Ecotoxicity and Biodegradation of Sustainable Environment-Friendly Bone-Glue-Based Adhesive Suitable for Insulation Materials

. 2022 May 29 ; 14 (11) : . [epub] 20220529

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35683882

Grantová podpora
20-12166S Czech Science Foundation

Bone glue with sodium lignosulfonate is a protein-based adhesive. Their combination leads to strong binding necessary for the achievement of adhesive properties. However, biodegradation and ecotoxicity of materials composed of bone glue and sodium lignosulfonate has never been studied before. In this paper, the biodegradation potential of the mixture of bone glue, lignosulfonate and rape straw modified by water or NaOH on an agar test with aerial molds and in acute aquatic tests with mustard, yeasts, algae and crustaceans was analyzed. Epoxy resin as an ecologically unfriendly binder was used as a negative control and pure rape straw as a background. The results indicated that all samples were covered by molds, but the samples containing straw treated by NaOH showed lower biodegradability. The ecotoxicological effects varied among the applied model organisms. Artemia salina was not able to survive and S. alba could not prolong roots in the eluates of all samples (100% inhibition). Freshwater algae (D. subspicatus) were not significantly affected by the samples (max. 12% inhibition, max. 16% stimulation). The biomass of yeasts (S. cerevisae) was strongly stimulated in the presence of eluates in a comparison to control (max. 38% stimulation).

Zobrazit více v PubMed

OECD. [(accessed on 23 May 2022)]. Available online: https://www.oecd.org/

ISO. [(accessed on 23 May 2022)]. Available online: https://www.iso.org/home.html.

ASTM. [(accessed on 23 May 2022)]. Available online: https://www.astm.org/

REACH. [(accessed on 23 May 2022)]. Available online: https://europa.eu/youreurope/business/product-requirements/chemicals/registering-chemicals-reach/index_cs.htm.

Pacheco-Torgal F., Jalali S. Toxicity of building materials: A key issue in sustainable construction. Int. J. Sustain. Eng. 2019;4:281–287. doi: 10.1080/19397038.2011.569583. DOI

Krüger O., Kalbe U., Richter E., Egeler P., Römbke J., Berger W. New approach to the ecotoxicological risk assessment of artificial outdoor sporting grounds. Environ. Pollut. 2013;175:69–74. doi: 10.1016/j.envpol.2012.12.024. PubMed DOI

Baderna D., Lomazzi E., Passoni A., Pogliaghi A., Petoumenou M.I., Bagnati R., Lodia M., Viarengo A., Sforzini S., Benfenati E., et al. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunnelling. J. Hazard. Mater. 2015;296:210–220. doi: 10.1016/j.jhazmat.2015.04.040. PubMed DOI

Gartiser S., Heisterkamp I., Schoknecht U., Bandow N., Burkhardt N.M., Ratte M., Ilvonen O. Recommendation for a test battery for the ecotoxicological evaluation of the environmental safety of construction products. Chemosphere. 2017;171:580–587. doi: 10.1016/j.chemosphere.2016.12.115. PubMed DOI

Sickels L.B. Organic additives in mortars. Edinb. Univ. Res. J. Architect. 1980;8:7–20.

Loaiza A., Garcia E., Colorado E.A. Evaluation of asphalt binder blended with coconut coir dust and residual coconut fibers for structural applications. Rev. Constr. 2019;17:542–554. doi: 10.7764/RDLC.17.3.542. DOI

Lee J.H., Kim J., Kim S., Kim J.T. Characteristics of Particleboards Using Tannin Resin as Novel Environment-Friendly Adhesion System. Indoor Built Environ. 2013;22:61–67. doi: 10.1177/1420326X12469552. DOI

Protano C., Buomprisco G., Cammalleri V., Poceni R.N., Marotta D., Simonazzi S., Cardoni F., Petyx M., Iavicoli S., Vitali M. The Carcinogenic Effects of Formaldehyde Occupational Exposure: A Systematic Review. Cancers. 2021;14:165. doi: 10.3390/cancers14010165. PubMed DOI PMC

Wi S., Park J.H., Kim J.U., Kim S. Evaluation of environmental impact on the formaldehyde emission and flame-retardant performance of thermal insulation materials. J. Hazard. Mater. 2021;402:123463. doi: 10.1016/j.jhazmat.2020.123463. PubMed DOI

