Ecotoxicity and Biodegradation of Sustainable Environment-Friendly Bone-Glue-Based Adhesive Suitable for Insulation Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-12166S
Czech Science Foundation
PubMed
35683882
PubMed Central
PMC9182703
DOI
10.3390/polym14112209
PII: polym14112209
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradation, bone glue, ecotoxicity, rape straw, sodium lignosulfonate,
- Publikační typ
- časopisecké články MeSH
Bone glue with sodium lignosulfonate is a protein-based adhesive. Their combination leads to strong binding necessary for the achievement of adhesive properties. However, biodegradation and ecotoxicity of materials composed of bone glue and sodium lignosulfonate has never been studied before. In this paper, the biodegradation potential of the mixture of bone glue, lignosulfonate and rape straw modified by water or NaOH on an agar test with aerial molds and in acute aquatic tests with mustard, yeasts, algae and crustaceans was analyzed. Epoxy resin as an ecologically unfriendly binder was used as a negative control and pure rape straw as a background. The results indicated that all samples were covered by molds, but the samples containing straw treated by NaOH showed lower biodegradability. The ecotoxicological effects varied among the applied model organisms. Artemia salina was not able to survive and S. alba could not prolong roots in the eluates of all samples (100% inhibition). Freshwater algae (D. subspicatus) were not significantly affected by the samples (max. 12% inhibition, max. 16% stimulation). The biomass of yeasts (S. cerevisae) was strongly stimulated in the presence of eluates in a comparison to control (max. 38% stimulation).
Zobrazit více v PubMed
OECD. [(accessed on 23 May 2022)]. Available online: https://www.oecd.org/
ISO. [(accessed on 23 May 2022)]. Available online: https://www.iso.org/home.html.
ASTM. [(accessed on 23 May 2022)]. Available online: https://www.astm.org/
REACH. [(accessed on 23 May 2022)]. Available online: https://europa.eu/youreurope/business/product-requirements/chemicals/registering-chemicals-reach/index_cs.htm.
Pacheco-Torgal F., Jalali S. Toxicity of building materials: A key issue in sustainable construction. Int. J. Sustain. Eng. 2019;4:281–287. doi: 10.1080/19397038.2011.569583. DOI
Krüger O., Kalbe U., Richter E., Egeler P., Römbke J., Berger W. New approach to the ecotoxicological risk assessment of artificial outdoor sporting grounds. Environ. Pollut. 2013;175:69–74. doi: 10.1016/j.envpol.2012.12.024. PubMed DOI
Baderna D., Lomazzi E., Passoni A., Pogliaghi A., Petoumenou M.I., Bagnati R., Lodia M., Viarengo A., Sforzini S., Benfenati E., et al. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunnelling. J. Hazard. Mater. 2015;296:210–220. doi: 10.1016/j.jhazmat.2015.04.040. PubMed DOI
Gartiser S., Heisterkamp I., Schoknecht U., Bandow N., Burkhardt N.M., Ratte M., Ilvonen O. Recommendation for a test battery for the ecotoxicological evaluation of the environmental safety of construction products. Chemosphere. 2017;171:580–587. doi: 10.1016/j.chemosphere.2016.12.115. PubMed DOI
Sickels L.B. Organic additives in mortars. Edinb. Univ. Res. J. Architect. 1980;8:7–20.
