• This record comes from PubMed

Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles

. 2022 May 17 ; 12 (10) : . [epub] 20220517

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
CZ.02.1.01/0.0/0.0/17_048/0007421 NANOBIO
Research area HEAS Cooperatio Program

The presented review aims to summarize the knowledge regarding the reproductive and developmental toxicity of different types of carbon nanoparticles, such as graphene, graphene oxide, multi- and single-walled nanotubes, fullerenes, and nanodiamonds. Carbon nanoparticles have unique chemical and physical properties that make them an excellent material that can be applied in many fields of human activity, including industry, food processing, the pharmaceutical industry, or medicine. Although it has a high degree of biocompatibility, possible toxic effects on different tissue types must also be taken into account. Carbon nanoparticles are known to be toxic to the respiratory, cardiovascular, nervous, digestive system, etc., and, according to current studies, they also have a negative effect on reproduction and offspring development.

See more in PubMed

Choudhary N., Hwang S., Choi W. Handbook of Nanomaterials Properties. Springer; Berlin/Heidelberg, Germany: 2014. Carbon Nanomaterials: A Review; pp. 709–769. DOI

Zielińska A., Costa B., Ferreira M.V., Miguéis D., Louros J.M.S., Durazzo A., Lucarini M., Eder P., Chaud M.V., Morsink M., et al. Nanotoxicology and nanosafety: Safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health. 2020;17:4657. doi: 10.3390/ijerph17134657. PubMed DOI PMC

Bilal M., Iqbal H.M.N. New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics. 2020;7:24. doi: 10.3390/cosmetics7020024. DOI

Ahmed H.M., Roy A., Wahab M., Ahmed M., Othman-Qadir G., Elesawy B.H., Khandaker M.U., Islam M.N., Emran T. Bin Applications of Nanomaterials in Agrifood and Pharmaceutical Industry. J. Nanomater. 2021;2021:1472096. doi: 10.1155/2021/1472096. DOI

Park S.-J., Deshmukh M.A., Kang B.-C., Jeon J.-Y., Chen C., Ha T.-J. Review—A Review of Advanced Electronic Applications Based on Carbon Nanomaterials. ECS J. Solid State Sci. Technol. 2020;9:071002. doi: 10.1149/2162-8777/abb035. DOI

Skákalová V., Kaiser A.B. Graphene: Properties, Preparation, Characterisation and Applications. Woodhead Publishing; Duxford, UK: 2021.

Brisebois P.P., Siaj M. Harvesting graphene oxide-years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C. 2020;8:1517–1547. doi: 10.1039/C9TC03251G. DOI

Lawal A.T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019;141:111384. doi: 10.1016/j.bios.2019.111384. PubMed DOI

Vakhrushev A.V., Kodolov V.I. In: Carbon Nanotubes and Nanoparticles: Current and Potential Applications. Vladimir I., Haghi A.K., Ameta S.C., editors. Apply Academic Press Inc.; Oakville, ON, USA: 2019. [(accessed on 11 May 2022)]. Available online: https://www.routledge.com/Carbon-Nanotubes-and-Nanoparticles-Current-and-Potential-Applications/Vakhrushev-Kodolov-Haghi-Ameta/p/book/

Rozhina E., Batasheva S., Miftakhova R., Yan X., Vikulina A., Volodkin D., Fakhrullin R. Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide. Appl. Clay Sci. 2021;205:106041. doi: 10.1016/j.clay.2021.106041. DOI

Semenov K.N., Charykov N.A., Keskinov V.A., Piartman A.K., Blokhin A.A., Kopyrin A.A. Solubility of light fullerenes in organic solvents. J. Chem. Eng. Data. 2010;55:13–36. doi: 10.1021/je900296s. DOI

Shanbogh P.P., Sundaram N.G. Fullerenes revisited: Materials chemistry and applications of C60 molecules. Resonance. 2015;20:123–135. doi: 10.1007/s12045-015-0160-0. DOI

Namadr F., Bahrami F., Bahari Z., Ghanbari B., Shahyad S., Mohammadi M. Fullerene C60 Nanoparticles Decrease Liver Oxidative Stress through Increment of Liver Antioxidant Capacity in Streptozotocin-Induced Diabetes in Rats. React. Oxyg. Species. 2020;26:70–80. doi: 10.20455/ros.2020.809. DOI

