Comparing Digital Therapeutic Intervention with an Intensive Obesity Management Program: Randomized Controlled Trial
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
Grantová podpora
IGA_LF_2020_030
Palacký University Olomouc, Czech Republic
PubMed
35631145
PubMed Central
PMC9143861
DOI
10.3390/nu14102005
PII: nu14102005
Knihovny.cz E-zdroje
- Klíčová slova
- diabetes mellitus type 2, digital therapeutics, insulin resistance, lifestyle intervention, metabolic syndrome, mobile application, obesity, prevention, randomized controlled trial,
- MeSH
- diabetes mellitus 2. typu * terapie MeSH
- dospělí MeSH
- inzulinová rezistence * MeSH
- léčba obezity * MeSH
- lidé MeSH
- obezita farmakoterapie MeSH
- prospektivní studie MeSH
- tělesná hmotnost MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
In this study, we evaluated whether the digital program Vitadio achieves comparable results to those of an intensive in-person lifestyle intervention in obesity management. This is a 12-month prospective, randomized controlled trial. Obese patients with insulin resistance, prediabetes or type 2 diabetes were included. The intervention group (IG) used Vitadio. The control group (CG) received a series of in-person consultations. Body weight and various metabolic parameters were observed and analyzed with ANOVA. The trial is ongoing and the presented findings are preliminary. Among 100 participants (29% men; mean age, 43 years; mean BMI, 40.1 kg/m2), 78 completed 3-month follow-up, and 51 have completed the 6-month follow-up so far. Participants significantly (p < 0.01) reduced body weight at 3 months (IG: −5.9 ± 5.0%; CG: −4.2 ± 5.0%) and 6 months (IG: −6.6±6.1%; CG: −7.1 ± 7.1%), and the difference between groups was not significant. The IG achieved favorable change in body composition; significant improvement in TAG (−0.6 ± 0.9 mmol/l, p < 0.01), HDL (0.1 ± 0.1%, p < 0.05), HbA1c (−0.2 ± 0.5%, p < 0.05) and FG (−0.5 ± 1.5 mmol/l, p < 0.05); and a superior (p = 0.02) HOMA-IR reduction (−2.5 ± 5.2, p < 0.01). The digital intervention achieved comparable results to those of the intensive obesity management program. The results suggest that Vitadio is an effective tool for supporting patients in obesity management and diabetes prevention.
1st Faculty of Medicine Charles University Prague Kateřinská 32 121 08 Prague Czech Republic
Department of Health Faculty of Medicine Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Pi-Sunyer X. The Medical Risks of Obesity. Postgrad. Med. 2009;121:21–33. doi: 10.3810/pgm.2009.11.2074. PubMed DOI PMC
Kotsis V., Martinez F., Trakatelli C., Redon J. Impact of Obesity in Kidney Diseases. Nutrients. 2021;13:4482. doi: 10.3390/nu13124482. PubMed DOI PMC
International Diabetes Federation . The IDF Consensus Worldwide Definition of Metabolic Syndrome. International Diabetes Federation; Brussels, Belgium: 2006.
Fukumoto Y. Nutrition and Cardiovascular Diseases. Nutrients. 2022;14:94. doi: 10.3390/nu14010094. PubMed DOI PMC
Tuomilehto J., Lindström J., Eriksson J.G., Valle T.T., Hämäläinen H., Ilanne-Parikka P., Keinänen-Kiukaanniemi S., Laakso M., Louheranta A., Rastas M., et al. Prevention of Type 2 Diabetes mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N. Engl. J. Med. 2001;344:1343–1350. doi: 10.1056/NEJM200105033441801. PubMed DOI
Look AHEAD Research Group. Pi-Sunyer X., Blackburn G., Brancati F.L., Bray G.A., Bright R., Clark J.M., Curtis J.M., Espeland M.A., Foreyt J.P., et al. Reduction in Weight and Cardiovascular Disease Risk Factors in Individuals with Type 2 Diabetes: One-Year Results of the Look AHEAD Trial. Diabetes Care. 2007;30:1374–1383. doi: 10.2337/dc07-0048. PubMed DOI PMC
