Impact of BCR::ABL1 transcript type on RT-qPCR amplification performance and molecular response to therapy

. 2022 Jul ; 36 (7) : 1879-1886. [epub] 20220608

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35676453
Odkazy

PubMed 35676453
PubMed Central PMC9252903
DOI 10.1038/s41375-022-01612-2
PII: 10.1038/s41375-022-01612-2
Knihovny.cz E-zdroje

Several studies have reported that chronic myeloid leukaemia (CML) patients expressing e14a2 BCR::ABL1 have a faster molecular response to therapy compared to patients expressing e13a2. To explore the reason for this difference we undertook a detailed technical comparison of the commonly used Europe Against Cancer (EAC) BCR::ABL1 reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assay in European Treatment and Outcome Study (EUTOS) reference laboratories (n = 10). We found the amplification ratio of the e13a2 amplicon was 38% greater than e14a2 (p = 0.015), and the amplification efficiency was 2% greater (P = 0.17). This subtle difference led to measurable transcript-type dependent variation in estimates of residual disease which could be corrected by (i) taking the qPCR amplification efficiency into account, (ii) using alternative RT-qPCR approaches or (iii) droplet digital PCR (ddPCR), a technique which is relatively insensitive to differences in amplification kinetics. In CML patients, higher levels of BCR::ABL1/GUSB were identified at diagnosis for patients expressing e13a2 (n = 67) compared to e14a2 (n = 78) when analysed by RT-qPCR (P = 0.0005) but not ddPCR (P = 0.5). These data indicate that widely used RT-qPCR assays result in subtly different estimates of disease depending on BCR::ABL1 transcript type; these differences are small but may need to be considered for optimal patient management.

Abteilung Hämatologie Onkologie Klinik für Innere Medizin 2 University of Jena Jena Germany

Center of Molecular Biology and Gene Therapy Internal Hematology and Oncology Clinic Faculty Hospital Brno and Faculty of Medicine Masaryk University Brno Czech Republic

CLIP Dept of Paediatric Haematology and Oncology 2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Department of Molecular Medicine and Medical Biotechnology University 'Federico II' and CEINGE Advanced Biotechnologies Naples Italy

Faculty of Medicine University of Southampton Southampton UK

Fundeni Clinical Institute Hematology Department Bucharest Romania

Hematology Department Faculty of Medicine University of Medicine and Pharmacy Carol Davila Bucharest Romania

Institute for Medical Informatics and Biometry Carl Gustav Carus Faculty of Medicine TU Dresden Dresden Germany

Institute of Hematology and Blood Transfusion Prague Czech Republic

Internal Hematology and Oncology Clinic Faculty Hospital Brno and Faculty of Medicine Masaryk University Brno Czech Republic

IRCSS Azienda Ospedaliero Universitaria di Bologna Istituto di Ematologia Seràgnoli Bologna Italy

Labdia Labordiagnostik St Anna Children´s Cancer Research Institute Vienna Austria

Laboratory of Chemical and Clinical Analysis Area 3 A O U San Luigi Gonzaga Orbassano Turin Italy

National Center for Tumor Diseases Dresden Germany

Pathology Department Hospital Clinic Institut d' Investigacions Biomèdiques August Pi i Sunyer CIBERONC Barcelona Spain

Portuguese Oncology Institute of Porto Porto Portugal

The University Hospital in Krakow Krakow Poland

University of Catania Department of Clinical and Experimental Medicine Center of Experimental Oncology and Hematology Catania Italy

University of Leipzig Medical Center Department for Hematology Cellular Therapies and Hemostaseology Leipzig Germany

Wessex Regional Genetics Laboratory Salisbury NHS Foundation Trust Salisbury UK

Zobrazit více v PubMed

Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol. 2015;94:107–21. doi: 10.1007/s00277-015-2325-z. PubMed DOI

Baccarani M, Castagnetti F, Gugliotta G, Rosti G, Soverini S, Albeer A, et al. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia. 2019;33:1173–83. doi: 10.1038/s41375-018-0341-4. PubMed DOI

Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 1996;88:2375–84. doi: 10.1182/blood.V88.7.2375.bloodjournal8872375. PubMed DOI

Schäfer V, White HE, Gerrard G, Möbius S, Saussele S, Franke G-N, et al. Assessment of individual molecular response in chronic myeloid leukemia patients with atypical BCR-ABL1 fusion transcripts: recommendations by the EUTOS cooperative network. J cancer Res Clin Oncol. 2021;147:3081–9. doi: 10.1007/s00432-021-03569-8. PubMed DOI PMC