Loaiza A., Garcia E., Colorado E.A. Evaluation of asphalt binder blended with coconut coir dust and residual coconut fibers for structural applications. Rev. Constr. 2019;17:542–554. doi: 10.7764/RDLC.17.3.542. DOI
Lee J.H., Kim J., Kim S., Kim J.T. Characteristics of Particleboards Using Tannin Resin as Novel Environment-Friendly Adhesion System. Indoor Built Environ. 2013;22:61–67. doi: 10.1177/1420326X12469552. DOI
Protano C., Buomprisco G., Cammalleri V., Poceni R.N., Marotta D., Simonazzi S., Cardoni F., Petyx M., Iavicoli S., Vitali M. The Carcinogenic Effects of Formaldehyde Occupational Exposure: A Systematic Review. Cancers. 2021;14:165. doi: 10.3390/cancers14010165. PubMed DOI PMC
Wi S., Park J.H., Kim J.U., Kim S. Evaluation of environmental impact on the formaldehyde emission and flame-retardant performance of thermal insulation materials. J. Hazard. Mater. 2021;402:123463. doi: 10.1016/j.jhazmat.2020.123463. PubMed DOI
Kristak S., Antov P., Bekhta P., Lubis M.A.R., Heri I.A., Réh R., Sedliacik J., Savov V., Taghiyari H.R., Papadopoulos A.N., et al. Recent Progress in Ultra-Low Formaldehyde Emitting Adhesive Systems and Formaldehyde Scavengers in Wood-Based Panels: A Review. Wood Mater. Sci. Eng. 2022;17:1–20. doi: 10.1080/17480272.2022.2056080. DOI
Jin F.L., Li X., Park S.J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015;29:1–11. doi: 10.1016/j.jiec.2015.03.026. DOI
Liu Q., Wang D., Li Z., Li Z., Peng X., Liu C., Zhang Y., Zheng P. Recent Developments in the Flame-Retardant System of Epoxy Resin. Materials. 2020;13:2145. doi: 10.3390/ma13092145. PubMed DOI PMC
ECHA. [(accessed on 23 May 2022)]. Available online: https://european-union.europa.eu/institutions-law-budget/institutions-and-bodies/institutions-and-bodies-profiles/echa_cs.
Cosereanu C., Cerbu C. Rape/wood particleboard. BioResources. 2019;14:2903–2918.
Mirski R., Derkowski A., Dziurka D., Wieruszewski M., Dukarska D. Effects of chip type on the properties of chip-sawdust boards glued with polymeric diphenyl methane diisocyanate. Materials. 2020;13:1329. doi: 10.3390/ma13061329. PubMed DOI PMC
Mantanis G.I., Athanassiadou E.T., Barbu M.C., Wijnendaele K. Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Mater. Sci. Eng. 2017;13:104–116. doi: 10.1080/17480272.2017.1396622. DOI
Sunardi M., Fawaid R., Lusiani S.B., Kesworo A., Widodo T.D. The Effect of Wood Sawdust Mesh Combination on Mechanical Behaviour of Particle Board. IOP Conf. Ser. Mater. Sci. Eng. 2019;494:012089. doi: 10.1088/1757-899X/494/1/012089. DOI
Budakci M. The determination of adhesion strength of wood veneer and synthetic resin panel (laminate) adhesives. Wood Res. 2010;55:125–136.
Berardi U., Iannace G. Acoustic characterization of natural fibers for sound absorption applications. Energy Build. 2015;94:840–852. doi: 10.1016/j.buildenv.2015.05.029. DOI
Berardi U., Iannace G. Predicting the sound absorption of natural materials: Best fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017;115:131–138. doi: 10.1016/j.apacoust.2016.08.012. DOI
Richter R., Římovský K. Organická Hnojiva, Jejich Výroba a Použití. Institut výchovy a vzdělávání Ministerstva zemědělství; Prague, Czech Republic: 1995. pp. 1–40.
Strehler A. Energie aus Biomase. 1st ed. Landtechnik; Bericht, Germany: 1994. Aufbereitung und Verfeuerung von Biomase als Festbrennstoff; pp. 171–192.
Rahim M., Douzane O., Tran Le A.D., Promis G., Langlet T. Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Constr. Build. Mater. 2016;102:679–687. doi: 10.1016/j.conbuildmat.2015.11.021. DOI
Ahmad M.R., Chen B. Influence of type of binder and size of plant aggregate on the hygrothermal properties of bio-concrete. Constr. Build. Mater. 2020;251:118981. doi: 10.1016/j.conbuildmat.2020.118981. DOI
Zhang M.H., Sisomphon K., Ng T.S., Sun D.J. Effect of superplasticizers on workability retention and initial setting time of cement pastes. Constr. Build. Mater. 2010;24:1700–1707. doi: 10.1016/j.conbuildmat.2010.02.021. DOI
Tantawi S.H., Selim I.Z. Role of some concrete admixtures on the resistivity of cement pastes and reinforced steel. Bull. Electrochem. 2004;20:175–182.