Chen L., Pei J.-H., Kuang J., Chen H.-M., Chen Z., Li Z.-W., Yang H.-Z. Effect of Lifestyle Intervention in Patients with Type 2 Diabetes: A Meta-Analysis. Metabolism. 2015;64:338–347. doi: 10.1016/j.metabol.2014.10.018. PubMed DOI
Rippe J.M., Crossley S., Ringer R. Obesity as a Chronic Disease: Modern Medical and Lifestyle Management. J. Am. Diet. Assoc. 1998;98:S9–S15. doi: 10.1016/S0002-8223(98)00704-4. PubMed DOI
Zhang Y., Liu J., Yao J., Ji G., Qian L., Wang J., Zhang G., Tian J., Nie Y., Zhang Y.E., et al. Obesity: Pathophysiology and Intervention. Nutrients. 2014;6:5153–5183. doi: 10.3390/nu6115153. PubMed DOI PMC
Wiechert M., Holzapfel C. Nutrition Concepts for the Treatment of Obesity in Adults. Nutrients. 2022;14:169. doi: 10.3390/nu14010169. PubMed DOI PMC
American Diabetes Association Obesity Management for the Treatment of Type 2 Diabetes. Diabetes Care. 2016;39((Suppl. S1)):S47–S51. doi: 10.2337/dc16-S009. PubMed DOI
Hassan Y., Head V., Jacob D., Bachmann M.O., Diu S., Ford J. Lifestyle Interventions for Weight Loss in Adults with Severe Obesity: A Systematic Review. Clin. Obes. 2016;6:395–403. doi: 10.1111/cob.12161. PubMed DOI
Rubio-Valera M., Pons-Vigués M., Martínez-Andrés M., Moreno-Peral P., Berenguera A., Fernández A. Barriers and Facilitators for the Implementation of Primary Prevention and Health Promotion Activities in Primary Care: A Synthesis through Meta-Ethnography. PLoS ONE. 2014;9:e89554. doi: 10.1371/journal.pone.0089554. PubMed DOI PMC
Kebbe M., Perez A., Buchholz A., McHugh T.-L.F., Scott S.S., Richard C., Mohipp C., Dyson M.P., Ball G.D.C. Barriers and Enablers for Adopting Lifestyle Behavior Changes in Adolescents with Obesity: A Multi-Centre, Qualitative Study. PLoS ONE. 2018;13:e0209219. doi: 10.1371/journal.pone.0209219. PubMed DOI PMC
Patterson E., Munn Z., Jennings C. Experiences of Providers in Delivering Nutrition-Focused Lifestyle Interventions for Adults with Obesity or Metabolic Syndrome in Primary Healthcare Settings: A Qualitative Systematic Review Protocol. JBI Evid. Synth. 2020;18:1573–1579. doi: 10.11124/JBISRIR-D-19-00182. PubMed DOI
Patalano R., De Luca V., Vogt J., Birov S., Giovannelli L., Carruba G., Pivonello C., Stroetmann V., Triassi M., Colao A., et al. An Innovative Approach to Designing Digital Health Solutions Addressing the Unmet Needs of Obese Patients in Europe. Int. J. Environ. Res. Public Health. 2021;18:E579. doi: 10.3390/ijerph18020579. PubMed DOI PMC
Dallinga J.M., Mennes M., Alpay L., Bijwaard H., Baart de la Faille-Deutekom M. App Use, Physical Activity and Healthy Lifestyle: A Cross Sectional Study. BMC Public Health. 2015;15:833. doi: 10.1186/s12889-015-2165-8. PubMed DOI PMC
Shcherbina A., Hershman S.G., Lazzeroni L., King A.C., O’Sullivan J.W., Hekler E., Moayedi Y., Pavlovic A., Waggott D., Sharma A., et al. The Effect of Digital Physical Activity Interventions on Daily Step Count: A Randomised Controlled Crossover Substudy of the MyHeart Counts Cardiovascular Health Study. Lancet Digit. Health. 2019;1:e344–e352. doi: 10.1016/S2589-7500(19)30129-3. PubMed DOI
Timpel P., Oswald S., Schwarz P.E.H., Harst L. Mapping the Evidence on the Effectiveness of Telemedicine Interventions in Diabetes, Dyslipidemia, and Hypertension: An Umbrella Review of Systematic Reviews and Meta-Analyses. J. Med. Internet Res. 2020;22:e16791. doi: 10.2196/16791. PubMed DOI PMC
Byambasuren O., Sanders S., Beller E., Glasziou P. Prescribable MHealth Apps Identified from an Overview of Systematic Reviews. NPJ Digit. Med. 2018;1:12. doi: 10.1038/s41746-018-0021-9. PubMed DOI PMC
Fleming G.A., Petrie J.R., Bergenstal R.M., Holl R.W., Peters A.L., Heinemann L. Diabetes Digital App Technology: Benefits, Challenges, and Recommendations. A Consensus Report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care. 2020;43:250–260. doi: 10.2337/dci19-0062. PubMed DOI