Kristak S., Antov P., Bekhta P., Lubis M.A.R., Heri I.A., Réh R., Sedliacik J., Savov V., Taghiyari H.R., Papadopoulos A.N., et al. Recent Progress in Ultra-Low Formaldehyde Emitting Adhesive Systems and Formaldehyde Scavengers in Wood-Based Panels: A Review. Wood Mater. Sci. Eng. 2022;17:1–20. doi: 10.1080/17480272.2022.2056080. DOI

Jin F.L., Li X., Park S.J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015;29:1–11. doi: 10.1016/j.jiec.2015.03.026. DOI

Liu Q., Wang D., Li Z., Li Z., Peng X., Liu C., Zhang Y., Zheng P. Recent Developments in the Flame-Retardant System of Epoxy Resin. Materials. 2020;13:2145. doi: 10.3390/ma13092145. PubMed DOI PMC

ECHA. [(accessed on 23 May 2022)]. Available online: https://european-union.europa.eu/institutions-law-budget/institutions-and-bodies/institutions-and-bodies-profiles/echa_cs.

Cosereanu C., Cerbu C. Rape/wood particleboard. BioResources. 2019;14:2903–2918.

Mirski R., Derkowski A., Dziurka D., Wieruszewski M., Dukarska D. Effects of chip type on the properties of chip-sawdust boards glued with polymeric diphenyl methane diisocyanate. Materials. 2020;13:1329. doi: 10.3390/ma13061329. PubMed DOI PMC

Mantanis G.I., Athanassiadou E.T., Barbu M.C., Wijnendaele K. Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Mater. Sci. Eng. 2017;13:104–116. doi: 10.1080/17480272.2017.1396622. DOI

Sunardi M., Fawaid R., Lusiani S.B., Kesworo A., Widodo T.D. The Effect of Wood Sawdust Mesh Combination on Mechanical Behaviour of Particle Board. IOP Conf. Ser. Mater. Sci. Eng. 2019;494:012089. doi: 10.1088/1757-899X/494/1/012089. DOI

Budakci M. The determination of adhesion strength of wood veneer and synthetic resin panel (laminate) adhesives. Wood Res. 2010;55:125–136.

Berardi U., Iannace G. Acoustic characterization of natural fibers for sound absorption applications. Energy Build. 2015;94:840–852. doi: 10.1016/j.buildenv.2015.05.029. DOI

Berardi U., Iannace G. Predicting the sound absorption of natural materials: Best fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017;115:131–138. doi: 10.1016/j.apacoust.2016.08.012. DOI

Richter R., Římovský K. Organická Hnojiva, Jejich Výroba a Použití. Institut výchovy a vzdělávání Ministerstva zemědělství; Prague, Czech Republic: 1995. pp. 1–40.

Strehler A. Energie aus Biomase. 1st ed. Landtechnik; Bericht, Germany: 1994. Aufbereitung und Verfeuerung von Biomase als Festbrennstoff; pp. 171–192.

Rahim M., Douzane O., Tran Le A.D., Promis G., Langlet T. Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Constr. Build. Mater. 2016;102:679–687. doi: 10.1016/j.conbuildmat.2015.11.021. DOI

Ahmad M.R., Chen B. Influence of type of binder and size of plant aggregate on the hygrothermal properties of bio-concrete. Constr. Build. Mater. 2020;251:118981. doi: 10.1016/j.conbuildmat.2020.118981. DOI

Zhang M.H., Sisomphon K., Ng T.S., Sun D.J. Effect of superplasticizers on workability retention and initial setting time of cement pastes. Constr. Build. Mater. 2010;24:1700–1707. doi: 10.1016/j.conbuildmat.2010.02.021. DOI

Tantawi S.H., Selim I.Z. Role of some concrete admixtures on the resistivity of cement pastes and reinforced steel. Bull. Electrochem. 2004;20:175–182.

