Recovery of Hydrochloric Acid from Industrial Wastewater by Diffusion Dialysis Using a Spiral-Wound Module
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
Decision No. 6/2018
Ministry of Industry and Trade
PubMed
35682891
PubMed Central
PMC9181085
DOI
10.3390/ijms23116212
PII: ijms23116212
Knihovny.cz E-resources
- Keywords
- acid recovery, anion-exchange homogeneous membrane, membrane stability, metallic chlorides, soluble salts, techno-economic study, wastewater,
- MeSH
- Renal Dialysis MeSH
- Hydrochloric Acid * MeSH
- Acids MeSH
- Wastewater MeSH
- Salts MeSH
- Metals, Heavy * analysis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hydrochloric Acid * MeSH
- Acids MeSH
- Waste Water MeSH
- Salts MeSH
- Metals, Heavy * MeSH
In the present study, the possibility of using a spiral-wound diffusion dialysis module was studied for the separation of hydrochloric acid and Zn2+, Ni2+, Cr3+, and Fe2+ salts. Diffusion dialysis recovered 68% of free HCl from the spent pickling solution contaminated with heavy-metal-ion salts. A higher volumetric flowrate of the stripping medium recovered a more significant portion of free acid, namely, 77%. Transition metals (Fe, Ni, Cr) apart from Zn were rejected by >85%. Low retention of Zn (35%) relates to the diffusion of negatively charged chloro complexes through the anion-exchange membrane. The mechanical and transport properties of dialysis FAD-PET membrane under accelerated degradation conditions was investigated. Long-term tests coupled with the economic study have verified that diffusion dialysis is a suitable method for the treatment of spent acids, the salts of which are well soluble in water. Calculations predict significant annual OPEX savings, approximately up to 58%, favouring diffusion dialysis for implementation into wastewater management.
See more in PubMed
Hughes T.A., Gray N.F. Removal of metals and acidity from acid mine drainage using municipal wastewater and activated sludge. Mine Water Environ. 2013;32:170–184. doi: 10.1007/s10230-013-0218-8. DOI
López J., Gibert O., Cortina J. Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview. Sep. Purif. Technol. 2021;265:118485. doi: 10.1016/j.seppur.2021.118485. DOI
Luo J., Wu C., Xu T., Wu Y. Diffusion dialysis-concept, principle and applications. J. Membr. Sci. 2011;366:1–16. doi: 10.1016/j.memsci.2010.10.028. DOI
Zhang C., Zhang W., Wang Y. Diffusion dialysis for acid recovery from acidic waste solutions: Anion exchange membranes and technology integration. Membranes. 2020;10:169. doi: 10.3390/membranes10080169. PubMed DOI PMC
Wang G., Xu J., Sun P., Zhao X., Zhang W., Lv L., Pan B., Guo Q., Bin Y., Wang J. Principle of diffusion dialysis method and its application in the treatment of wastewater of electroplating industry. Ion Exch. Adsorpt. 2015;31:569–576. doi: 10.16026/j.cnki.iea.2015060569. DOI
Zhang P., Wu Y., Liu W., Cui P., Huang Q., Ran J. Construction of two dimensional anion exchange membranes to boost acid recovery performances. J. Membr. Sci. 2021;618:118692. doi: 10.1016/j.memsci.2020.118692. DOI
Chen Q., Luo J., Liao J., Zhu C., Li J., Xu J., Xu Y., Ruan H., Shen J. Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance. J. Memb. Sci. 2022;641:119860. doi: 10.1016/j.memsci.2021.119860. DOI
Sharma J., Misra S., Kulshrestha V. Internally cross-linked poly (2,6-dimethyl-1,4-phenylene ether) based anion exchange membrane for recovery of different acids by diffusion dialysis. Chem. Eng. J. 2021;414:128776. doi: 10.1016/j.cej.2021.128776. DOI
Lin J., Huang J., Wang J., Yu J., You X., Lin X., Van Der Bruggen B., Zhao S. High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis. J. Membr. Sci. 2021;624:119116. doi: 10.1016/j.memsci.2021.119116. DOI
Ye H., Zou L., Wu C., Wu Y. Tubular membrane used in continuous and semi-continuous diffusion dialysis. Sep. Purif. Technol. 2020;235:116147. doi: 10.1016/j.seppur.2019.116147. DOI
Luo F., Zhang X., Pan J., Mondal A.N., Feng H., Xu T. Diffusion dialysis of sulfuric acid in spiral wound membrane modules: Effect of module number and connection mode. Sep. Purif. Technol. 2015;148:25–31. doi: 10.1016/j.seppur.2015.04.033. DOI
Gueccia R., Aguirre A.R., Randazzo S., Cipollina A., Micale G. Diffusion dialysis for separation of hydrochloric acid, iron and zinc ions from highly concentrated pickling solutions. Membranes. 2020;10:129. doi: 10.3390/membranes10060129. PubMed DOI PMC
Ruiz-Aguirre A., Lopez J., Gueccia R., Randazzo S., Cipollina A., Cortina J., Micale G. Diffusion dialysis for the treatment of H2SO4-CuSO4 solutions from electroplating plants: Ions membrane transport characterization and modelling. Sep. Purif. Technol. 2021;266:118215. doi: 10.1016/j.seppur.2020.118215. DOI