Topcu I.B., Atesin O. Effect of high dosage lignosulphonate and naphthalene sulphonate based plasticizer usage on micro concrete properties. Constr. Build. Mater. 2016;120:189–197. doi: 10.1016/j.conbuildmat.2016.05.112. DOI
Guo M.H., Wang Y., Liu F. Performance Analysis of Ammonium Lignosulfonate/Urea Formaldehyde-free Fiberboards. Adv. Mater. Res. 2010;113:1774–1778. doi: 10.4028/www.scientific.net/AMR.113-116.1774. DOI
Chupin L., Charrier B., Pizzi A., Perdomo A., Bouhtoury C.E. Study of thermal durability properties of tannin–lignosulfonate adhesives. J. Therm. Anal. Calorim. 2015;119:1577–1585. doi: 10.1007/s10973-014-4331-0. DOI
Antov P., Savov V., Trichkov N., Krišťák L., Réh R., Papadopoulos A.N., Takhiyari H.R., Pizzi A., Kunecová D., Pachikova M. Properties of High-Density Fiberboard Bonded with Urea–Formaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based Additive. Polymers. 2021;13:2775. doi: 10.3390/polym13162775. PubMed DOI PMC
Hemmila V., Adamopoulos S., Hosseinpourpia R., Ahmed S.A. Ammonium Lignosulfonate Adhesives for Particleboards with pMDI and Furfuryl Alcohol as Crosslinkers. Polymers. 2019;11:1633. doi: 10.3390/polym11101633. PubMed DOI PMC
Antov P., Savov V., Mantanis G.I., Neykov N. Medium-density fibreboards bonded with phenol-formaldehyde resin and calcium lignosulfonate as an eco-friendly additive. Wood Mater. Sci. Eng. 2020;16:42–48. doi: 10.1080/17480272.2020.1751279. DOI
Nguyen D.M., Grillet A.C., Diep T.M.H., Ha T.C.N., Woloszyn M. Hygrothermal properties of bio-insulation building materials based on bamboo fibers and bio-glues. Constr. Build. Mater. 2017;155:852–866. doi: 10.1016/j.conbuildmat.2017.08.075. DOI
Nguyen D.M., Grillet A.C., Bui Q.B., Diep T.M.H., Woloszyn M. Building bio-insulation materials based on bamboo powder and bio-binders. Constr. Build. Mater. 2018;186:686–698. doi: 10.1016/j.conbuildmat.2018.07.153. DOI
Kunanopparat T., Menut P., Morel M.H., Guilbert S. Improving wheat gluten materials properties by kraft lignin addition. J. Appl. Polym. Sci. 2012;125:1391–1399. doi: 10.1002/app.35345. DOI
Dušek J., Jerman M., Podlena M., Böhm M., Černý R. Sustainable composite material based on surface-modified rape straw and environment-friendly adhesive. Constr. Build. Mater. 2021;300:124036. doi: 10.1016/j.conbuildmat.2021.124036. DOI
Česká agentura pro standardizaci; Prague, Czech Republic: 2003. Characterisation of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 I/kg for Materials with Particle Size Below 4 mm.
Kobetičová K., Fořt J., Černý R. Interactions of superabsorbent polymers based on acrylamide substances with microorganisms occurring in human dwellings. Ecotoxicol. Environ. Saf. 2020;195:110522. doi: 10.1016/j.ecoenv.2020.110522. PubMed DOI
OECD; Geneva, Switzerland: 2004. OECD Guidelines for the Testing of Chemicals. Daphnia sp. Acute Immobilisation Test.
International Organization; Geneva, Switzerland: 1997. Plastics. Evaluation of the Action of Microorganisms.
Wopenka B., Pasteris J.D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C. 2005;25:131–143. doi: 10.1016/j.msec.2005.01.008. DOI
Skinner H.C.W. Biominerals. Mineral. Mag. 2005;69:621–641. doi: 10.1180/0026461056950275. DOI
Vermeirssen E.L.M., Dietschweiler C., Werner I., Burkhardt M. Corrosion protection products as a source of bisphenol A and toxicity to the aquatic environment. Water Res. 2017;123:586–593. doi: 10.1016/j.watres.2017.07.006. PubMed DOI
Pereira E.O.A., Labine L.M., Kleywegt S., Jobst K.J., Simpson A.J., Simpson M.J. Metabolomics Reveals That Bisphenol Pollutants Impair Protein Synthesis-Related Pathways in Daphnia magna. Metabolites. 2011;11:666. doi: 10.3390/metabo11100666. PubMed DOI PMC
Maisto G., Manzo S., De Nicola F., Carotenuto R., Rocco A., Alfani A. Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests. J. Environ. Monit. 2011;13:3049–3056. doi: 10.1039/c1em10496a. PubMed DOI
Baran A., Tarnawski M., Koniarz T., Szara M. Content of nutrients, trace elements, and ecotoxicity of sediment cores from Ro(z) over dotnow reservoir (Southern Poland) Environ. Geochem. Health. 2019;41:2929–2948. doi: 10.1007/s10653-019-00363-x. PubMed DOI PMC
Wisniewska M., Kaminski A., Pusz A. Phytotoxicity of metal-contaminated soils. Przem. Chem. 2019;98:852–856.
