Reducing rotation age to address increasing disturbances in Central Europe: Potential and limitations
Status PubMed-not-MEDLINE Language English Country Netherlands Media print
Document type Journal Article
Grant support
Y 895
Austrian Science Fund FWF - Austria
PubMed
35686290
PubMed Central
PMC7612832
DOI
10.1016/j.foreco.2020.118408
Knihovny.cz E-resources
- Keywords
- Central Europe, Climate change, Disturbance management, Forest disturbances, Wind and bark beetles,
- Publication type
- Journal Article MeSH
Forest disturbance regimes are intensifying in many parts of the globe. In order to mitigate disturbance impacts a number of management responses have been proposed, yet their effectiveness in addressing changing disturbance regimes remains largely unknown. The strong positive relationship between forest age and the vulnerability to disturbances such as windthrows and bark beetle infestations suggests that a reduced rotation length can be a potent means for mitigating the impacts of natural disturbances. However, disturbance mitigation measures such as shortened rotation lengths (SRL) can also have undesired consequences on ecosystem services and biodiversity, which need to be considered in their application. Here, we used the process-based landscape and disturbance model iLand to investigate the effects of SRL on the vulnerability of a 16,000 ha forest landscape in Central Europe to wind and bark beetle disturbances. We experimentally reduced the current rotation length (between 100 and 115 years) by up to -40% in 10% increments, and studied effects on disturbance dynamics under current and future climate conditions over a 200-year simulation period. Simultaneously, we quantified the collateral effects of SRL on forest carbon stocks and indicators of biodiversity. Shortening the rotation length by 40% decreased disturbances by 14%. This effect was strongly diminished under future climate change, reducing the mitigating effect of shortened rotation to < 6%. Collateral effects were severe in the initial decades after implementation: Reducing the rotation length by 40% caused a spike in harvested timber volume (+ 92%), decreased total forest carbon storage by 6% and reduced the number of large trees on the landscape by 20%. The long-term effects of SRL were less pronounced. At the same time, SRL caused an increase in tree species diversity. Shortening rotation length can reduce the impact of wind and bark beetle disturbances, but the overall efficiency of the measure is limited and decreases under climate change. Given the potential for undesired collateral effects we conclude that a reduction of the rotation length is no panacea for managing increasing disturbances, and should be applied in combination with other management measures reducing risks and fostering resilience.
Ecosystem Dynamics and Forest Management Group Technical University of Munich Freising Germany
University of Natural Resources and Life Sciences Vienna Peter Jordan Straße 82 1190 Wien Austria
See more in PubMed
Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mcdowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzalez P, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 2010;259:660–684. doi: 10.1016/j.foreco.2009.09.001. DOI
Angelstam P, Naumov V, Elbakidze M, Manton M, Priednieks J, Rendenieks Z. Wood production and biodiversity conservation are rival forestry objectives in Europe’ s Baltic Sea Region. Ecosphere. 2018;9:1–26. doi: 10.1002/ecs2.2119. PubMed DOI
Baier P, Pennerstorfer J, Schopf A. PHENIPS-A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For Ecol Manage. 2007;249:171–186. doi: 10.1016/j.foreco.2007.05.020. DOI
Bellassen V, Luyssaert S. Carbon sequestration: Managing forests in uncertain times. Nature. 2014;506:153–155. doi: 10.1038/506153a. PubMed DOI
Bernes C. Biodiversity in Sweden. Swedish Environmental Protection Agency; Stockholm: 2011.
Björkman C, Bylund H, Nilsson U, Nordlander G, Schroeder M. In: Climate Change and Insect Pests. Björkman C, Niemelä P, editors. Antony Rowe CPI Group (UK) Ltd; Preston, UK: 2015. Effects of New Forest Management on Insect Damage Risk in a Changing Climate; p. 291.