Topcu I.B., Atesin O. Effect of high dosage lignosulphonate and naphthalene sulphonate based plasticizer usage on micro concrete properties. Constr. Build. Mater. 2016;120:189–197. doi: 10.1016/j.conbuildmat.2016.05.112. DOI

Guo M.H., Wang Y., Liu F. Performance Analysis of Ammonium Lignosulfonate/Urea Formaldehyde-free Fiberboards. Adv. Mater. Res. 2010;113:1774–1778. doi: 10.4028/www.scientific.net/AMR.113-116.1774. DOI

Chupin L., Charrier B., Pizzi A., Perdomo A., Bouhtoury C.E. Study of thermal durability properties of tannin–lignosulfonate adhesives. J. Therm. Anal. Calorim. 2015;119:1577–1585. doi: 10.1007/s10973-014-4331-0. DOI

Antov P., Savov V., Trichkov N., Krišťák L., Réh R., Papadopoulos A.N., Takhiyari H.R., Pizzi A., Kunecová D., Pachikova M. Properties of High-Density Fiberboard Bonded with Urea–Formaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based Additive. Polymers. 2021;13:2775. doi: 10.3390/polym13162775. PubMed DOI PMC

Hemmila V., Adamopoulos S., Hosseinpourpia R., Ahmed S.A. Ammonium Lignosulfonate Adhesives for Particleboards with pMDI and Furfuryl Alcohol as Crosslinkers. Polymers. 2019;11:1633. doi: 10.3390/polym11101633. PubMed DOI PMC

Antov P., Savov V., Mantanis G.I., Neykov N. Medium-density fibreboards bonded with phenol-formaldehyde resin and calcium lignosulfonate as an eco-friendly additive. Wood Mater. Sci. Eng. 2020;16:42–48. doi: 10.1080/17480272.2020.1751279. DOI

Nguyen D.M., Grillet A.C., Diep T.M.H., Ha T.C.N., Woloszyn M. Hygrothermal properties of bio-insulation building materials based on bamboo fibers and bio-glues. Constr. Build. Mater. 2017;155:852–866. doi: 10.1016/j.conbuildmat.2017.08.075. DOI

Nguyen D.M., Grillet A.C., Bui Q.B., Diep T.M.H., Woloszyn M. Building bio-insulation materials based on bamboo powder and bio-binders. Constr. Build. Mater. 2018;186:686–698. doi: 10.1016/j.conbuildmat.2018.07.153. DOI

Kunanopparat T., Menut P., Morel M.H., Guilbert S. Improving wheat gluten materials properties by kraft lignin addition. J. Appl. Polym. Sci. 2012;125:1391–1399. doi: 10.1002/app.35345. DOI

Dušek J., Jerman M., Podlena M., Böhm M., Černý R. Sustainable composite material based on surface-modified rape straw and environment-friendly adhesive. Constr. Build. Mater. 2021;300:124036. doi: 10.1016/j.conbuildmat.2021.124036. DOI

Česká agentura pro standardizaci; Prague, Czech Republic: 2003. Characterisation of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 I/kg for Materials with Particle Size Below 4 mm.

Kobetičová K., Fořt J., Černý R. Interactions of superabsorbent polymers based on acrylamide substances with microorganisms occurring in human dwellings. Ecotoxicol. Environ. Saf. 2020;195:110522. doi: 10.1016/j.ecoenv.2020.110522. PubMed DOI

OECD; Geneva, Switzerland: 2004. OECD Guidelines for the Testing of Chemicals. Daphnia sp. Acute Immobilisation Test.

International Organization; Geneva, Switzerland: 1997. Plastics. Evaluation of the Action of Microorganisms.

Wopenka B., Pasteris J.D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C. 2005;25:131–143. doi: 10.1016/j.msec.2005.01.008. DOI

Skinner H.C.W. Biominerals. Mineral. Mag. 2005;69:621–641. doi: 10.1180/0026461056950275. DOI

Vermeirssen E.L.M., Dietschweiler C., Werner I., Burkhardt M. Corrosion protection products as a source of bisphenol A and toxicity to the aquatic environment. Water Res. 2017;123:586–593. doi: 10.1016/j.watres.2017.07.006. PubMed DOI

Pereira E.O.A., Labine L.M., Kleywegt S., Jobst K.J., Simpson A.J., Simpson M.J. Metabolomics Reveals That Bisphenol Pollutants Impair Protein Synthesis-Related Pathways in Daphnia magna. Metabolites. 2011;11:666. doi: 10.3390/metabo11100666. PubMed DOI PMC

Maisto G., Manzo S., De Nicola F., Carotenuto R., Rocco A., Alfani A. Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests. J. Environ. Monit. 2011;13:3049–3056. doi: 10.1039/c1em10496a. PubMed DOI

Baran A., Tarnawski M., Koniarz T., Szara M. Content of nutrients, trace elements, and ecotoxicity of sediment cores from Ro(z) over dotnow reservoir (Southern Poland) Environ. Geochem. Health. 2019;41:2929–2948. doi: 10.1007/s10653-019-00363-x. PubMed DOI PMC

Wisniewska M., Kaminski A., Pusz A. Phytotoxicity of metal-contaminated soils. Przem. Chem. 2019;98:852–856.

