• This record comes from PubMed

Recovery of Hydrochloric Acid from Industrial Wastewater by Diffusion Dialysis Using a Spiral-Wound Module

. 2022 Jun 01 ; 23 (11) : . [epub] 20220601

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Decision No. 6/2018 Ministry of Industry and Trade

In the present study, the possibility of using a spiral-wound diffusion dialysis module was studied for the separation of hydrochloric acid and Zn2+, Ni2+, Cr3+, and Fe2+ salts. Diffusion dialysis recovered 68% of free HCl from the spent pickling solution contaminated with heavy-metal-ion salts. A higher volumetric flowrate of the stripping medium recovered a more significant portion of free acid, namely, 77%. Transition metals (Fe, Ni, Cr) apart from Zn were rejected by >85%. Low retention of Zn (35%) relates to the diffusion of negatively charged chloro complexes through the anion-exchange membrane. The mechanical and transport properties of dialysis FAD-PET membrane under accelerated degradation conditions was investigated. Long-term tests coupled with the economic study have verified that diffusion dialysis is a suitable method for the treatment of spent acids, the salts of which are well soluble in water. Calculations predict significant annual OPEX savings, approximately up to 58%, favouring diffusion dialysis for implementation into wastewater management.

See more in PubMed

Hughes T.A., Gray N.F. Removal of metals and acidity from acid mine drainage using municipal wastewater and activated sludge. Mine Water Environ. 2013;32:170–184. doi: 10.1007/s10230-013-0218-8. DOI

López J., Gibert O., Cortina J. Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview. Sep. Purif. Technol. 2021;265:118485. doi: 10.1016/j.seppur.2021.118485. DOI

Luo J., Wu C., Xu T., Wu Y. Diffusion dialysis-concept, principle and applications. J. Membr. Sci. 2011;366:1–16. doi: 10.1016/j.memsci.2010.10.028. DOI

Zhang C., Zhang W., Wang Y. Diffusion dialysis for acid recovery from acidic waste solutions: Anion exchange membranes and technology integration. Membranes. 2020;10:169. doi: 10.3390/membranes10080169. PubMed DOI PMC

Wang G., Xu J., Sun P., Zhao X., Zhang W., Lv L., Pan B., Guo Q., Bin Y., Wang J. Principle of diffusion dialysis method and its application in the treatment of wastewater of electroplating industry. Ion Exch. Adsorpt. 2015;31:569–576. doi: 10.16026/j.cnki.iea.2015060569. DOI

Zhang P., Wu Y., Liu W., Cui P., Huang Q., Ran J. Construction of two dimensional anion exchange membranes to boost acid recovery performances. J. Membr. Sci. 2021;618:118692. doi: 10.1016/j.memsci.2020.118692. DOI

Chen Q., Luo J., Liao J., Zhu C., Li J., Xu J., Xu Y., Ruan H., Shen J. Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance. J. Memb. Sci. 2022;641:119860. doi: 10.1016/j.memsci.2021.119860. DOI

Sharma J., Misra S., Kulshrestha V. Internally cross-linked poly (2,6-dimethyl-1,4-phenylene ether) based anion exchange membrane for recovery of different acids by diffusion dialysis. Chem. Eng. J. 2021;414:128776. doi: 10.1016/j.cej.2021.128776. DOI

Lin J., Huang J., Wang J., Yu J., You X., Lin X., Van Der Bruggen B., Zhao S. High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis. J. Membr. Sci. 2021;624:119116. doi: 10.1016/j.memsci.2021.119116. DOI

Ye H., Zou L., Wu C., Wu Y. Tubular membrane used in continuous and semi-continuous diffusion dialysis. Sep. Purif. Technol. 2020;235:116147. doi: 10.1016/j.seppur.2019.116147. DOI

Luo F., Zhang X., Pan J., Mondal A.N., Feng H., Xu T. Diffusion dialysis of sulfuric acid in spiral wound membrane modules: Effect of module number and connection mode. Sep. Purif. Technol. 2015;148:25–31. doi: 10.1016/j.seppur.2015.04.033. DOI

Gueccia R., Aguirre A.R., Randazzo S., Cipollina A., Micale G. Diffusion dialysis for separation of hydrochloric acid, iron and zinc ions from highly concentrated pickling solutions. Membranes. 2020;10:129. doi: 10.3390/membranes10060129. PubMed DOI PMC

Ruiz-Aguirre A., Lopez J., Gueccia R., Randazzo S., Cipollina A., Cortina J., Micale G. Diffusion dialysis for the treatment of H2SO4-CuSO4 solutions from electroplating plants: Ions membrane transport characterization and modelling. Sep. Purif. Technol. 2021;266:118215. doi: 10.1016/j.seppur.2020.118215. DOI

Gueccia R., Winter D., Randazzo S., Cipollina A., Koschikowski J., Micale G.D. An integrated approach for the HCl and metals recovery from waste pickling solutions: Pilot plant and design operations. Chem. Eng. Res. Des. 2021;168:383–396. doi: 10.1016/j.cherd.2021.02.016. DOI