Gueccia R., Winter D., Randazzo S., Cipollina A., Koschikowski J., Micale G.D. An integrated approach for the HCl and metals recovery from waste pickling solutions: Pilot plant and design operations. Chem. Eng. Res. Des. 2021;168:383–396. doi: 10.1016/j.cherd.2021.02.016. DOI
Deng T., Zeng X., Zhang C., Wang Y., Zhang W. Constructing proton selective pathways using MOFs to enhance acid recovery efficiency of anion exchange membranes. Chem. Eng. J. 2022;445:136752. doi: 10.1016/j.cej.2022.136752. DOI
Zhang X., Li C., Wang H., Xu T. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foil wastewater by spiral wound diffusion dialysis (SWDD) membrane module. J. Membr. Sci. 2011;384:219–225. doi: 10.1016/j.memsci.2011.09.036. DOI
Merkel A., Čopák L., Dvořák L., Golubenko D., Šeda L. Recovery of Spent Sulphuric Acid by Diffusion Dialysis Using a Spiral Wound Module. Int. J. Mol. Sci. 2021;22:11819. doi: 10.3390/ijms222111819. PubMed DOI PMC
Chen N., Lee Y.M. Anion exchange polyelectrolytes for membranes and ionomers. Prog. Polym. Sci. 2021;113:101345. doi: 10.1016/j.progpolymsci.2020.101345. DOI
Wang L., Peng X., Mustain W.E., Varcoe J.R. Radiation-grafted anion-exchange membranes: The switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance. Energy Environ. Sci. 2019;12:1575–1579. doi: 10.1039/C9EE00331B. DOI
Biancolli A.L.G., Bsoul-Haj S., Douglin J.C., Barbosa A.S., de Sousa R.R., Rodrigues O., Lanfredi A.J.C., Dekel D.R., Santiago E.I. High-performance radiation grafted anion-exchange membranes for fuel cell applications: Effects of irradiation conditions on ETFE-based membranes properties. J. Memb. Sci. 2022;641:119879. doi: 10.1016/j.memsci.2021.119879. DOI
Pal S., Mondal R., Guha S., Chatterjee U., Jewrajka S.K. Crosslinked terpolymer anion exchange membranes for selective ion separation and acid recovery. J. Memb. Sci. 2020;612:118459. doi: 10.1016/j.memsci.2020.118459. DOI
Ji W., Wu B., Zhu Y., Irfan M., Afsar N.U., Ge L., Xu T. Self-organized nanostructured anion exchange membranes for acid recovery. Chem. Eng. J. 2020;382:122838. doi: 10.1016/j.cej.2019.122838. DOI
Dean J.A. Lange’s Handbook of Chemistry. McGraw-Hill, Inc.; New York City, NY, USA: 2017.
Safronova E.Y., Stenina I.A., Yaroslavtsev A.B. The possibility of changing the transport properties of ion-exchange membranes by their treatment. Pet. Chem. 2017;57:299–305. doi: 10.1134/S0965544117040065. DOI
Stenina I., Yaroslavtsev A. Ionic mobility in ion-exchange membranes. Membranes. 2021;11:198. doi: 10.3390/membranes11030198. PubMed DOI PMC
Stenina I., Golubenko D., Nikonenko V., Yaroslavtsev A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. Int. J. Mol. Sci. 2020;21:5517. doi: 10.3390/ijms21155517. PubMed DOI PMC
Park H.B., Kamcev J., Robeson L.M., Elimelech M., Freeman B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science. 2017;356:eaab0530. doi: 10.1126/science.aab0530. PubMed DOI
Russell S.T., Pereira R., Vardner J.T., Jones G.N., Dimarco C., West A.C., Kumar S.K. Hydration Effects on the Permselectivity-Conductivity Trade-Off in Polymer Electrolytes. Macromolecules. 2020;53:1014–1023. doi: 10.1021/acs.macromol.9b02291. DOI
Cukierman S. Et tu, Grotthuss and other unfinished stories. Biochim. Biophys. Acta BBA Bioenerg. 2006;1757:876–885. doi: 10.1016/j.bbabio.2005.12.001. PubMed DOI
Morris D.F.C., Reed G.L., Short E.L., Slater D.N., Waters D.N. Nickel (II) chloride complexes in aqueous solution. J. Inorg. Nucl. Chem. 1965;27:377–382. doi: 10.1016/0022-1902(65)80355-4. DOI
Persson I. Ferric Chloride Complexes in Aqueous Solution: An EXAFS Study. J. Solut. Chem. 2018;47:797–805. doi: 10.1007/s10953-018-0756-6. PubMed DOI PMC
Golubenko D., Pourcelly G., Yaroslavtsev A. Permselectivity and ion-conductivity of grafted cation-exchange membranes based on UV-oxidized polymethylpenten and sulfonated polystyrene. Sep. Purif. Technol. 2018;207:329–335. doi: 10.1016/j.seppur.2018.06.041. DOI
Safronova E., Golubenko D., Pourcelly G., Yaroslavtsev A. Mechanical properties and influence of straining on ion conduc- tivity of perfluorosulfonic acid Nafion®-type membranes depending on water uptake. J. Membr. Sci. 2015;473:218–225. doi: 10.1016/j.memsci.2014.09.031. DOI
Golubenko D.V., Van der Bruggen B., Yaroslavtsev A.B. Novel anion exchange membrane with low ionic resistance based on chloromethylated/quaternized-grafted polystyrene for energy efficient electromembrane processes. J. Appl. Polym. Sci. 2020;137:48656. doi: 10.1002/app.48656. DOI