Grebowski J., Konopko A., Krokosz A., DiLabio G.A., Litwinienko G. Antioxidant activity of highly hydroxylated fullerene C60 and its interactions with the analogue of α-tocopherol. Free Radic. Biol. Med. 2020;160:734–744. doi: 10.1016/j.freeradbiomed.2020.08.017. PubMed DOI

Dolmatov V.Y., Ozerin A.N., Kulakova I.I., Bochechka O.O., Lapchuk N.M., Myllymäki V., Vehanen A. Detonation nanodiamonds: New aspects in the theory and practice of synthesis, properties and applications. Russ. Chem. Rev. 2020;89:1428–1462. doi: 10.1070/RCR4924. DOI

Qin J.X., Yang X.G., Lv C.F., Li Y.Z., Liu K.K., Zang J.H., Yang X., Dong L., Shan C.X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021;210:110091. doi: 10.1016/j.matdes.2021.110091. DOI

Bacon M., Bradley S.J., Nann T. Graphene quantum dots. Part. Part. Syst. Charact. 2014;31:415–428. doi: 10.1002/ppsc.201300252. DOI

Chung S., Revia R.A., Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021;33:1904362. doi: 10.1002/adma.201904362. PubMed DOI PMC

Raja I.S., Song S.-J., Kang M.S., Lee Y.B., Kim B., Hong S.W., Jeong S.J., Lee J.-C., Han D.-W. Toxicity of zero-and one-dimensional carbon nanomaterials. Nanomaterials. 2019;9:1214. doi: 10.3390/nano9091214. PubMed DOI PMC

Yuan X., Zhang X., Sun L., Wei Y., Wei X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 2019;16:18. doi: 10.1186/s12989-019-0299-z. PubMed DOI PMC

Meyer J.D., McDiarmid M., Diaz J.H., Baker B.A., Hieb M. Reproductive and Developmental Hazard Management. Reprod. Dev. Hazard Manag. 2016;58:e94–e102. doi: 10.1097/JOM.0000000000000669. PubMed DOI

Alliance . Hazard Communication Information Sheet Reflecting the US OSHA Implementation of the Globally Harmonized System (GHS) of Classification and Labelling of Chemicals. SCHC-OSHA Alliance; Washington, DC, USA: 2017. [(accessed on 4 February 2022)]. pp. 1–4. Available online: https://www.osha.gov/dsg/hazcom/index.html.

Tyl R.W. Encyclopedia of Toxicology. 3rd ed. Academic Press; Cambridge, MA, USA: 2014. Toxicity Testing, Reproductive; pp. 682–692. DOI

Buerki-Thurnherr T., Schaepper K., Aengenheister L., Wick P. Developmental Toxicity of Nanomaterials: Need for a Better Understanding of Indirect Effects. Chem. Res. Toxicol. 2018;31:641–642. doi: 10.1021/acs.chemrestox.8b00177. PubMed DOI

Dugershaw B.B., Aengenheister L., Hansen S.S.K., Hougaard K.S., Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part. Fibre Toxicol. 2020;17:31. doi: 10.1186/s12989-020-00359-x. PubMed DOI PMC

Qu Y., Yang B., Jiang X., Ma X., Lu C., Chen C. Multiwalled carbon nanotubes inhibit steroidogenesis by disrupting steroidogenic acute regulatory protein expression and redox status. J. Nanosci. Nanotechnol. 2017;17:914–925. doi: 10.1166/jnn.2017.12647. PubMed DOI

Gurunathan S., Kang M.H., Jeyaraj M., Kim J.H. Differential cytotoxicity of different sizes of graphene oxide nanoparticles in leydig (TM3) and sertoli (TM4) cells. Nanomaterials. 2019;9:139. doi: 10.3390/nano9020139. PubMed DOI PMC

Ji X., Xu B., Yao M., Mao Z., Zhang Y., Xu G., Tang Q., Wang X., Xia Y. Graphene oxide quantum dots disrupt autophagic flux by inhibiting lysosome activity in GC-2 and TM4 cell lines. Toxicology. 2016;374:10–17. doi: 10.1016/j.tox.2016.11.009. PubMed DOI