Deng T., Zeng X., Zhang C., Wang Y., Zhang W. Constructing proton selective pathways using MOFs to enhance acid recovery efficiency of anion exchange membranes. Chem. Eng. J. 2022;445:136752. doi: 10.1016/j.cej.2022.136752. DOI

Zhang X., Li C., Wang H., Xu T. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foil wastewater by spiral wound diffusion dialysis (SWDD) membrane module. J. Membr. Sci. 2011;384:219–225. doi: 10.1016/j.memsci.2011.09.036. DOI

Merkel A., Čopák L., Dvořák L., Golubenko D., Šeda L. Recovery of Spent Sulphuric Acid by Diffusion Dialysis Using a Spiral Wound Module. Int. J. Mol. Sci. 2021;22:11819. doi: 10.3390/ijms222111819. PubMed DOI PMC

Chen N., Lee Y.M. Anion exchange polyelectrolytes for membranes and ionomers. Prog. Polym. Sci. 2021;113:101345. doi: 10.1016/j.progpolymsci.2020.101345. DOI

Wang L., Peng X., Mustain W.E., Varcoe J.R. Radiation-grafted anion-exchange membranes: The switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance. Energy Environ. Sci. 2019;12:1575–1579. doi: 10.1039/C9EE00331B. DOI

Biancolli A.L.G., Bsoul-Haj S., Douglin J.C., Barbosa A.S., de Sousa R.R., Rodrigues O., Lanfredi A.J.C., Dekel D.R., Santiago E.I. High-performance radiation grafted anion-exchange membranes for fuel cell applications: Effects of irradiation conditions on ETFE-based membranes properties. J. Memb. Sci. 2022;641:119879. doi: 10.1016/j.memsci.2021.119879. DOI

Pal S., Mondal R., Guha S., Chatterjee U., Jewrajka S.K. Crosslinked terpolymer anion exchange membranes for selective ion separation and acid recovery. J. Memb. Sci. 2020;612:118459. doi: 10.1016/j.memsci.2020.118459. DOI

Ji W., Wu B., Zhu Y., Irfan M., Afsar N.U., Ge L., Xu T. Self-organized nanostructured anion exchange membranes for acid recovery. Chem. Eng. J. 2020;382:122838. doi: 10.1016/j.cej.2019.122838. DOI

Dean J.A. Lange’s Handbook of Chemistry. McGraw-Hill, Inc.; New York City, NY, USA: 2017.

Safronova E.Y., Stenina I.A., Yaroslavtsev A.B. The possibility of changing the transport properties of ion-exchange membranes by their treatment. Pet. Chem. 2017;57:299–305. doi: 10.1134/S0965544117040065. DOI

Stenina I., Yaroslavtsev A. Ionic mobility in ion-exchange membranes. Membranes. 2021;11:198. doi: 10.3390/membranes11030198. PubMed DOI PMC

Stenina I., Golubenko D., Nikonenko V., Yaroslavtsev A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. Int. J. Mol. Sci. 2020;21:5517. doi: 10.3390/ijms21155517. PubMed DOI PMC

Park H.B., Kamcev J., Robeson L.M., Elimelech M., Freeman B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017;356:eaab0530. doi: 10.1126/science.aab0530. PubMed DOI

Russell S.T., Pereira R., Vardner J.T., Jones G.N., Dimarco C., West A.C., Kumar S.K. Hydration Effects on the Permselectivity-Conductivity Trade-Off in Polymer Electrolytes. Macromolecules. 2020;53:1014–1023. doi: 10.1021/acs.macromol.9b02291. DOI

Cukierman S. Et tu, Grotthuss and other unfinished stories. Biochim. Biophys. Acta BBA Bioenerg. 2006;1757:876–885. doi: 10.1016/j.bbabio.2005.12.001. PubMed DOI

Morris D.F.C., Reed G.L., Short E.L., Slater D.N., Waters D.N. Nickel (II) chloride complexes in aqueous solution. J. Inorg. Nucl. Chem. 1965;27:377–382. doi: 10.1016/0022-1902(65)80355-4. DOI

Persson I. Ferric Chloride Complexes in Aqueous Solution: An EXAFS Study. J. Solut. Chem. 2018;47:797–805. doi: 10.1007/s10953-018-0756-6. PubMed DOI PMC

Golubenko D., Pourcelly G., Yaroslavtsev A. Permselectivity and ion-conductivity of grafted cation-exchange membranes based on UV-oxidized polymethylpenten and sulfonated polystyrene. Sep. Purif. Technol. 2018;207:329–335. doi: 10.1016/j.seppur.2018.06.041. DOI

Safronova E., Golubenko D., Pourcelly G., Yaroslavtsev A. Mechanical properties and influence of straining on ion conduc- tivity of perfluorosulfonic acid Nafion®-type membranes depending on water uptake. J. Membr. Sci. 2015;473:218–225. doi: 10.1016/j.memsci.2014.09.031. DOI

Golubenko D.V., Van der Bruggen B., Yaroslavtsev A.B. Novel anion exchange membrane with low ionic resistance based on chloromethylated/quaternized-grafted polystyrene for energy efficient electromembrane processes. J. Appl. Polym. Sci. 2020;137:48656. doi: 10.1002/app.48656. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...