ScipionTomo: Towards cryo-electron tomography software integration, reproducibility, and validation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_U105184326
Medical Research Council - United Kingdom
PubMed
35660516
PubMed Central
PMC7613607
DOI
10.1016/j.jsb.2022.107872
PII: S1047-8477(22)00042-9
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- elektronová kryomikroskopie metody MeSH
- počítačové zpracování obrazu metody MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- tomografie elektronová * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Image processing in cryogenic electron tomography (cryoET) is currently at a similar state as Single Particle Analysis (SPA) in cryogenic electron microscopy (cryoEM) was a few years ago. Its data processing workflows are far from being well defined and the user experience is still not smooth. Moreover, file formats of different software packages and their associated metadata are not standardized, mainly since different packages are developed by different groups, focusing on different steps of the data processing pipeline. The Scipion framework, originally developed for SPA (de la Rosa-Trevín et al., 2016), has a generic python workflow engine that gives it the versatility to be extended to other fields, as demonstrated for model building (Martínez et al., 2020). In this article, we provide an extension of Scipion based on a set of tomography plugins (referred to as ScipionTomo hereafter), with a similar purpose: to allow users to be focused on the data processing and analysis instead of having to deal with multiple software installation issues and the inconvenience of switching from one to another, converting metadata files, managing possible incompatibilities, scripting (writing a simple program in a language that the computer must convert to machine language each time the program is run), etcetera. Additionally, having all the software available in an integrated platform allows comparing the results of different algorithms trying to solve the same problem. In this way, the commonalities and differences between estimated parameters shed light on which results can be more trusted than others. ScipionTomo is developed by a collaborative multidisciplinary team composed of Scipion team engineers, structural biologists, and in some cases, the developers whose software packages have been integrated. It is open to anyone in the field willing to contribute to this project. The result is a framework extension that combines the acquired knowledge of Scipion developers in close collaboration with third-party developers, and the on-demand design of functionalities requested by beta testers applying this solution to actual biological problems.
Alba Synchrotron CELLS Barcelona Spain
BioEM Lab Biozentrum University of Basel Basel Switzerland
IMPMC UMR 7590 CNRS Sorbonne Université MNHN Paris France
Inria Rennes Bretagne Atlantique Rennes France
Max Planck Institute of Molecular Cell Biology and Genetics Germany
National Center of Biotechnology Madrid Spain
National Center of Biotechnology Madrid Spain; Masaryk University Brno Czech Republic
Structural Studies Division MRC Laboratory of Molecular Biology Cambridge United Kingdom
University of Leiden Ultrastructural and Molecular Imaging Leiden the Netherlands
Zobrazit více v PubMed
de la Rosa-Trevín JM, Quintana A, del Cano L, Zaldívar A, Foche I, Gutiérrez J, Gómez-Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V, Vargas J, et al. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol. 2016;195(1):93–99. PubMed
Martínez M, Jiménez-Moreno A, Maluenda D, Ramírez-Aportela E, Melero R, Cuervo A, Conesa P, del Caño L, Fonseca YC, Sánchez-García R, Strelak D, et al. Integration of Cryo-EM model building software in Scipion. J Chem Inf Model. 2020;60(5):2533–2540. doi: 10.1021/acs.jcim.9b01032. PubMed DOI
Smith MTJ, Rubinstein JL. Structural biology. Beyond blob-ology Science. 2014;345(6197):617–619. PubMed
Lawson CL, Patwardhan A, Baker ML, Hryc C, Garcia ES, Hudson BP, Lagerstedt I, Ludtke SJ, Pintilie G, Sala R, Westbrook JD, et al. EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 2016;44(D1):D396–D403. PubMed PMC
Wan W, Briggs JAG. In: Methods in Enzymology. Crowther RA, editor. Academic Press; 2016. Chapter Thirteen - Cryo-Electron Tomography and Subtomogram Averaging; pp. 329–367. PubMed
Fernandez J-J. Computational methods for electron tomography. Micron. 2012;43(10):1010–1030. PubMed
Mastronarde DN, Held SR. Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol. 2017;197(2):102–113. PubMed PMC
Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J Struct Biol. 2012;178(2):139–151. PubMed
Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat Methods. 2019;16(11):1161–1168. PubMed PMC
Bharat TAM, Scheres SHW. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc. 2016;11(11):2054–2065. PubMed PMC
de la Rosa-Trevín JM, Otón J, Marabini R, Zaldívar A, Vargas J, Carazo JM, Sorzano COS. Xmipp 3.0: an improved software suite for image processing in electron microscopy. J Struct Biol. 2013;184(2):321–328. PubMed
Martinez-Sanchez A, Kochovski Z, Laugks U, Meyer zum Alten Borgloh J, Chakraborty S, Pfeffer S, Baumeister W, Lučić V. Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nat Methods. 2020;17(2):209–216. PubMed
Himes BA, Zhang P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat Methods. 2018;15(11):955–961. PubMed PMC
Heumann JM, Hoenger A, Mastronarde DN. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. J Struct Biol. 2011;175(3):288–299. PubMed PMC
Hrabe T, Chen Y, Pfeffer S, Kuhn Cuellar L, Mangold A-V, Förster F. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J Struct Biol. 2012;178(2):177–188. PubMed
Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat Methods. 2021;18:186–193. PubMed PMC
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol. 2005;152(1):36–51. PubMed
The SerialEM Home Page. Available: https://bio3d.colorado.edu/SerialEM.
Thermo Scientific - Tomography 5 Software. Available: https://assets.thermofisher.com/TFS-Assets/MSD/Datasheets/tomography-5-software-ds0362.pdf.
Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryoelectron microscopy. Nat Methods. 2017;14(4):331–332. PubMed PMC
Hu J, Yu Y. Polycystic Kidney Disease. CRC Press; 2019.
Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol. 2016;193(1):1–12. PubMed PMC
Fernandez J-J, Li S, Agard DA. Consideration of sample motion in cryotomography based on alignment residual interpolation. J Struct Biol. 2019;205(3):1–6. PubMed PMC
Turoňová B, Schur FKM, Wan W, Briggs JAG. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å. J Struct Biol. 2017;199(3):187–195. PubMed PMC
Agulleiro JI, Fernandez JJ. Fast tomographic reconstruction on multicore computers. Bioinformatics. 2011;27(4):582–583. PubMed
Agulleiro J-I, Fernandez J-J. Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction. J Struct Biol. 2015;189(2):147–152. PubMed
Fernandez J-J, Li S, Bharat TAM, Agard DA. Cryo-tomography tilt-series alignment with consideration of the beam-induced sample motion. J Struct Biol. 2018;202(3):200–209. PubMed PMC
Fernandez J-J, Li S. TomoAlign: A novel approach to correcting sample motion and 3D CTF in CryoET. J Struct Biol. 2021;213(4):107778. doi: 10.1016/j.jsb:2021.107778. PubMed DOI
Zheng S, Wolff G, Greenan G, Chen Z, Faas FGA, Báarcena M, et al. AreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. bioRxiv. 2022:2022.02.15.480593. doi: 10.1101/2022.02.15.480593. PubMed DOI PMC
Moreno JJ, Martínez-Saánchez A, Martínez JA, Garzoón EM, Fernaández JJ, Murphy R. TomoEED: fast edge-enhancing denoising of tomographic volumes. Bioinformatics. 2018;34(21):3776–3778. PubMed
Fernandez J-J. TOMOBFLOW: feature-preserving noise filtering for electron tomography. BMC Bioinf. 2009;10:178. PubMed PMC
Buchholz T-O, Krull A, Shahidi R, Pigino G, Jékely G, Jug F. Content-aware image restoration for electron microscopy. Methods Cell Biol. 2019;152:277–289. PubMed
Martinez-Sanchez A, Garcia I, Asano S, Lucic V, Fernandez J-J. Robust membrane detection based on tensor voting for electron tomography. J Struct Biol. 2014;186(1):49–61. PubMed
Pyle E, Zanetti G. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem J. 2021;478:1827–1845. PubMed PMC
RELION — RELION documentation. Available: https://relion.readthedocs.io/en/release-4.0.
Harastani M, Eltsov M, Leforestier A, Jonic S. HEMNMA-3D: Cryo electron tomography method based on normal mode analysis to study continuous conformational variability of macromolecular complexes. Front Mol Biosci. 2021;8 PubMed PMC
Harastani M, Eltsov M, Leforestier A, Jonić S. TomoFlow: analysis of continuous conformational variability of macromolecules in cryogenic subtomograms based on 3D dense optical flow. J Mol Biol. 2022;434(2):167381. doi: 10.1016/j.jmb.2021.167381. PubMed DOI
Harastani M, Sorzano COS, Joniá S. Hybrid electron microscopy normal mode analysis with scipion. Protein Sci. 2020;29(1):223–236. PubMed PMC
Jin Q, Sorzano C, de la Rosa-Trevín J, Bilbao-Castro José Román, Núñez-Ramírez R, Llorca O, Tama F, Joniá S. Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes. Structure. 2014;22(3):496–506. PubMed
Vuillemot R, Miyashita O, Tama F, Rouiller I, Jonic S. NMMD: efficient Cryo-EM flexible fitting based on simultaneous normal mode and molecular dynamics atomic displacements. J Mol Biol. 2022;434(7):167483. doi: 10.1016/j.jmb.2022.167483. PubMed DOI
Vilas JL, Oton J, Messaoudi C, Melero R, Conesa P, Ramirez-Aportela E, Mota J, Martinez M, Jimenez A, Marabini R, Carazo JM, et al. Measurement of local resolution in electron tomography. J Struct Biol X. 2020;4:100016. doi: 10.1016/j.yjsbx.2019.100016. PubMed DOI PMC
Vilas JL, Goámez-Blanco J, Conesa P, Melero R, Miguel de la Rosa-Trevín J, Otón J, Cuenca J, Marabini R, Carazo JM, Vargas J, Sorzano COS. MonoRes: Automatic and Accurate Estimation of Local Resolution for Electron Microscopy Maps. Structure. 2018;26(2):337–344.:e4. PubMed
Fernández-Giménez E, Martínez M, Sánchez-García R, Marabini R, Ramírez-Aportela E, Conesa P, Carazo JM, Sorzano COS. Cryo-EM density maps adjustment for subtraction, consensus and sharpening. J Struct Biol. 2021;213(4):107780. doi: 10.1016/j.jsb:2021.107780. PubMed DOI
Iudin A, Korir PK, Salavert-Torres J, Kleywegt GJ, Patwardhan A. EMPIAR: a public archive for raw electron microscopy image data. Nat Methods. 2016;13(5):387–388. PubMed
Subtomogram tutorial — RELION documentation. [cited 25 Feb 2022]. Available: https://relion.readthedocs.io/en/release-4.0/STA_tutorial/index.html.
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017;14(3):290–296. PubMed
Zeng X, Xu M. AITom: Open-source AI platform for cryo-electron tomography data analysis. arXiv [q-bioQM] 2019 doi: 10.5281/zenodo.3973623. Available: http://arxiv.org/abs/1911.03044 turonova. turonova/novaSTA: novaSTA. 2020. DOI