Blennow K, Andersson M, Bergh J, Sallnäs O, Olofsson E. Potential climate change impacts on the probability of wind damage in a south Swedish forest. Clim Change. 2010;99:261–278. doi: 10.1007/s10584-009-9698-8. DOI
Blennow K, Sallnäs O. WINDA - A system of models for assessing the probability of wind damage to forest stands within a landscape. Ecol Model. 2004;175:87–99. doi: 10.1016/j.ecolmodel.2003.10.009. DOI
Bolte A, Ammer C, Löf M, Madsen P, Nabuurs G-J, Schall P, Spathelf P, Rock J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand J For Res. 2009;24:473–482. doi: 10.1080/02827580903418224. DOI
Bouriaud L, Bouriaud O, Elkin C, Temperli C, Reyer C, Duduman G, Barnoaiea I, Nichiforel L, Zimmermann N, Bugmann H. Age-class disequilibrium as an opportunity for adaptive forest management in the Carpathian Mountains, Romania. Reg Environ Change. 2015;15:1557–1568. doi: 10.1007/s10113-014-0717-6. DOI
Brown M, Canham C, Murphy L, Donovan T. Timber harvest as the pre-dominant disturbance regime in northeastern US forests: effects of harvest intensification. Ecosphere. 2018;9 doi: 10.1002/ecs2.2062. DOI
Buras A, Schunk C, Zeiträg C, Herrmann C, Kaiser L, Lemme H, Straub C, Taeger S, Gösswein S, Klemmt HJ, Menzel A. Are Scots pine forest edges particularly prone to drought-induced mortality? Environ Res Lett. 2018;13:1–11. doi: 10.1088/1748-9326/aaa0b4. DOI
Canadell JG, Raupach MR. Managing Forests for Climate Change Mitigation. Science. 2008;320:1456–1457. doi: 10.1126/science.1155458. PubMed DOI
Cordonnier T, Berger F, Elkin C, Lamas T, Martinez M. Models and linker functions (indicators) for ecosystem services. Arange Deliverable D2.2, Project Report. FP7-289437. 2013
Curtis RO. In: Creating a Forestry for the 21st Century. Kohm KA, Franklin JF, editors. Island Press; Washington DC: 1997. The role of extended rotations; pp. 165–170.
Curzon MT, D’Amato AW, Fraver S, Palik BJ, Bottero A, Foster JR, Gleason KE. Forest Ecology and Management Harvesting influences functional identity and diversity over time in forests of the northeastern USA. For Ecol Manage. 2017;400:93–99. doi: 10.1016/j.foreco.2017.05.056. DOI
Daniel CJ, Ter-Mikaelian MT, Wotton BM, Rayfield B, Fortin M-J. Incorporating uncertainty into forest management planning: Timber harvest, wildfire and climate change in the boreal forest. For Ecol Manage. 2017;400:542–554. doi: 10.1016/j.foreco.2017.06.039. DOI
de Groot M, Diaci J, Ogris N. Forest management history is an important factor in bark beetle outbreaks : Lessons for the future. For Ecol Manage. 2019;433:467–474. doi: 10.1016/j.foreco.2018.11.025. DOI
Debastiani VJ. Analysis of functional and phylogenetic patterns in meta-communities - package SYNCSA (1.3.4) 2020
Díaz-Rodríguez B, Blanco-García A, Gómez-Romero M, Lindig-Cisneros R. Filling the gap: Restoration of biodiversity for conservation in productive forest landscapes. Ecol Eng. 2012;40:88–94. doi: 10.1016/j.ecoleng.2011.12.017. DOI
Dobor L, Hlásny T, Rammer W, Barka I, Trombik J, Pavlenda P, Šebeň V, Štěpánek P, Seidl R. Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agric For Meteorol. 2018;263:308–322. doi: 10.1016/j.agrformet.2018.08.028. PubMed DOI PMC
Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. J Environ Manage. 2020;254:1–12. doi: 10.1016/j.jenvman.2019.109792. PubMed DOI PMC
Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. Is salvage logging an effective means to protect forests and their carbon stores from future disturbances? J Appl Ecol. 2019;57:67–76.
Eidmann HH. Impact of bark beetles on forests and forestry in Sweden. J Appl Entomol. 1992;114:193–200.