Xu C., Liu Q., Liu H., Zhang C., Shao W., Gu A. Toxicological assessment of multi-walled carbon nanotubes in vitro: Potential mitochondria effects on male reproductive cells. Oncotarget. 2016;7:39270–39278. doi: 10.18632/oncotarget.9689. PubMed DOI PMC

Sanand S., Kumar S., Bara N., Kaul G. Comparative evaluation of half-maximum inhibitory concentration and cytotoxicity of silver nanoparticles and multiwalled carbon nanotubes using buffalo bull spermatozoa as a cell model. Toxicol. Ind. Health. 2018;34:640–652. doi: 10.1177/0748233718783389. PubMed DOI

Bernabò N., Fontana A., Sanchez M.R., Valbonetti L., Capacchietti G., Zappacosta R., Greco L., Marchisio M., Lanuti P., Ercolino E., et al. Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model. Carbon. 2018;129:428–437. doi: 10.1016/j.carbon.2017.12.042. DOI

Li X., Wang L., Liu H., Fu J., Zhen L., Li Y., Zhang Y., Zhang Y. C60 Fullerenes Suppress Reactive Oxygen Species Toxicity Damage in Boar Sperm. Nano Micro Lett. 2019;11:104. doi: 10.1007/s40820-019-0334-5. PubMed DOI PMC

Asghar W., Shafiee H., Velasco V., Sah V.R., Guo S., El Assal R., Inci F., Rajagopalan A., Jahangir M., Anchan R.M., et al. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Sci. Rep. 2016;6:30270. doi: 10.1038/srep30270. PubMed DOI PMC

Aminzadeh Z., Jamalan M., Chupani L., Lenjannezhadian H., Ghaffari M.A., Aberomand M., Zeinali M. In vitro reprotoxicity of carboxyl-functionalised single- and multi-walled carbon nanotubes on human spermatozoa. Andrologia. 2017;49:e12741. doi: 10.1111/and.12741. PubMed DOI

Lin Y.H., Zhuang S.X., Wang Y.L., Lin S., Hong Z.W., Liu Y., Xu L., Li F.P., Xu B.H., Chen M.H., et al. The effects of graphene quantum dots on the maturation of mouse oocytes and development of offspring. J. Cell. Physiol. 2019;234:13820–13831. doi: 10.1002/jcp.28062. PubMed DOI

Lei R., Bai X., Chang Y., Li J., Qin Y., Chen K., Gu W., Xia S., Zhang J., Wang Z., et al. Effects of fullerenol nanoparticles on rat oocyte meiosis resumption. Int. J. Mol. Sci. 2018;19:699. doi: 10.3390/ijms19030699. PubMed DOI PMC

Mrdanović J., Šolajić S., Bogdanović V., Stankov K., Bogdanović G., Djordjevic A. Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat. Res.Genet. Toxicol. Environ. Mutagen. 2009;680:25–30. doi: 10.1016/j.mrgentox.2009.08.008. PubMed DOI

Yadav K., Ali S.A., Mohanty A.K., Muthusamy E., Subaharan K., Kaul G. MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. J. Nanobiotechnol. 2021;19:45. doi: 10.1186/s12951-021-00779-7. PubMed DOI PMC

Batiuskaite D., Grinceviciute N., Snitka V. Impact of graphene oxide on viability of Chinese hamster ovary and mouse hepatoma MH-22A cells. Toxicol. Vitr. 2015;29:1195–1200. doi: 10.1016/j.tiv.2015.05.004. PubMed DOI

Kim Y., Jeong J., Yang J., Joo S.W., Hong J., Choi J. Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans. Toxicology. 2018;410:83–95. doi: 10.1016/j.tox.2018.09.006. PubMed DOI

Chatterjee N., Yang J.S., Park K., Oh S.M., Park J., Choi J. Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems. Environ. Health Toxicol. 2015;30:e2015007. doi: 10.5620/eht.e2015007. PubMed DOI PMC

Zhao Y., Wu Q., Wang D. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials. 2016;79:15–24. doi: 10.1016/j.biomaterials.2015.11.052. PubMed DOI

