Ma X., Lu C., Chen C. Multiwalled carbon nanotubes inhibit steroidogenesis by disrupting steroidogenic acute regulatory protein expression and redox status. J. Nanosci. Nanotechnol. 2017;17:914–925. doi: 10.1166/jnn.2017.12647. PubMed DOI
Gurunathan S., Kang M.H., Jeyaraj M., Kim J.H. Differential cytotoxicity of different sizes of graphene oxide nanoparticles in leydig (TM3) and sertoli (TM4) cells. Nanomaterials. 2019;9:139. doi: 10.3390/nano9020139. PubMed DOI PMC
Ji X., Xu B., Yao M., Mao Z., Zhang Y., Xu G., Tang Q., Wang X., Xia Y. Graphene oxide quantum dots disrupt autophagic flux by inhibiting lysosome activity in GC-2 and TM4 cell lines. Toxicology. 2016;374:10–17. doi: 10.1016/j.tox.2016.11.009. PubMed DOI
Xu C., Liu Q., Liu H., Zhang C., Shao W., Gu A. Toxicological assessment of multi-walled carbon nanotubes in vitro: Potential mitochondria effects on male reproductive cells. Oncotarget. 2016;7:39270–39278. doi: 10.18632/oncotarget.9689. PubMed DOI PMC
Sanand S., Kumar S., Bara N., Kaul G. Comparative evaluation of half-maximum inhibitory concentration and cytotoxicity of silver nanoparticles and multiwalled carbon nanotubes using buffalo bull spermatozoa as a cell model. Toxicol. Ind. Health. 2018;34:640–652. doi: 10.1177/0748233718783389. PubMed DOI
Bernabò N., Fontana A., Sanchez M.R., Valbonetti L., Capacchietti G., Zappacosta R., Greco L., Marchisio M., Lanuti P., Ercolino E., et al. Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model. Carbon. 2018;129:428–437. doi: 10.1016/j.carbon.2017.12.042. DOI
Li X., Wang L., Liu H., Fu J., Zhen L., Li Y., Zhang Y., Zhang Y. C60 Fullerenes Suppress Reactive Oxygen Species Toxicity Damage in Boar Sperm. Nano Micro Lett. 2019;11:104. doi: 10.1007/s40820-019-0334-5. PubMed DOI PMC
Asghar W., Shafiee H., Velasco V., Sah V.R., Guo S., El Assal R., Inci F., Rajagopalan A., Jahangir M., Anchan R.M., et al. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci. Rep. 2016;6:30270. doi: 10.1038/srep30270. PubMed DOI PMC
Aminzadeh Z., Jamalan M., Chupani L., Lenjannezhadian H., Ghaffari M.A., Aberomand M., Zeinali M. In vitro reprotoxicity of carboxyl-functionalised single- and multi-walled carbon nanotubes on human spermatozoa. Andrologia. 2017;49:e12741. doi: 10.1111/and.12741. PubMed DOI
Lin Y.H., Zhuang S.X., Wang Y.L., Lin S., Hong Z.W., Liu Y., Xu L., Li F.P., Xu B.H., Chen M.H., et al. The effects of graphene quantum dots on the maturation of mouse oocytes and development of offspring. J. Cell. Physiol. 2019;234:13820–13831. doi: 10.1002/jcp.28062. PubMed DOI
Lei R., Bai X., Chang Y., Li J., Qin Y., Chen K., Gu W., Xia S., Zhang J., Wang Z., et al. Effects of fullerenol nanoparticles on rat oocyte meiosis resumption. Int. J. Mol. Sci. 2018;19:699. doi: 10.3390/ijms19030699. PubMed DOI PMC
Mrdanović J., Šolajić S., Bogdanović V., Stankov K., Bogdanović G., Djordjevic A. Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat. Res.Genet. Toxicol. Environ. Mutagen. 2009;680:25–30. doi: 10.1016/j.mrgentox.2009.08.008. PubMed DOI
Yadav K., Ali S.A., Mohanty A.K., Muthusamy E., Subaharan K., Kaul G. MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. J. Nanobiotechnol. 2021;19:45. doi: 10.1186/s12951-021-00779-7. PubMed DOI PMC
Batiuskaite D., Grinceviciute N., Snitka V. Impact of graphene oxide on viability of Chinese hamster ovary and mouse hepatoma MH-22A cells. Toxicol. Vitr. 2015;29:1195–1200. doi: 10.1016/j.tiv.2015.05.004. PubMed DOI
Kim Y., Jeong J., Yang J., Joo S.W., Hong J., Choi J. Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans. Toxicology. 2018;410:83–95. doi: 10.1016/j.tox.2018.09.006. PubMed DOI