Ekholm T. Forest Policy and Economics Optimal forest rotation age under efficient climate change mitigation. Forest Policy and Economics. 2016;62:62–68. doi: 10.1016/j.forpol.2015.10.007. DOI
Elkin C, Giuggiola A, Rigling A, Bugmann H. Short- and long-term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecol Appl. 2015;25:1083–1098. PubMed
Faustmann M. Berechnung des Wertes welchen Waldboden sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen [Calculation of the value which forest land and immature stands possess for forestry] Allgemeine Forst- und Jagdzeitung. 1849;25:441–445.
Felton A, Sonesson J, Nilsson U, Lämäs T, Lundmark T, Nordin A, Ranius T, Roberge J-M. Varying rotation lengths in northern production forests : Implications for habitats provided by retention and production trees. Ambio. 2017;46:324–334. doi: 10.1007/s13280-017-0909-7. PubMed DOI PMC
Gardiner BA, Quine CP. Management of forests to reduce the risk of abiotic damage – a review with particular reference to the effects of strong winds. For Ecol Manage. 2000;135:261–277.
Gardiner B, Peltola H, Kellomäki S. Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol Model. 2000;129:1–23. doi: 10.1016/S0304-3800(00)00220-9. DOI
Giorgi F, Jones C, Asrar GR. Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin. 2009;58:175–183.
Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lõhmus A, Pastur GM, Messier C, Neyland M, et al. Retention Forestry to Maintain Multifunctional Forests : A World Perspective. Bioscience. 2012;62:633–645. doi: 10.1525/bio.2012.62.7.6. DOI
Hale SE, Gardiner BA, Wellpott A, Nicoll BC, Achim A. Wind loading of trees: Influence of tree size and competition. Eur J Forest Res. 2012;131:203–217. doi: 10.1007/s10342-010-0448-2. DOI
Hilmers T, Friess N, Bässler C, Heurich M, Brandl R, Pretzsch H, Seidl R, Müller J. Biodiversity along temperate forest succession. J Appl Ecol. 2018:1–11. doi: 10.1111/1365-2664.13238. DOI
Hlásny T, Barka I, Roessiger J, Kulla L, Trombik J, Sarvašová Z, Bucha T, Kovalčík M, Čihák T. Conversion of Norway spruce forests in the face of climate change: a case study in Central Europe. Eur J Forest Res. 2017;136:1013–1028. doi: 10.1007/s10342-017-1028-5. DOI
Hlásny T, Krokene P, Liebhold A, Montagné-Huck C, Müller J, Qin H, Raffa K, Schelhaas M-J, Seidl R, Svoboda M, Viiri H. Living with bark beetles: impacts, outlook and management options. From Science to Policy 8. European Forest Institute; 2019.
Hlásny T, Sitková Z. Spruce forest decline in the Beskids. 1st ed. National forest centre - forest research institute Zvolen & Czech University of Life Sciences Prague & Forestry and Game Management Research Institute Jíloviště; Strnady: 2010.
Hlásny T, Turčáni M. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: Case study from Central Europe. Annals of Forest Science. 2013;70:481–491. doi: 10.1007/s13595-013-0279-7. DOI
Honkaniemi J, Rammer W, Seidl R. Norway spruce at the trailing edge : the effect of landscape configuration and composition on climate resilience. Landscape Ecol. 2020 doi: 10.1007/s10980-019-00964-y. PubMed DOI PMC
Hungerford RD, Nemani RR, Running SW, Coughlan JC. MTCLIM: A mountain microclimate simulation model. USDA Forest Service Res. Paper 52. 1989
Churchill DJ, Larson AJ, Dahlgreen MC, Franklin JF, Hessburg PF, Lutz JA. Restoring forest resilience : From reference spatial patterns to silvicultural prescriptions and monitoring. For Ecol Manage. 2013;291:442–457. doi: 10.1016/j.foreco.2012.11.007. DOI
Inward DJG, Wainhouse D, Peace A. The effect of temperature on the development and life cycle regulation of the pine weevil Hylobius abietis and the potential impacts of climate change. Agric For Entomol. 2012;14:348–357. doi: 10.1111/j.1461-9563.2012.00575.x. DOI
Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, Långström B, Moreira F, Netherer S, Orazio C, Piou D, Santos H, et al. The influences of forest stand management on biotic and abiotic risks of damage. Annals of Forest Science. 2009;66:1–18. doi: 10.1051/forest/2009054. DOI
Jonsson M, Ranius T, Ekvall H, Bostedt G, Dahlberg A, Ehnström B, Nordén B, Stokland JN. Cost-effectiveness of silvicultural measures to increase substrate availability for red-listed wood-living organisms in Norway spruce forests. Biological Conservation I. 2006;27:443–462. doi: 10.1016/j.biocon.2005.09.004. DOI
Kaipainen T, Liski J, Pussinen A, Karjalainen T. Managing carbon sinks by changing rotation length in European forests. Environ Sci Policy. 2004;7:205–219. doi: 10.1016/j.envsci.2004.03.001. DOI
Keenan RJ. Climate change impacts and adaptation in forest management: a review. Annals of Forest Science. 2015;72:145–167. doi: 10.1007/s13595-014-0446-5. DOI
Klimo E, Hager H, Kulhavý J. Spruce Monocultures in Central Europe – Problems and Prospects; Proceedings 33; Joensuu, Finland. 2000. p. 208.
Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA, Mathiasen R, Stewart JE, Weed AS. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For Ecol Manage. 2016;380:321–334. doi: 10.1016/j.foreco.2016.04.051. DOI
Konôpka B, Zach P, Kulfan J. Wind – an important ecological factor and destructive agent in forests. Forestry Journal. 2016;62:123–130. doi: 10.1515/forj-2016-0013. DOI
Kreutzweiser DP, Hazlett PW, Gunn JM. Logging impacts on the bio-geochemistry of boreal forest soils and nutrient export to aquatic systems : A review. Environmental Reviews. 2008;16:157–179. doi: 10.1139/A08-006. DOI
Kuboyama H, Oka H. Climate Risks and Age-related Damage Probabilities – Effects on the Economically Optimal Rotation Length for Forest Stand Management in Japan. Silva Fennica. 2000;34:155–166.
Lafond V, Lagarrigues G, Cordonnier T, Courbaud B. Uneven-aged management options to promote forest resilience for climate change adaptation : effects of group selection and harvesting intensity. Annals of Forest Science. 2014;71:173–186. doi: 10.1007/s13595-013-0291-y. DOI
Lachat T, Butler R. Gestion des vieux arbres et du bois mort: Îlots de sénescence, arbres-habitat et métapopulations saproxyliques. Ecole polytechnique fédérale Lausanne WSL; Lausa: 2007.
Lamers P, Junginger M, Dymond CC, Faaij A. Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy. 2014;6:44–60. doi: 10.1111/gcbb.12055. DOI
Lange M, Türke M, Pašalić E, Boch S, Hessenmöller D, Müller J, Prati D, Socher SA, Fischer M, Weisser WW, Gossner MM. Forest Ecology and Management Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. For Ecol Manage. 2014;329:166–176. doi: 10.1016/j.foreco.2014.06.012. DOI
Larrieu L, Cabanettes A. Species, live status, and diameter are important tree features for diversity and abundance of tree microhabitats in subnatural montane beech–fir forests1This article is one of a selection of papers from the International Symposium on Dynamics and Ecologic. Can J For Res. 2012;42:1433–1455. doi: 10.1139/x2012-077. DOI
Larrieu L, Cabanettes A, Delarue A. Impact of silviculture on dead wood and on the distribution and frequency of tree microhabitats in montane beech-fir forests of the Pyrenees. Eur J Forest Res. 2012;131:773–786. doi: 10.1007/s10342-011-0551-z. DOI
Lassauce A, Larrieu L, Paillet Y, Lieutier F, Bouget C. The effects of forest age on saproxylic beetle biodiversity : implications of shortened and extended rotation lengths in a French oak high forest. Insect Conservation and Diversity. 2013;6:396–410. doi: 10.1111/j.1752-4598.2012.00214.x. DOI
Leather SR, Day KR, Salisbury AN. The biology and ecology of the large pine weevil, Hylobius abietis (Coleoptera: Curculionidae): a problem of dispersal? Bull Entomol Res. 1999;89:3–16. doi: 10.1017/S0007485399000024. DOI
Lindenmayer D, Messier C, Sato C. Avoiding ecosystem collapse in managed forest ecosystems. Front Ecol Environ. 2016;14:561–568. doi: 10.1002/fee.1434. DOI
Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage. 2014;146:69–83. doi: 10.1016/j.jenvman.2014.07.030. PubMed DOI
Lindner M, Lasch P, Erhard M. Alternative forest management strategies under climatic change – Prospects for gap model applications in risk analyses. Silva Fennica. 2000;34:101–111. doi: 10.14214/sf.634. DOI
Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage. 2010;259:698–709. doi: 10.1016/j.foreco.2009.09.023. DOI
Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T. Which rotation length is favourable to carbon sequestration? Can J For Res. 2011;31:2004–2013. doi: 10.1139/x01-140. DOI
Lundmark T, Poudel BC, Stål G, Nordin A, Sonesson J. Carbon balance in production forestry in relation to rotation length. Can J For Res. 2018;48:672–678.
