ScipionTomo: Towards cryo-electron tomography software integration, reproducibility, and validation

. 2022 Sep ; 214 (3) : 107872. [epub] 20220602

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35660516

Grantová podpora
MC_U105184326 Medical Research Council - United Kingdom

Odkazy

PubMed 35660516
PubMed Central PMC7613607
DOI 10.1016/j.jsb.2022.107872
PII: S1047-8477(22)00042-9
Knihovny.cz E-zdroje

Image processing in cryogenic electron tomography (cryoET) is currently at a similar state as Single Particle Analysis (SPA) in cryogenic electron microscopy (cryoEM) was a few years ago. Its data processing workflows are far from being well defined and the user experience is still not smooth. Moreover, file formats of different software packages and their associated metadata are not standardized, mainly since different packages are developed by different groups, focusing on different steps of the data processing pipeline. The Scipion framework, originally developed for SPA (de la Rosa-Trevín et al., 2016), has a generic python workflow engine that gives it the versatility to be extended to other fields, as demonstrated for model building (Martínez et al., 2020). In this article, we provide an extension of Scipion based on a set of tomography plugins (referred to as ScipionTomo hereafter), with a similar purpose: to allow users to be focused on the data processing and analysis instead of having to deal with multiple software installation issues and the inconvenience of switching from one to another, converting metadata files, managing possible incompatibilities, scripting (writing a simple program in a language that the computer must convert to machine language each time the program is run), etcetera. Additionally, having all the software available in an integrated platform allows comparing the results of different algorithms trying to solve the same problem. In this way, the commonalities and differences between estimated parameters shed light on which results can be more trusted than others. ScipionTomo is developed by a collaborative multidisciplinary team composed of Scipion team engineers, structural biologists, and in some cases, the developers whose software packages have been integrated. It is open to anyone in the field willing to contribute to this project. The result is a framework extension that combines the acquired knowledge of Scipion developers in close collaboration with third-party developers, and the on-demand design of functionalities requested by beta testers applying this solution to actual biological problems.

Zobrazit více v PubMed

de la Rosa-Trevín JM, Quintana A, del Cano L, Zaldívar A, Foche I, Gutiérrez J, Gómez-Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V, Vargas J, et al. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol. 2016;195(1):93–99. PubMed

Martínez M, Jiménez-Moreno A, Maluenda D, Ramírez-Aportela E, Melero R, Cuervo A, Conesa P, del Caño L, Fonseca YC, Sánchez-García R, Strelak D, et al. Integration of Cryo-EM model building software in Scipion. J Chem Inf Model. 2020;60(5):2533–2540. doi: 10.1021/acs.jcim.9b01032. PubMed DOI

Smith MTJ, Rubinstein JL. Structural biology. Beyond blob-ology Science. 2014;345(6197):617–619. PubMed

Lawson CL, Patwardhan A, Baker ML, Hryc C, Garcia ES, Hudson BP, Lagerstedt I, Ludtke SJ, Pintilie G, Sala R, Westbrook JD, et al. EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 2016;44(D1):D396–D403. PubMed PMC

Wan W, Briggs JAG. In: Methods in Enzymology. Crowther RA, editor. Academic Press; 2016. Chapter Thirteen - Cryo-Electron Tomography and Subtomogram Averaging; pp. 329–367. PubMed

Fernandez J-J. Computational methods for electron tomography. Micron. 2012;43(10):1010–1030. PubMed

Mastronarde DN, Held SR. Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol. 2017;197(2):102–113. PubMed PMC

Castaño-Díez D, Kudryashev M, Arheit M, Stahlberg H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J Struct Biol. 2012;178(2):139–151. PubMed

Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat Methods. 2019;16(11):1161–1168. PubMed PMC

Bharat TAM, Scheres SHW. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc. 2016;11(11):2054–2065. PubMed PMC

de la Rosa-Trevín JM, Otón J, Marabini R, Zaldívar A, Vargas J, Carazo JM, Sorzano COS. Xmipp 3.0: an improved software suite for image processing in electron microscopy. J Struct Biol. 2013;184(2):321–328. PubMed

Martinez-Sanchez A, Kochovski Z, Laugks U, Meyer zum Alten Borgloh J, Chakraborty S, Pfeffer S, Baumeister W, Lučić V. Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nat Methods. 2020;17(2):209–216. PubMed

Himes BA, Zhang P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat Methods. 2018;15(11):955–961. PubMed PMC

Heumann JM, Hoenger A, Mastronarde DN. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. J Struct Biol. 2011;175(3):288–299. PubMed PMC

Hrabe T, Chen Y, Pfeffer S, Kuhn Cuellar L, Mangold A-V, Förster F. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J Struct Biol. 2012;178(2):177–188. PubMed

Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat Methods. 2021;18:186–193. PubMed PMC

Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol. 2005;152(1):36–51. PubMed

The SerialEM Home Page. Available: https://bio3d.colorado.edu/SerialEM.

Thermo Scientific - Tomography 5 Software. Available: https://assets.thermofisher.com/TFS-Assets/MSD/Datasheets/tomography-5-software-ds0362.pdf.

Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryoelectron microscopy. Nat Methods. 2017;14(4):331–332. PubMed PMC

Hu J, Yu Y. Polycystic Kidney Disease. CRC Press; 2019.

Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol. 2016;193(1):1–12. PubMed PMC

Fernandez J-J, Li S, Agard DA. Consideration of sample motion in cryotomography based on alignment residual interpolation. J Struct Biol. 2019;205(3):1–6. PubMed PMC

Turoňová B, Schur FKM, Wan W, Briggs JAG. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å. J Struct Biol. 2017;199(3):187–195. PubMed PMC

Agulleiro JI, Fernandez JJ. Fast tomographic reconstruction on multicore computers. Bioinformatics. 2011;27(4):582–583. PubMed

Agulleiro J-I, Fernandez J-J. Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction. J Struct Biol. 2015;189(2):147–152. PubMed

Fernandez J-J, Li S, Bharat TAM, Agard DA. Cryo-tomography tilt-series alignment with consideration of the beam-induced sample motion. J Struct Biol. 2018;202(3):200–209. PubMed PMC

Fernandez J-J, Li S. TomoAlign: A novel approach to correcting sample motion and 3D CTF in CryoET. J Struct Biol. 2021;213(4):107778. doi: 10.1016/j.jsb:2021.107778. PubMed DOI

Zheng S, Wolff G, Greenan G, Chen Z, Faas FGA, Báarcena M, et al. AreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. bioRxiv. 2022:2022.02.15.480593. doi: 10.1101/2022.02.15.480593. PubMed DOI PMC

Moreno JJ, Martínez-Saánchez A, Martínez JA, Garzoón EM, Fernaández JJ, Murphy R. TomoEED: fast edge-enhancing denoising of tomographic volumes. Bioinformatics. 2018;34(21):3776–3778. PubMed

Fernandez J-J. TOMOBFLOW: feature-preserving noise filtering for electron tomography. BMC Bioinf. 2009;10:178. PubMed PMC

Buchholz T-O, Krull A, Shahidi R, Pigino G, Jékely G, Jug F. Content-aware image restoration for electron microscopy. Methods Cell Biol. 2019;152:277–289. PubMed

Martinez-Sanchez A, Garcia I, Asano S, Lucic V, Fernandez J-J. Robust membrane detection based on tensor voting for electron tomography. J Struct Biol. 2014;186(1):49–61. PubMed

Pyle E, Zanetti G. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem J. 2021;478:1827–1845. PubMed PMC

RELION — RELION documentation. Available: https://relion.readthedocs.io/en/release-4.0.

Harastani M, Eltsov M, Leforestier A, Jonic S. HEMNMA-3D: Cryo electron tomography method based on normal mode analysis to study continuous conformational variability of macromolecular complexes. Front Mol Biosci. 2021;8 PubMed PMC

Harastani M, Eltsov M, Leforestier A, Jonić S. TomoFlow: analysis of continuous conformational variability of macromolecules in cryogenic subtomograms based on 3D dense optical flow. J Mol Biol. 2022;434(2):167381. doi: 10.1016/j.jmb.2021.167381. PubMed DOI

Harastani M, Sorzano COS, Joniá S. Hybrid electron microscopy normal mode analysis with scipion. Protein Sci. 2020;29(1):223–236. PubMed PMC

Jin Q, Sorzano C, de la Rosa-Trevín J, Bilbao-Castro José Román, Núñez-Ramírez R, Llorca O, Tama F, Joniá S. Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes. Structure. 2014;22(3):496–506. PubMed

Vuillemot R, Miyashita O, Tama F, Rouiller I, Jonic S. NMMD: efficient Cryo-EM flexible fitting based on simultaneous normal mode and molecular dynamics atomic displacements. J Mol Biol. 2022;434(7):167483. doi: 10.1016/j.jmb.2022.167483. PubMed DOI

Vilas JL, Oton J, Messaoudi C, Melero R, Conesa P, Ramirez-Aportela E, Mota J, Martinez M, Jimenez A, Marabini R, Carazo JM, et al. Measurement of local resolution in electron tomography. J Struct Biol X. 2020;4:100016. doi: 10.1016/j.yjsbx.2019.100016. PubMed DOI PMC

Vilas JL, Goámez-Blanco J, Conesa P, Melero R, Miguel de la Rosa-Trevín J, Otón J, Cuenca J, Marabini R, Carazo JM, Vargas J, Sorzano COS. MonoRes: Automatic and Accurate Estimation of Local Resolution for Electron Microscopy Maps. Structure. 2018;26(2):337–344.:e4. PubMed

Fernández-Giménez E, Martínez M, Sánchez-García R, Marabini R, Ramírez-Aportela E, Conesa P, Carazo JM, Sorzano COS. Cryo-EM density maps adjustment for subtraction, consensus and sharpening. J Struct Biol. 2021;213(4):107780. doi: 10.1016/j.jsb:2021.107780. PubMed DOI

Iudin A, Korir PK, Salavert-Torres J, Kleywegt GJ, Patwardhan A. EMPIAR: a public archive for raw electron microscopy image data. Nat Methods. 2016;13(5):387–388. PubMed

Subtomogram tutorial — RELION documentation. [cited 25 Feb 2022]. Available: https://relion.readthedocs.io/en/release-4.0/STA_tutorial/index.html.

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017;14(3):290–296. PubMed

Zeng X, Xu M. AITom: Open-source AI platform for cryo-electron tomography data analysis. arXiv [q-bioQM] 2019 doi: 10.5281/zenodo.3973623. Available: http://arxiv.org/abs/1911.03044 turonova. turonova/novaSTA: novaSTA. 2020. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Scipion3: A workflow engine for cryo-electron microscopy image processing and structural biology

. 2023 ; 3 () : e13. [epub] 20230629

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...