Kong C., Aziz A.I., Kakarla A.B., Kong I., Kong W. Toxicity evaluation of graphene and poly (Lactic-acid) using a nematode model. Solid State Phenom. 2019;290:101–106. doi: 10.4028/www.scientific.net/SSP.290.101. DOI

Karpeta-Kaczmarek J., Kędziorski A., Augustyniak-Jabłokow M.A., Dziewięcka M., Augustyniak M. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environ. Res. 2018;166:602–609. doi: 10.1016/j.envres.2018.05.027. PubMed DOI

Martins C.H.Z., de Sousa M., Fonseca L.C., Martinez D.S.T., Alves O.L. Biological effects of oxidized carbon nanomaterials (1D versus 2D) on Spodoptera frugiperda: Material dimensionality influences on the insect development, performance and nutritional physiology. Chemosphere. 2019;215:766–774. doi: 10.1016/j.chemosphere.2018.09.178. PubMed DOI

Philbrook N.A., Walker V.K., Afrooz A.R.M.N., Saleh N.B., Winn L.M. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod. Toxicol. 2011;32:442–448. doi: 10.1016/j.reprotox.2011.09.002. PubMed DOI

Priyadarsini S., Sahoo S.K., Sahu S., Mukherjee S., Hota G., Mishra M. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. Environ. Sci. Pollut. Res. 2019;26:19560–19574. doi: 10.1007/s11356-019-05357-x. PubMed DOI

Fang Y., Lu Z., Li M., Qu J., Ye W., Li F., Wei J., Sun H., Li B. An assessment of the reproductive toxicity of GONPs exposure to Bombyx mori. Ecotoxicol. Environ. Saf. 2021;210:111888. doi: 10.1016/j.ecoenv.2020.111888. PubMed DOI

Mesarič T., Sepčić K., Drobne D., Makovec D., Faimali M., Morgana S., Falugi C., Gambardella C. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus) Aquat. Toxicol. 2015;163:158–166. doi: 10.1016/j.aquatox.2015.04.012. PubMed DOI

Sumi N., Chitra K.C. Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792) Aquat. Toxicol. 2019;210:196–206. doi: 10.1016/j.aquatox.2019.03.003. PubMed DOI

Carrillo Y., Torres-Duarte C., Oviedo M.J., Hirata G.A., Huerta-Saquero A., Vazquez-Duhalt R. Lipid peroxidation and protein oxidation induced by different nanoparticles in zebrafish organs. Appl. Ecol. Environ. Res. 2015;13:709–723. doi: 10.15666/aeer/1303_709723. DOI

Zhao J., Luo W., Xu Y., Ling J., Deng L. Potential reproductive toxicity of multi-walled carbon nanotubes and their chronic exposure effects on the growth and development of Xenopus tropicalis. Sci. Total Environ. 2021;766:142652. doi: 10.1016/j.scitotenv.2020.142652. PubMed DOI

Dasmahapatra A.K., Powe D.K., Dasari T.P.S., Tchounwou P.B. Assessment of reproductive and developmental effects of graphene oxide on Japanese medaka (Oryzias latipes) Chemosphere. 2020;259:127221. doi: 10.1016/j.chemosphere.2020.127221. PubMed DOI PMC

Zhang D., Zhang Z., Wu Y., Fu K., Chen Y., Li W., Chu M. Systematic evaluation of graphene quantum dot toxicity to male mouse sexual behaviors, reproductive and offspring health. Biomaterials. 2019;194:215–232. doi: 10.1016/j.biomaterials.2018.12.001. PubMed DOI

Skovmand A., Jacobsen Lauvås A., Christensen P., Vogel U., Sørig Hougaard K., Goericke-Pesch S. Pulmonary exposure to carbonaceous nanomaterials and sperm quality. Part. Fibre Toxicol. 2018;15:10. doi: 10.1186/s12989-018-0242-8. PubMed DOI PMC

Liang S., Xu S., Zhang D., He J., Chu M. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology. 2015;9:92–105. doi: 10.3109/17435390.2014.893380. PubMed DOI

Farshad O., Heidari R., Zamiri M.J., Retana-Márquez S., Khalili M., Ebrahimi M., Jamshidzadeh A., Ommati M.M. Spermatotoxic Effects of Single-Walled and Multi-Walled Carbon Nanotubes on Male Mice. Front. Vet. Sci. 2020;7:591558. doi: 10.3389/fvets.2020.591558. PubMed DOI PMC