Plekhanova I.O., Zolotareva O.A., Tarasenko I.D., Yakovlev A.S. Assessment of Ecotoxicity of Soils Contaminated by Heavy Metals. Eurasian Soil Sci. 2019;52:1274–1288. doi: 10.1134/S1064229319100089. DOI

Zoller O., Bruschweiler B.J., Magnin R., Reinhard H., Rhyn P., Rupp H., Zeltner S., Felleisen R. Natural occurrence of bisphenol F in mustard. Food Addit. Contam. Part A-Chem. Anal. Control Expo. Risk Assess. 2016;33:137–146. PubMed PMC

Nakajima N., Ohshima Y., Serizawa S., Kouda T., Edmonds J.S., Shiraishi F., Aono M., Kubo A., Tamaoki M., Saji H. Processing of bisphenol A by plant tissues: Glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol. 2002;43:1036–1042. doi: 10.1093/pcp/pcf130. PubMed DOI

Ferrara G., Loffredo E., Senesi N. Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta. 2016;223:910–916. doi: 10.1007/s00425-005-0147-2. PubMed DOI

Luo M., Gu S.H., Zhao S.H., Zhang F., Wu N.H. Rice GTPase OsRacB: Potential accessory factor in plant salt-stress signaling. Acta Biochim. Biophys. Sin. 2006;38:393–402. doi: 10.1111/j.1745-7270.2006.00172.x. PubMed DOI

Speranza A., Crosti P., Malerba M., Stocchi O., Scoccianti V. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen. Plant Biol. 2011;13:209–217. doi: 10.1111/j.1438-8677.2010.00330.x. PubMed DOI

Qiu Z.Y., Wang L.H., Zhou Q. Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere. 2013;90:1274–1280. doi: 10.1016/j.chemosphere.2012.09.085. PubMed DOI

Hu H., Wang L., Wang Q., Jiao L., Hua W., Zhu Q., Huang X. Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium. Environ. Toxicol. Chem. 2014;11:2455–2462. doi: 10.1002/etc.2720. PubMed DOI

Nakajima N., Teramoto T., Kasai F., Sano T., Tamaoki M., Aono M., Kubo A., Kamada H., Azumi Y., Saji H. Glycosylation of bisphenol A by freshwater microalgae. Chemosphere. 2007;69:934–941. doi: 10.1016/j.chemosphere.2007.05.088. PubMed DOI

Duan L.Y., Chen Q., Duan S.S. Transcriptional Analysis of Chlorella pyrenoidosa Exposed to Bisphenol A. Int. J. Environ. Res. Public Health. 2019;16:1374. doi: 10.3390/ijerph16081374. PubMed DOI PMC

Bell A.M., Baier R., Kocher B., Reifferscheid G., Buchinger S., Ternes T. Ecotoxicological characterization of emissions from steel coatings in contact with water. Water Res. 2020;173:115525. doi: 10.1016/j.watres.2020.115525. PubMed DOI

Kyrila G., Katsoulas A., Schoretsanati V., Rigopoulos A., Rizou E., Douůgeridou S., Sarli V., Samanidon V., Touraki M. Bisphenol A removal and degradation pathways in microorganisms with probiotic properties. J. Hazard. Mater. 2021;413:125363. doi: 10.1016/j.jhazmat.2021.125363. PubMed DOI

Kwasniewska-Sip P., Cofta G., Nowak P.B. Resistance of fungal growth on Scots pine treated with caffeine. Int. Biodeter. Biodegr. 2018;132:178–184. doi: 10.1016/j.ibiod.2018.03.007. DOI

Bae B., Jeong J.H., Lee S.J. The quantification and characterization of endocrine disruptor bisphenol—A leaching from epoxy resin. Water. Sci. Technol. 2020;46:381–387. doi: 10.2166/wst.2002.0766. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...