Ross D, O’Hely M, Bartley P, Dang P, Score J, Goyne J, et al. Distribution of genomic breakpoints in chronic myeloid leukemia: analysis of 308 patients. Leukemia. 2013;27:2105–7. doi: 10.1038/leu.2013.116. PubMed DOI

Gabert J, Beillard E, Velden VHJvd, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia. 2003;17:2318–57. doi: 10.1038/sj.leu.2403135. PubMed DOI

Debode F, Marien A, Janssen É, Bragard C, Berben G. The influence of amplicon length on real-time PCR results. Biotechnol Agron Soc Environ. 2017;21:3–11. doi: 10.25518/1780-4507.13461. DOI

Kjaer L, Skov V, Andersen MT, Aggerholm A, Clair P, Gniot M, et al. Variant-specific discrepancy when quantitating BCR-ABL1 e13a2 and e14a2 transcripts using the Europe Against Cancer qPCR assay. Eur J Haematol. 2019;103:26–34. doi: 10.1111/ejh.13238. PubMed DOI

Castagnetti F, Gugliotta G, Breccia M, Iurlo A, Levato L, Albano F, et al. The BCR-ABL1 transcript type influences response and outcome in Philadelphia chromosome-positive chronic myeloid leukemia patients treated frontline with imatinib. Am J Hematol. 2017;92:797–805. doi: 10.1002/ajh.24774. PubMed DOI

Hanfstein B, Lauseker M, Hehlmann R, Saussele S, Erben P, Dietz C, et al. Distinct characteristics of e13a2 versus e14a2 BCR-ABL1 driven chronic myeloid leukemia under first-line therapy with imatinib. Haematologica. 2014;99:1441–7. doi: 10.3324/haematol.2013.096537. PubMed DOI PMC

Jain P, Kantarjian H, Patel KP, Gonzalez GN, Luthra R, Shamanna RK, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127:1269–75. doi: 10.1182/blood-2015-10-674242. PubMed DOI PMC

Pfirrmann M, Evtimova D, Saussele S, Castagnetti F, Cervantes F, Janssen J, et al. No influence of BCR-ABL1 transcript types e13a2 and e14a2 on long-term survival: results in 1494 patients with chronic myeloid leukemia treated with imatinib. J cancer Res Clin Oncol. 2017;143:843–50. doi: 10.1007/s00432-016-2321-2. PubMed DOI PMC

Bustin S, Huggett J. qPCR primer design revisited. Biomolecular Detection Quantification. 2017;14:19–28. doi: 10.1016/j.bdq.2017.11.001. PubMed DOI PMC

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem. 2009;55:611–22. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Branford S, Hughes TP, Rudzki Z. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol. 1999;107:587–99. doi: 10.1046/j.1365-2141.1999.01749.x. PubMed DOI

Tukey JW Exploratory data analysis. Addison-Wesley Series in Behavioral Science: Quantitative Methods. 1977.

White H, Deprez L, Corbisier P, Hall V, Lin F, Mazoua S, et al. A certified plasmid reference material for the standardisation of BCR–ABL1 mRNA quantification by real-time quantitative PCR. Leukemia. 2015;29:369–76. doi: 10.1038/leu.2014.217. PubMed DOI PMC

White HE, Matejtschuk P, Rigsby P, Gabert J, Lin F, Lynn Wang Y, et al. Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood. 2010;116:e111–7. doi: 10.1182/blood-2010-06-291641. PubMed DOI

Machova Polakova K, Zizkova H, Zuna J, Motlova E, Hovorkova L, Gottschalk A, et al. Analysis of chronic myeloid leukaemia during deep molecular response by genomic PCR: a traffic light stratification model with impact on treatment-free remission. Leukemia. 2020;34:2113–24. doi: 10.1038/s41375-020-0882-1. PubMed DOI

Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, et al. The real-time polymerase chain reaction. Mol Asp Med. 2006;27:95–125. doi: 10.1016/j.mam.2005.12.007. PubMed DOI

Sta A, Kubista M. Quantitative real-time PCR method for detection of b-lymphocyte monoclonality by comparison of κ and λ immunoglobulin light chain expression. Clin Chem. 2003;49:9. PubMed

Glauche I, Kuhn M, Baldow C, Schulze P, Rothe T, Liebscher H, et al. Quantitative prediction of long-term molecular response in TKI-treated CML – Lessons from an imatinib versus dasatinib comparison. Sci Rep. 2018;8:12330. doi: 10.1038/s41598-018-29923-4. PubMed DOI PMC

Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10. doi: 10.1016/S0140-6736(86)90837-8. PubMed DOI

Datta D blandr: a Bland-Altman Method Comparison package for R. 2017.

Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–84. doi: 10.1038/s41375-020-0776-2. PubMed DOI PMC

Baccarani M, Rosti G, Soverini S. Chronic myeloid leukemia: the concepts of resistance and persistence and the relationship with the BCR-ABL1 transcript type. Leukemia. 2019;33:2358–64. doi: 10.1038/s41375-019-0562-1. PubMed DOI

Lucas CM, Harris RJ, Giannoudis A, Davies A, Knight K, Watmough SJ, et al. Chronic myeloid leukemia patients with the e13a2 BCR-ABL fusion transcript have inferior responses to imatinib compared to patients with the e14a2 transcript. Haematologica. 2009;94:1362. doi: 10.3324/haematol.2009.009134. PubMed DOI PMC

Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29:999–1003. doi: 10.1038/leu.2015.29. PubMed DOI PMC

Gallup JM Difficult templates and inhibitors of PCR. PCR Troubleshooting and Optimization: The Essential Guide. 2011.

Marum JE, Branford S. Current developments in molecular monitoring in chronic myeloid leukemia. Therapeutic Adv Hematol. 2016;7:237–51. doi: 10.1177/2040620716657994. PubMed DOI PMC

Dominy KM, Claudiani S, O'Hare M, Szydlo R, Gerrard G, Foskett P, et al. Assessment of quantitative polymerase chain reaction for BCR-ABL1 transcripts in chronic myeloid leukaemia: Are improved outcomes in patients with e14a2 transcripts an artefact of technology? Br J Haematol. 2022;197:52–62. doi: 10.1111/bjh.18026. PubMed DOI

Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Brankatschk R, Bodenhausen N, Zeyer J, Bürgmann H. Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl Environ Microbiol. 2012;78:4481–9. doi: 10.1128/AEM.07878-11. PubMed DOI PMC

Bernardi S, Malagola M, Zanaglio C, Polverelli N, Dereli Eke E, D’Adda M, et al. Digital PCR improves the quantitation of DMR and the selection of CML candidates to TKIs discontinuation. Cancer Med. 2019;8:2041–55. doi: 10.1002/cam4.2087. PubMed DOI PMC

Bochicchio MT, Petiti J, Berchialla P, Izzo B, Giugliano E, Ottaviani E, et al. Droplet digital PCR for BCR–ABL1 monitoring in diagnostic routine: ready to start? Cancers. 2021;13:5470. doi: 10.3390/cancers13215470. PubMed DOI PMC

Franke G-N, Maier J, Wildenberger K, Cross M, Giles FJ, Müller MC, et al. Comparison of real-time quantitative PCR and digital droplet PCR for BCR-ABL1 monitoring in patients with chronic myeloid leukemia. J Mol Diagnostics. 2020;22:81–9. doi: 10.1016/j.jmoldx.2019.08.007. PubMed DOI

Scott S, Cartwright A, Francis S, Whitby L, Sanzone AP, Mulder A, et al. Assessment of droplet digital polymerase chain reaction for measuring BCR-ABL1 in chronic myeloid leukaemia in an international interlaboratory study. Br J Haematol. 2021;194:53–60. doi: 10.1111/bjh.17521. PubMed DOI

Branford S, Yeung DT, Parker WT, Roberts ND, Purins L, Braley JA, et al. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood. 2014;124:511–8. doi: 10.1182/blood-2014-03-566323. PubMed DOI

Hanfstein B, Shlyakhto V, Lauseker M, Hehlmann R, Saussele S, Dietz C, et al. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia. 2014;28:1988–92. doi: 10.1038/leu.2014.153. PubMed DOI

Pagani IS, Dang P, Saunders VA, Grose R, Shanmuganathan N, Kok CH, et al. Lineage of measurable residual disease in patients with chronic myeloid leukemia in treatment-free remission. Leukemia. 2020;34:1052–61. doi: 10.1038/s41375-019-0647-x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...