Chatterjee N., Yang J.S., Park K., Oh S.M., Park J., Choi J. Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems. Environ. Health Toxicol. 2015;30:e2015007. doi: 10.5620/eht.e2015007. PubMed DOI PMC
Zhao Y., Wu Q., Wang D. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials. 2016;79:15–24. doi: 10.1016/j.biomaterials.2015.11.052. PubMed DOI
Kong C., Aziz A.I., Kakarla A.B., Kong I., Kong W. Toxicity evaluation of graphene and poly (Lactic-acid) using a nematode model. Solid State Phenom. 2019;290:101–106. doi: 10.4028/www.scientific.net/SSP.290.101. DOI
Karpeta-Kaczmarek J., Kędziorski A., Augustyniak-Jabłokow M.A., Dziewięcka M., Augustyniak M. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environ. Res. 2018;166:602–609. doi: 10.1016/j.envres.2018.05.027. PubMed DOI
Martins C.H.Z., de Sousa M., Fonseca L.C., Martinez D.S.T., Alves O.L. Biological effects of oxidized carbon nanomaterials (1D versus 2D) on Spodoptera frugiperda: Material dimensionality influences on the insect development, performance and nutritional physiology. Chemosphere. 2019;215:766–774. doi: 10.1016/j.chemosphere.2018.09.178. PubMed DOI
Philbrook N.A., Walker V.K., Afrooz A.R.M.N., Saleh N.B., Winn L.M. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod. Toxicol. 2011;32:442–448. doi: 10.1016/j.reprotox.2011.09.002. PubMed DOI
Priyadarsini S., Sahoo S.K., Sahu S., Mukherjee S., Hota G., Mishra M. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ. Sci. Pollut. Res. 2019;26:19560–19574. doi: 10.1007/s11356-019-05357-x. PubMed DOI
Fang Y., Lu Z., Li M., Qu J., Ye W., Li F., Wei J., Sun H., Li B. An assessment of the reproductive toxicity of GONPs exposure to Bombyx mori. Ecotoxicol. Environ. Saf. 2021;210:111888. doi: 10.1016/j.ecoenv.2020.111888. PubMed DOI
Mesarič T., Sepčić K., Drobne D., Makovec D., Faimali M., Morgana S., Falugi C., Gambardella C. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus) Aquat. Toxicol. 2015;163:158–166. doi: 10.1016/j.aquatox.2015.04.012. PubMed DOI
Sumi N., Chitra K.C. Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792) Aquat. Toxicol. 2019;210:196–206. doi: 10.1016/j.aquatox.2019.03.003. PubMed DOI
Carrillo Y., Torres-Duarte C., Oviedo M.J., Hirata G.A., Huerta-Saquero A., Vazquez-Duhalt R. Lipid peroxidation and protein oxidation induced by different nanoparticles in zebrafish organs. Appl. Ecol. Environ. Res. 2015;13:709–723. doi: 10.15666/aeer/1303_709723. DOI
Zhao J., Luo W., Xu Y., Ling J., Deng L. Potential reproductive toxicity of multi-walled carbon nanotubes and their chronic exposure effects on the growth and development of Xenopus tropicalis. Sci. Total Environ. 2021;766:142652. doi: 10.1016/j.scitotenv.2020.142652. PubMed DOI
Dasmahapatra A.K., Powe D.K., Dasari T.P.S., Tchounwou P.B. Assessment of reproductive and developmental effects of graphene oxide on Japanese medaka (Oryzias latipes) Chemosphere. 2020;259:127221. doi: 10.1016/j.chemosphere.2020.127221. PubMed DOI PMC
Zhang D., Zhang Z., Wu Y., Fu K., Chen Y., Li W., Chu M. Systematic evaluation of graphene quantum dot toxicity to male mouse sexual behaviors, reproductive and offspring health. Biomaterials. 2019;194:215–232. doi: 10.1016/j.biomaterials.2018.12.001. PubMed DOI
Skovmand A., Jacobsen Lauvås A., Christensen P., Vogel U., Sørig Hougaard K., Goericke-Pesch S. Pulmonary exposure to carbonaceous nanomaterials and sperm quality. Part. Fibre Toxicol. 2018;15:10. doi: 10.1186/s12989-018-0242-8. PubMed DOI PMC