Luyssaert S, Marie G, Valade A, Chen Y, Djomo SN, Ryder J, Otto J, Naudts K, Lansø AS, Ghattas J, Mcgrath MJ. Trade-offs in using European forests to meet climate objectives. Nature. 2018;562:259–267. doi: 10.1038/s41586-018-0577-1. PubMed DOI PMC
Mäkelä A. Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes. Can J For Res. 2003;33:398–409. doi: 10.1139/x02-130. DOI
Marini L, Økland B, Jönsson AM, Bentz B, Carroll A, Forster B, Grégoire J, Hurling R, Nageleisen LM, Netherer S, Ravn HP, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography. 2017;40:1426–1435. doi: 10.1111/ecog.02769. DOI
McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, et al. Pervasive shifts in forest dynamics in a changing world. Science. 2020;368 doi: 10.1126/science.aaz9463. PubMed DOI
Meilby H, Strange N, Thorsen BJ. Optimal spatial harvest planning under risk of windthrow. For Ecol Manage. 2001;149:15–31.
Mezei P, Jakuš R, Pennerstorfer J, Havašová M, Škvarenina J, Ferenčik J, Slivinský J, Bičárová S, Bilčík D, Blaženec M, Netherer S. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus—An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agric For Meteorol. 2017;242:85–95. doi: 10.1016/j.agrformet.2017.04.004. DOI
Moore J, Quine CP. A comparison of the relative risk of wind damage to planted forests in Border Forest Park, Great Britain, and the Central North Island, New Zealand. For Ecol Manage. 2000;135:345–353.
Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, et al. The next generation of scenarios for climate change research and assessment. Nature. 2010;463:747–756. doi: 10.1038/nature08823. PubMed DOI
Netherer S, Nopp-Mayr U. Predisposition assessment systems (PAS) as supportive tools in forest management - Rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification. For Ecol Manage. 2005;207:99–107. doi: 10.1016/j.foreco.2004.10.020. DOI
Netherer S, Panassiti B, Pennerstorfer J, Matthews B. Acute Drought Is an Important Driver of Bark Beetle Infestation in Austrian Norway Spruce Stands. Frontiers in Forests and Global Change. 2019;2 doi: 10.3389/ffgc.2019.00039. DOI
Newman DH. Forestry' s golden rule and the development of the optimal forest rotation literature. Journal of Forest Economics. 2002;8:30602
Niinemets Ü, Valladares F. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr. 2006;76:521–547. doi: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2. DOI
North MP, Keeton WS. In: Patterns and Processes in Forest Landscapes – Multiple Use and Sustainable Management. Lafortezza R, Chen J, Sanesi G, Crow TR, editors. Springer Verlag; The Netherlands: 2008. Emulating natural disturbance regimes: an emerging approach for sustainable forest management; pp. 341–372.
Pilli R, Grassi G, Kurz WA, Moris JV, Viñas RA. Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis. Carbon Balance and Management. 2016;11:1–19. doi: 10.1186/s13021-016-0059-4. PubMed DOI PMC
Price C. The Theory and Application of Forest Economics. Basil Blackwell; Oxford, UK: 1989.