Haffner S.M., Miettinen H., Stern M.P. The Homeostasis Model in the San Antonio Heart Study. Diabetes Care. 1997;20:1087–1092. doi: 10.2337/diacare.20.7.1087. PubMed DOI
Schmidt F.H. Die Enzymatische Bestimmung von Glucose Und Fructose Nebeneinander. Klin. Wochenschr. 1961;39:1244–1247. doi: 10.1007/BF01506150. PubMed DOI
Arslan Ince F.D., Atay A., Köseoğlu M., Yeşil M., Deveci E. Relationship between Severity of Coronary Artery Disease and Apolipoprotein E Gene Polymorphism. Anadolu Kardiyol. Derg. 2010;10:202–208. doi: 10.5152/akd.2010.058. PubMed DOI
Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883. PubMed DOI
Committee for Medicinal Products for Human Use. Efficacy Working Party Committee for Release for Consultation Committee for Medicinal Products for Human Use (CHMP) Guideline on the Choice of the Non-Inferiority Margin. Stat. Med. 2006;25:1628–1638. doi: 10.1002/sim.2584. PubMed DOI
Franz M.J., VanWormer J.J., Crain A.L., Boucher J.L., Histon T., Caplan W., Bowman J.D., Pronk N.P. Weight-Loss Outcomes: A Systematic Review and Meta-Analysis of Weight-Loss Clinical Trials with a Minimum 1-Year Follow-Up. J. Am. Diet. Assoc. 2007;107:1755–1767. doi: 10.1016/j.jada.2007.07.017. PubMed DOI
Meyerowitz-Katz G., Ravi S., Arnolda L., Feng X., Maberly G., Astell-Burt T. Rates of Attrition and Dropout in App-Based Interventions for Chronic Disease: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020;22:e20283. doi: 10.2196/20283. PubMed DOI PMC
Cheal K.L., Abbasi F., Lamendola C., McLaughlin T., Reaven G.M., Ford E.S. Relationship to Insulin Resistance of the Adult Treatment Panel III Diagnostic Criteria for Identification of the Metabolic Syndrome. Diabetes. 2004;53:1195–1200. doi: 10.2337/diabetes.53.5.1195. PubMed DOI
Spring B., Duncan J.M., Janke E.A., Kozak A.T., McFadden H.G., DeMott A., Pictor A., Epstein L.H., Siddique J., Pellegrini C.A., et al. Integrating Technology into Standard Weight Loss Treatment: A Randomized Controlled Trial. JAMA Intern. Med. 2013;173:105–111. doi: 10.1001/jamainternmed.2013.1221. PubMed DOI PMC
Ryan D.H., Yockey S.R. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr. Obes. Rep. 2017;6:187–194. doi: 10.1007/s13679-017-0262-y. PubMed DOI PMC
Willoughby D., Hewlings S., Kalman D. Body Composition Changes in Weight Loss: Strategies and Supplementation for Maintaining Lean Body Mass, a Brief Review. Nutrients. 2018;10:E1876. doi: 10.3390/nu10121876. PubMed DOI PMC
Dulloo A.G., Jacquet J., Montani J.-P. How Dieting Makes Some Fatter: From a Perspective of Human Body Composition Autoregulation. Proc. Nutr. Soc. 2012;71:379–389. doi: 10.1017/S0029665112000225. PubMed DOI
Balkau B., Picard P., Vol S., Fezeu L., Eschwège E., DESIR Study Group Consequences of Change in Waist Circumference on Cardiometabolic Risk Factors over 9 Years: Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) Diabetes Care. 2007;30:1901–1903. doi: 10.2337/dc06-2542. PubMed DOI
St George A., Bauman A., Johnston A., Farrell G., Chey T., George J. Effect of a Lifestyle Intervention in Patients with Abnormal Liver Enzymes and Metabolic Risk Factors. J. Gastroenterol. Hepatol. 2009;24:399–407. doi: 10.1111/j.1440-1746.2008.05694.x. PubMed DOI
Esteghamati A., Ashraf H., Esteghamati A.-R., Meysamie A., Khalilzadeh O., Nakhjavani M., Abbasi M. Optimal Threshold of Homeostasis Model Assessment for Insulin Resistance in an Iranian Population: The Implication of Metabolic Syndrome to Detect Insulin Resistance. Diabetes Res. Clin. Pract. 2009;84:279–287. doi: 10.1016/j.diabres.2009.03.005. PubMed DOI
Perrin A., Anderson M. Share of U.S. Adults Using Social Media, Including Facebook, Is Mostly Unchanged since 2018. Pew Research Center; Washington, DC, USA: 2019.