Liang S., Xu S., Zhang D., He J., Chu M. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology. 2015;9:92–105. doi: 10.3109/17435390.2014.893380. PubMed DOI
Farshad O., Heidari R., Zamiri M.J., Retana-Márquez S., Khalili M., Ebrahimi M., Jamshidzadeh A., Ommati M.M. Spermatotoxic Effects of Single-Walled and Multi-Walled Carbon Nanotubes on Male Mice. Front. Vet. Sci. 2020;7:591558. doi: 10.3389/fvets.2020.591558. PubMed DOI PMC
Akhavan O., Ghaderi E., Hashemi E., Akbari E. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals. Carbon. 2015;95:309–317. doi: 10.1016/j.carbon.2015.08.017. DOI
Hougaard K.S., Jackson P., Kyjovska Z.O., Birkedal R.K., De Temmerman P.J., Brunelli A., Verleysen E., Madsen A.M., Saber A.T., Pojana G., et al. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reprod. Toxicol. 2013;41:86–97. doi: 10.1016/j.reprotox.2013.05.006. PubMed DOI
Johansson H.K.L., Hansen J.S., Elfving B., Lund S.P., Kyjovska Z.O., Loft S., Barfod K.K., Jackson P., Vogel U., Hougaard K.S. Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice. Part. Fibre Toxicol. 2017;14:17. doi: 10.1186/s12989-017-0197-1. PubMed DOI PMC
Nirmal N.K., Awasthi K.K., John P.J. Effects of Nano-Graphene Oxide on Testis, Epididymis and Fertility of Wistar Rats. Basic Clin. Pharmacol. Toxicol. 2017;121:202–210. doi: 10.1111/bcpt.12782. PubMed DOI
Nirmal N.K., Awasthi K.K., John P.J. Effects of hydroxyl-functionalized multiwalled carbon nanotubes on sperm health and testes of Wistar rats. Toxicol. Ind. Health. 2017;33:519–529. doi: 10.1177/0748233716685661. PubMed DOI
Farombi E.O., Adedara I.A., Forcados G.E., Anao O.O., Agbowo A., Patlolla A.K. Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized multiwalled carbon nanotubes. Environ. Toxicol. 2016;31:543–551. doi: 10.1002/tox.22067. PubMed DOI
National Toxicology Program . NTP Technical Report on the Toxicity Studies of Fullerene C60 (1 μm and 50 nm) (CASRN 99685-96-8) Administered by Nose-Only Inhalation to Wistar Han [Crl:WI (Han)] Rats and B6C3F1/N Mice. National Toxicology Program; Research Triangle Park, NC, USA: 2020. PubMed PMC
D’Amora M., Camisasca A., Lettieri S., Giordani S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials. 2017;7:414. doi: 10.3390/nano7120414. PubMed DOI PMC
Yang X., Yang Q., Zheng G., Han S., Zhao F., Hu Q., Fu Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environ. Toxicol. 2019;34:415–423. doi: 10.1002/tox.22695. PubMed DOI
Bangeppagari M., Park S.H., Kundapur R.R., Lee S.J. Graphene oxide induces cardiovascular defects in developing zebrafish (Danio rerio) embryo model: In-Vivo toxicity assessment. Sci. Total Environ. 2019;673:810–820. doi: 10.1016/j.scitotenv.2019.04.082. PubMed DOI
Jaworski S., Strojny-Cieślak B., Wierzbicki M., Kutwin M., Sawosz E., Kamaszewski M., Matuszewski A., Sosnowska M., Szczepaniak J., Daniluk K., et al. Comparison of the toxicity of pristine graphene and graphene oxide, using four biological models. Materials. 2021;14:4250. doi: 10.3390/ma14154250. PubMed DOI PMC
Chen Y., Hu X., Sun J., Zhou Q. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology. 2016;10:42–52. doi: 10.3109/17435390.2015.1005032. PubMed DOI
Cao Z., Su M., Wang H., Zhou L., Meng Z., Xiong G., Liao X., Lu H. Carboxyl graphene oxide nanoparticles induce neurodevelopmental defects and locomotor disorders in zebrafish larvae. Chemosphere. 2021;270:128611. doi: 10.1016/j.chemosphere.2020.128611. PubMed DOI
Falinski M.M., Garland M.A., Hashmi S.M., Tanguay R.L., Zimmerman J.B. Establishing structure-property-hazard relationships for multi-walled carbon nanotubes: The role of aggregation, surface charge, and oxidative stress on embryonic zebrafish mortality. Carbon. 2019;155:587–600. doi: 10.1016/j.carbon.2019.08.063. PubMed DOI PMC