Rammer W, Seidl R. Coupling human and natural systems: Simulating adaptive management agents in dynamically changing forest landscapes. Global Environ Change. 2015;35:475–485. doi: 10.1016/j.gloenvcha.2015.10.003. DOI
Ricotta C, Szeidl L. Diversity partitioning of Rao's quadratic entropy. Theor Popul Biol. 2009;76:299–302. doi: 10.1016/j.tpb.2009.10.001. PubMed DOI
Roberge J-M, Laudon H, Björkman C, Ranius T, Sandström C, Felton A, Sténs A, Nordin A, Granström A, Widemo F, Bergh J, et al. Socio-ecological implications of modifying rotation lengths in forestry. Ambio. 2016;45:109–123. doi: 10.1007/s13280-015-0747-4. PubMed DOI PMC
Rönnberg J. Logging Operation Damage to Roots of Clear-felled Picea abies and Subsequent Spore Infection by Heterobasidion annosum. Silva Fennica. 2000;34:29–36.
Russell WH, Jones C. The effects of timber harvesting on the structure and composition of adjacent old-growth coast redwood forest, California, USA. Landscape Ecol. 2001;16:731–741.
Sebald J, Senf C, Heiser M, Scheidl C, Pflugmacher D, Seidl R. The effects of forest cover and disturbance on torrential hazards : large-scale evidence from the Eastern Alps. Environ Res Lett. 2019;14:1–12. PubMed
Seidl R. The Shape of Ecosystem Management to Come : Anticipating Risks and Fostering Resilience. Bioscience. 2014;64:1159–1169. doi: 10.1093/biosci/biu172. PubMed DOI PMC
Seidl R, Albrich K, Thom D, Rammer W. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. J Environ Manage. 2018;209:46–56. doi: 10.1016/j.jenvman.2017.12.014. PubMed DOI PMC
Seidl R, Lexer MJ. Forest management under climatic and social uncertainty : Trade-offs between reducing climate change impacts and fostering adaptive capacity. J Environ Manage. 2013;114:461–469. doi: 10.1016/j.jenvman.2012.09.028. PubMed DOI
Seidl R, Rammer W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecol. 2017;32:1485–1498. doi: 10.1007/s10980-016-0396-4. PubMed DOI PMC
Seidl R, Rammer W, Blennow K. Simulating wind disturbance impacts on forest landscapes: Tree-level heterogeneity matters. Environ Modell Software. 2014a;51:1–11. doi: 10.1016/j.envsoft.2013.09.018. DOI
Seidl R, Rammer W, Jäger D, Lexer MJ. Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manage. 2008;256:209–220. doi: 10.1016/j.foreco.2008.04.002. DOI
Seidl R, Rammer W, Scheller RM, Spies TA. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Model. 2012a;231:87–100. doi: 10.1016/j.ecolmodel.2012.02.015. DOI
Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change. 2014b;4:806. PubMed PMC
Seidl R, Spies TA, Rammer W, Steel EA, Pabst RJ, Olsen K. Multi-scale Drivers of Spatial Variation in Old-Growth Forest Carbon Density Disentangled with Lidar and an Individual-Based Landscape Model. Ecosystems. 2012b;15:1321–1335. doi: 10.1007/s10021-012-9587-2. DOI
Senf C, Pflugmacher D, Zhiqiang Y, Sebald J, Knorn J, Neumann M, Hostert P, Seidl R. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat Commun. 2018;9:1–8. doi: 10.1038/s41467-018-07539-6. PubMed DOI PMC
Shannon CE. A Mathematical Theory of Communication. Bell Syst Tech J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Silva Pedro M, Rammer W, Seidl R. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia. 2015;177:619–630. doi: 10.1007/s00442-014-3150-0. PubMed DOI
Sohn JA, Hartig F, Kohler M, Huss J, Bauhus J. Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecol Appl. 2016;26:2190–2205. PubMed
Sousa-Silva R, Verbist B, Lomba Â, Valent P, Suškevičs M, Picard O, Hoogstra-Klein MA, Cosofret V-C, Bouriaud L, Ponette Q, Verheyen K, et al. Adapting forest management to climate change in Europe: Linking perceptions to adaptive responses. Forest Policy and Economics. 2018;90:22–30. doi: 10.1016/j.forpol.2018.01.004. DOI
Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, vonTeuffel K. Norway spruce conversion: options and consequences. Brill; Leiden, Boston, Köln: 2004.