Akhavan O., Ghaderi E., Hashemi E., Akbari E. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals. Carbon. 2015;95:309–317. doi: 10.1016/j.carbon.2015.08.017. DOI

Hougaard K.S., Jackson P., Kyjovska Z.O., Birkedal R.K., De Temmerman P.J., Brunelli A., Verleysen E., Madsen A.M., Saber A.T., Pojana G., et al. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reprod. Toxicol. 2013;41:86–97. doi: 10.1016/j.reprotox.2013.05.006. PubMed DOI

Johansson H.K.L., Hansen J.S., Elfving B., Lund S.P., Kyjovska Z.O., Loft S., Barfod K.K., Jackson P., Vogel U., Hougaard K.S. Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice. Part. Fibre Toxicol. 2017;14:17. doi: 10.1186/s12989-017-0197-1. PubMed DOI PMC

Nirmal N.K., Awasthi K.K., John P.J. Effects of Nano-Graphene Oxide on Testis, Epididymis and Fertility of Wistar Rats. Basic Clin. Pharmacol. Toxicol. 2017;121:202–210. doi: 10.1111/bcpt.12782. PubMed DOI

Nirmal N.K., Awasthi K.K., John P.J. Effects of hydroxyl-functionalized multiwalled carbon nanotubes on sperm health and testes of Wistar rats. Toxicol. Ind. Health. 2017;33:519–529. doi: 10.1177/0748233716685661. PubMed DOI

Farombi E.O., Adedara I.A., Forcados G.E., Anao O.O., Agbowo A., Patlolla A.K. Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized multiwalled carbon nanotubes. Environ. Toxicol. 2016;31:543–551. doi: 10.1002/tox.22067. PubMed DOI

National Toxicology Program . NTP Technical Report on the Toxicity Studies of Fullerene C60 (1 μm and 50 nm) (CASRN 99685-96-8) Administered by Nose-Only Inhalation to Wistar Han [Crl:WI (Han)] Rats and B6C3F1/N Mice. National Toxicology Program; Research Triangle Park, NC, USA: 2020. PubMed PMC

D’Amora M., Camisasca A., Lettieri S., Giordani S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials. 2017;7:414. doi: 10.3390/nano7120414. PubMed DOI PMC

Yang X., Yang Q., Zheng G., Han S., Zhao F., Hu Q., Fu Z. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos. Environ. Toxicol. 2019;34:415–423. doi: 10.1002/tox.22695. PubMed DOI

Bangeppagari M., Park S.H., Kundapur R.R., Lee S.J. Graphene oxide induces cardiovascular defects in developing zebrafish (Danio rerio) embryo model: In-Vivo toxicity assessment. Sci. Total Environ. 2019;673:810–820. doi: 10.1016/j.scitotenv.2019.04.082. PubMed DOI

Jaworski S., Strojny-Cieślak B., Wierzbicki M., Kutwin M., Sawosz E., Kamaszewski M., Matuszewski A., Sosnowska M., Szczepaniak J., Daniluk K., et al. Comparison of the toxicity of pristine graphene and graphene oxide, using four biological models. Materials. 2021;14:4250. doi: 10.3390/ma14154250. PubMed DOI PMC

Chen Y., Hu X., Sun J., Zhou Q. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology. 2016;10:42–52. doi: 10.3109/17435390.2015.1005032. PubMed DOI

Cao Z., Su M., Wang H., Zhou L., Meng Z., Xiong G., Liao X., Lu H. Carboxyl graphene oxide nanoparticles induce neurodevelopmental defects and locomotor disorders in zebrafish larvae. Chemosphere. 2021;270:128611. doi: 10.1016/j.chemosphere.2020.128611. PubMed DOI

Falinski M.M., Garland M.A., Hashmi S.M., Tanguay R.L., Zimmerman J.B. Establishing structure-property-hazard relationships for multi-walled carbon nanotubes: The role of aggregation, surface charge, and oxidative stress on embryonic zebrafish mortality. Carbon. 2019;155:587–600. doi: 10.1016/j.carbon.2019.08.063. PubMed DOI PMC