Plekhanova I.O., Zolotareva O.A., Tarasenko I.D., Yakovlev A.S. Assessment of Ecotoxicity of Soils Contaminated by Heavy Metals. Eurasian Soil Sci. 2019;52:1274–1288. doi: 10.1134/S1064229319100089. DOI
Zoller O., Bruschweiler B.J., Magnin R., Reinhard H., Rhyn P., Rupp H., Zeltner S., Felleisen R. Natural occurrence of bisphenol F in mustard. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2016;33:137–146. PubMed PMC
Nakajima N., Ohshima Y., Serizawa S., Kouda T., Edmonds J.S., Shiraishi F., Aono M., Kubo A., Tamaoki M., Saji H. Processing of bisphenol A by plant tissues: Glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol. 2002;43:1036–1042. doi: 10.1093/pcp/pcf130. PubMed DOI
Ferrara G., Loffredo E., Senesi N. Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta. 2016;223:910–916. doi: 10.1007/s00425-005-0147-2. PubMed DOI
Luo M., Gu S.H., Zhao S.H., Zhang F., Wu N.H. Rice GTPase OsRacB: Potential accessory factor in plant salt-stress signaling. Acta Biochim. Biophys. Sin. 2006;38:393–402. doi: 10.1111/j.1745-7270.2006.00172.x. PubMed DOI
Speranza A., Crosti P., Malerba M., Stocchi O., Scoccianti V. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen. Plant Biol. 2011;13:209–217. doi: 10.1111/j.1438-8677.2010.00330.x. PubMed DOI
Qiu Z.Y., Wang L.H., Zhou Q. Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere. 2013;90:1274–1280. doi: 10.1016/j.chemosphere.2012.09.085. PubMed DOI
Hu H., Wang L., Wang Q., Jiao L., Hua W., Zhu Q., Huang X. Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium. Environ. Toxicol. Chem. 2014;11:2455–2462. doi: 10.1002/etc.2720. PubMed DOI
Nakajima N., Teramoto T., Kasai F., Sano T., Tamaoki M., Aono M., Kubo A., Kamada H., Azumi Y., Saji H. Glycosylation of bisphenol A by freshwater microalgae. Chemosphere. 2007;69:934–941. doi: 10.1016/j.chemosphere.2007.05.088. PubMed DOI
Duan L.Y., Chen Q., Duan S.S. Transcriptional Analysis of Chlorella pyrenoidosa Exposed to Bisphenol A. Int. J. Environ. Res. Public Health. 2019;16:1374. doi: 10.3390/ijerph16081374. PubMed DOI PMC
Bell A.M., Baier R., Kocher B., Reifferscheid G., Buchinger S., Ternes T. Ecotoxicological characterization of emissions from steel coatings in contact with water. Water Res. 2020;173:115525. doi: 10.1016/j.watres.2020.115525. PubMed DOI
Kyrila G., Katsoulas A., Schoretsanati V., Rigopoulos A., Rizou E., Douůgeridou S., Sarli V., Samanidon V., Touraki M. Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. J. Hazard. Mater. 2021;413:125363. doi: 10.1016/j.jhazmat.2021.125363. PubMed DOI
Kwasniewska-Sip P., Cofta G., Nowak P.B. Resistance of fungal growth on Scots pine treated with caffeine. Int. Biodeter. Biodegr. 2018;132:178–184. doi: 10.1016/j.ibiod.2018.03.007. DOI
Bae B., Jeong J.H., Lee S.J. The quantification and characterization of endocrine disruptor bisphenol—A leaching from epoxy resin. Water. Sci. Technol. 2020;46:381–387. doi: 10.2166/wst.2002.0766. PubMed DOI