Martinez C.S., Igartúa D.E., Czarnowski I., Feas D.A., Del S., Alonso S., Prieto M.J. Biological response and developmental toxicity of zebrafish embryo and larvae exposed to multi-walled carbon nanotubes with different dimension. Heliyon. 2019;5:e02308. doi: 10.1016/j.heliyon.2019.e02308. PubMed DOI PMC
Zhu X., Zhu L., Li Y., Duan Z., Chen W., Alvarez P.J.J. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 2007;26:976–979. doi: 10.1897/06-583.1. PubMed DOI
Martínez-Paz P., Negri V., Esteban-Arranz A., Martínez-Guitarte J.L., Ballesteros P., Morales M. Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquat. Toxicol. 2019;209:42–48. doi: 10.1016/j.aquatox.2019.01.017. PubMed DOI
Zhu B., Zhu S., Li J., Hui X., Wang G.X. The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in: Artemia salina. Toxicol. Res. 2018;7:897–906. doi: 10.1039/C8TX00084K. PubMed DOI PMC
Liu B., Campo E.M., Bossing T. Drosophila embryos as model to assess cellular and developmental toxicity of Multi-Walled Carbon Nanotubes (MWCNT) in living organisms. PLoS ONE. 2014;9:e88681. doi: 10.1371/journal.pone.0088681. PubMed DOI PMC
Dziewięcka M., Flasz B., Rost-Roszkowska M., Kędziorski A., Kochanowicz A., Augustyniak M. Graphene oxide as a new anthropogenic stress factor—Multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. J. Hazard. Mater. 2020;396:122775. doi: 10.1016/j.jhazmat.2020.122775. PubMed DOI
Sawosz E., Jaworski S., Kutwin M., Hotowy A., Wierzbicki M., Grodzik M., Kurantowicz N., Strojny B., Lipińska L., Chwalibog A. Toxicity of pristine graphene in experiments in a chicken embryo model. Int. J. Nanomed. 2014;9:3913–3922. doi: 10.2147/IJN.S65633. PubMed DOI PMC
Szmidt M., Sawosz E., Urbańska K., Jaworski S., Kutwin M., Hotowy A., Wierzbicki M., Grodzik M., Lipińska L., Chwalibog A. Toxicity of different forms of graphene in a chicken embryo model. Environ. Sci. Pollut. Res. 2016;23:19940–19948. doi: 10.1007/s11356-016-7178-z. PubMed DOI
Kurantowicz N., Sawosz E., Halik G., Strojny B., Hotowy A., Grodzik M., Piast R., Pasanphan W., Chwalibog A. Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model. Int. J. Nanomed. 2017;12:2887–2898. doi: 10.2147/IJN.S131960. PubMed DOI PMC
Jaworski S., Hinzmann M., Sawosz E., Grodzik M., Kutwin M., Wierzbicki M., Strojny B., Vadalasetty K.P., Lipińska L., Chwalibog A. Interaction of different forms of graphene with chicken embryo red blood cells. Environ. Sci. Pollut. Res. 2017;24:21671–21679. doi: 10.1007/s11356-017-9788-5. PubMed DOI PMC
Liu X., Zhang F., Wang Z., Zhang T., Teng C., Wang Z. Altered gut microbiome accompanying with placenta barrier dysfunction programs pregnant complications in mice caused by graphene oxide. Ecotoxicol. Environ. Saf. 2021;207:111143. doi: 10.1016/j.ecoenv.2020.111143. PubMed DOI
Fujitani T., Ohyama K.I., Hirose A., Nishimura T., Nakae D., Ogata A. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J. Toxicol. Sci. 2012;37:81–89. doi: 10.2131/jts.37.81. PubMed DOI
Fu C., Liu T., Li L., Liu H., Liang Q., Meng X. Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials. 2015;40:23–31. doi: 10.1016/j.biomaterials.2014.11.014. PubMed DOI
Baig N., Kammakakam I., Falath W., Kammakakam I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. DOI
Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Zhang A., Meng K., Liu Y., Pan Y., Qu W., Chen D., Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv. Colloid Interface Sci. 2020;284:102261. doi: 10.1016/j.cis.2020.102261. PubMed DOI