Martinez C.S., Igartúa D.E., Czarnowski I., Feas D.A., Del S., Alonso S., Prieto M.J. Biological response and developmental toxicity of zebrafish embryo and larvae exposed to multi-walled carbon nanotubes with different dimension. Heliyon. 2019;5:e02308. doi: 10.1016/j.heliyon.2019.e02308. PubMed DOI PMC

Zhu X., Zhu L., Li Y., Duan Z., Chen W., Alvarez P.J.J. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 2007;26:976–979. doi: 10.1897/06-583.1. PubMed DOI

Martínez-Paz P., Negri V., Esteban-Arranz A., Martínez-Guitarte J.L., Ballesteros P., Morales M. Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquat. Toxicol. 2019;209:42–48. doi: 10.1016/j.aquatox.2019.01.017. PubMed DOI

Zhu B., Zhu S., Li J., Hui X., Wang G.X. The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in: Artemia salina. Toxicol. Res. 2018;7:897–906. doi: 10.1039/C8TX00084K. PubMed DOI PMC

Liu B., Campo E.M., Bossing T. Drosophila embryos as model to assess cellular and developmental toxicity of Multi-Walled Carbon Nanotubes (MWCNT) in living organisms. PLoS ONE. 2014;9:e88681. doi: 10.1371/journal.pone.0088681. PubMed DOI PMC

Dziewięcka M., Flasz B., Rost-Roszkowska M., Kędziorski A., Kochanowicz A., Augustyniak M. Graphene oxide as a new anthropogenic stress factor—Multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. J. Hazard. Mater. 2020;396:122775. doi: 10.1016/j.jhazmat.2020.122775. PubMed DOI

Sawosz E., Jaworski S., Kutwin M., Hotowy A., Wierzbicki M., Grodzik M., Kurantowicz N., Strojny B., Lipińska L., Chwalibog A. Toxicity of pristine graphene in experiments in a chicken embryo model. Int. J. Nanomed. 2014;9:3913–3922. doi: 10.2147/IJN.S65633. PubMed DOI PMC

Szmidt M., Sawosz E., Urbańska K., Jaworski S., Kutwin M., Hotowy A., Wierzbicki M., Grodzik M., Lipińska L., Chwalibog A. Toxicity of different forms of graphene in a chicken embryo model. Environ. Sci. Pollut. Res. 2016;23:19940–19948. doi: 10.1007/s11356-016-7178-z. PubMed DOI

Kurantowicz N., Sawosz E., Halik G., Strojny B., Hotowy A., Grodzik M., Piast R., Pasanphan W., Chwalibog A. Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model. Int. J. Nanomed. 2017;12:2887–2898. doi: 10.2147/IJN.S131960. PubMed DOI PMC

Jaworski S., Hinzmann M., Sawosz E., Grodzik M., Kutwin M., Wierzbicki M., Strojny B., Vadalasetty K.P., Lipińska L., Chwalibog A. Interaction of different forms of graphene with chicken embryo red blood cells. Environ. Sci. Pollut. Res. 2017;24:21671–21679. doi: 10.1007/s11356-017-9788-5. PubMed DOI PMC

Liu X., Zhang F., Wang Z., Zhang T., Teng C., Wang Z. Altered gut microbiome accompanying with placenta barrier dysfunction programs pregnant complications in mice caused by graphene oxide. Ecotoxicol. Environ. Saf. 2021;207:111143. doi: 10.1016/j.ecoenv.2020.111143. PubMed DOI

Fujitani T., Ohyama K.I., Hirose A., Nishimura T., Nakae D., Ogata A. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J. Toxicol. Sci. 2012;37:81–89. doi: 10.2131/jts.37.81. PubMed DOI

Fu C., Liu T., Li L., Liu H., Liang Q., Meng X. Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials. 2015;40:23–31. doi: 10.1016/j.biomaterials.2014.11.014. PubMed DOI

Baig N., Kammakakam I., Falath W., Kammakakam I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. DOI

Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Zhang A., Meng K., Liu Y., Pan Y., Qu W., Chen D., Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv. Colloid Interface Sci. 2020;284:102261. doi: 10.1016/j.cis.2020.102261. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...