Spittlehouse DL, Stewart RB. Adaptation to climate change in forest management. Journal of Ecosystems and Management Adaptation. 2003;4:1–11. doi: 10.1109/lsp.2009.2014096. DOI
Stadelmann G, Bugmann H, Meier F, Wermelinger B, Bigler C. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For Ecol Manage. 2013;305:273–281. doi: 10.1016/j.foreco.2013.06.003. DOI
Staudhammer CL, LeMay VM. Introduction and evaluation of possible indices of stand structural diversity. Can J For Res. 2001;31:1105–1115. doi: 10.1139/x01-033. DOI
Taylor S, Carroll A. In: Shore TL, Brooks JE, Stone JE, editors. Disturbance, forest age, and mountain pine beetle outbreak dynamics in BC: a historical perspective; Mountain Pine Beetle Symposium: Challenges and Solutions; October 30–31, 2003; Kelowna, British Columbia, Canada. 2004. pp. 41–51. Report BC-X-399.
Thom D, Golivets M, Edling L, Meigs G, Gourevitch J, Sonter L, Galford G, Keeton W. The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal-temperate North America. Glob Change Biol. 2019;25 doi: 10.1111/gcb.14656. PubMed DOI
Thom D, Rammer W, Dirnböck T, Müller J, Kobler J, Katzensteiner K, Helm N, Seidl R. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J Appl Ecol. 2017a;54:28–38. doi: 10.1111/1365-2664.12644. PubMed DOI PMC
Thom D, Rammer W, Garstenauer R, Seidl R. Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences. 2018;15:5699–5713.
Thom D, Rammer W, Seidl R. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Change Biol. 2017b;23:269–282. doi: 10.1111/gcb.13506. PubMed DOI PMC
Wermelinger B. Ecology and management of the spruce bark beetle Ips typographus – A review of recent research. For Ecol Manage. 2004;202:67–82. doi: 10.1016/j.foreco.2004.07.018. DOI
Wermelinger B, Seifert M. Temperature dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecol Entomol. 1999;24:103–110.
Weslien J, Finer L, Jónsson JÁ, Koivusalo H, Laurén A, Ranius T, Sigurdsson BD, Weslien J, Finér L, Jónsson JÁ, Koivusalo H, et al. Effects of increased forest productivity and warmer climates on carbon sequestration, run-off water quality and accumulation of dead wood in a boreal landscape : A modelling study. 2009:7581. doi: 10.1080/02827580903085171. DOI
Whitehead RJ, Safranyik L, Russo G, Shore TL, Carroll AL. In: Shore TL, Brooks JE, Stone JE, editors. Silviculture to reduce landscape and stand susceptibility to the mountain pine beetle; Mountain Pine Beetle Symposium: Challenges and Solutions; October 30-31, 2003; Kelowna, British Columbia, Canada. 2004. pp. 233–244. Report BC-X-399.
Woodcock P, Halme P, Edwards D. In: Routledge Handbook of Forest Ecology. Bergeron K, editor. Taylor & Francis; 2015. Ecological effects of logging and approaches to mitigating impacts; pp. 422–435.
Yousefpour R, Nabel JEMS, Pongratz J. Simulating growth-based harvest adaptive to future climate change. Biogeosciences. 2019;16:241–254. doi: 10.5194/bg-16-241-2019. DOI
Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A. The HIRHAM regional climate model version 5 (β), DMI Techical Report. Copenhagen: 2007.
Strandberg G, Bärring L, Hansson U, Jansson C, Jones C, Kjellström E, Kolax M, Kupiainen M, Nikulin G, Samuelsson P, Ullerstig A, et al. CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. SMHI Rep Meteorol Climatol. 2014;116:1–45.
van Meijgaard E, van Ulft LH, van de Berg WJ, Bosveld FC, van den Hurk B, Lenderink G, Siebesma AP. Technical Report 302: The KNMI regional atmospheric climate model RACMO version 2.1. De Bilt: 2008.