Genetic pain loss disorders

. 2022 Jun 16 ; 8 (1) : 41. [epub] 20220616

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35710757

Grantová podpora
BRC-1215-20014 Department of Health - United Kingdom
I 4699 Austrian Science Fund FWF - Austria
MR/R011737/1 Medical Research Council - United Kingdom
200183/Z/15/Z Wellcome Trust - United Kingdom
21950 Versus Arthritis - United Kingdom

Odkazy

PubMed 35710757
DOI 10.1038/s41572-022-00365-7
PII: 10.1038/s41572-022-00365-7
Knihovny.cz E-zdroje

Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.

Cambridge Institute for Medical Research Keith Peters Building Cambridge Biomedical Campus Cambridge UK

Centre for Neuromuscular Diseases UCL Queen Square Institute of Neurology London UK

Department of Clinical Chemistry University Hospital Zurich University of Zurich Zurich Switzerland

Department of Neurology Medical Faculty Uniklinik RWTH Aachen University Aachen Germany

Department of Orthopedics and Trauma Surgery Medical University of Vienna Vienna Austria

Department of Paediatric Neurology 2nd Faculty of Medicine Charles University Prague and Motol University Hospital Prague Czech Republic

Dr John T Macdonald Foundation Department of Human Genetics and John P Hussman Institute for Human Genomics University of Miami Miller School of Medicine Miami FL USA

Friedrich Baur Institute Department of Neurology Ludwig Maximilians University Munich Germany

Institute of Human Genetics Medical Faculty Uniklinik RWTH Aachen University Aachen Germany

Institute of Human Genetics University Hospital Jena Jena Germany

Institute of Physiology Medical Faculty Uniklinik RWTH Aachen University Aachen Germany

Laboratory of Neuromuscular Pathology Institute Born Bunge Antwerp Belgium

Molecular Nociception Group Wolfson Institute for Biomedical Research University College London London UK

Neuromuscular Reference Centre Department of Neurology Antwerp University Hospital Antwerp Belgium

Neuromuscular Unit Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey

Nuffield Department of Clinical Neuroscience Oxford University Oxford UK

Peripheral Neuropathy Research Group Department of Biomedical Sciences University of Antwerp Antwerp Belgium

Translational Neurosciences Faculty of Medicine and Health Sciences University of Antwerp Antwerp Belgium

Zobrazit více v PubMed

Cox, J. J., Woods, C. G. & Kurth, I. Peripheral sensory neuropathies–pain loss vs. pain gain. Med. Genet. 32, 233–241 (2020).

Rotthier, A. et al. Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 132, 2699–2711 (2009). PubMed PMC

Rotthier, A., Baets, J., Timmerman, V. & Janssens, K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat. Rev. Neurol. 8, 73–85 (2012). PubMed

Nicholson, G. A. SPTLC1-Related Hereditary Sensory Neuropathy. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1390/ (updated 2 Dec 2021).

Schon, K. R. et al. Congenital Insensitivity to Pain Overview. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK481553/ (updated 11 Jun 2020).

Haga, N., Kubota, M. & Miwa, Z. Epidemiology of hereditary sensory and autonomic neuropathy type IV and V in Japan. Am. J. Med. Genet. A 161A, 871–874 (2013). PubMed

Kurth, I. Hereditary Sensory and Autonomic Neuropathy Type II. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK49247/ (updated 1 Apr 2021).

Curro, R. et al. RFC1 expansions are a common cause of idiopathic sensory neuropathy. Brain 144, 1542–1550 (2021). PubMed PMC

Lafreniere, R. G. et al. Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the study of Canadian genetic isolates. Am. J. Hum. Genet. 74, 1064–1073 (2004). PubMed PMC

Dong, J., Edelmann, L., Bajwa, A. M., Kornreich, R. & Desnick, R. J. Familial dysautonomia: detection of the IKBKAP IVS20(+6T –> C) and R696P mutations and frequencies among Ashkenazi Jews. Am. J. Med. Genet. 110, 253–257 (2002). PubMed

Davidson, G. et al. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J. Neurol. 259, 1673–1685 (2012). PubMed PMC

Houlden, H. et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 129, 411–425 (2006). PubMed

Dawkins, J. L., Hulme, D. J., Brahmbhatt, S. B., Auer-Grumbach, M. & Nicholson, G. A. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27, 309–312 (2001). PubMed

Nicholson, G. A. et al. Hereditary sensory neuropathy type I: haplotype analysis shows founders in southern England and Europe. Am. J. Hum. Genet. 69, 655–659 (2001). PubMed PMC

Edvardson, S. et al. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann. Neurol. 71, 569–572 (2012). PubMed

Manganelli, F. et al. Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 88, 2132–2140 (2017). PubMed PMC

Fortugno, P. et al. Recessive mutations in the neuronal isoforms of DST, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI. Hum. Mutat. 40, 106–114 (2019). PubMed

Jin, J. Y. et al. Novel compound heterozygous DST variants causing hereditary sensory and autonomic neuropathies VI in twins of a Chinese family. Front. Genet. 11, 492 (2020). PubMed PMC

Yoshioka, N. et al. Diverse dystonin gene mutations cause distinct patterns of Dst isoform deficiency and phenotypic heterogeneity in Dystonia musculorum mice. Dis. Model Mech. https://doi.org/10.1242/dmm.041608 (2020). PubMed DOI PMC

Young, K. G. & Kothary, R. Dystonin/Bpag1–a link to what? Cell Motil. Cytoskeleton 64, 897–905 (2007). PubMed

Young, K. G. & Kothary, R. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons. Exp. Cell Res. 314, 2750–2761 (2008). PubMed

Tseng, K. W., Peng, M. L., Wen, Y. C., Liu, K. J. & Chien, C. L. Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice. J. Biomed. Sci. 18, 9 (2011). PubMed PMC

Ryan, S. D. et al. Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function. Mol. Biol. Cell 23, 553–566 (2012). PubMed PMC

Ferrier, A., Boyer, J. G. & Kothary, R. Cellular and molecular biology of neuronal dystonin. Int. Rev. Cell Mol. Biol. 300, 85–120 (2013). PubMed

Ferrier, A. et al. Disruption in the autophagic process underlies the sensory neuropathy in Dystonia musculorum mice. Autophagy 11, 1025–1036 (2015). PubMed PMC

Groves, R. W. et al. A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies a new subtype of autosomal recessive epidermolysis bullosa simplex. J. Invest. Dermatol. 130, 1551–1557 (2010). PubMed

Liu, L. et al. Autosomal recessive epidermolysis bullosa simplex due to loss of BPAG1-e expression. J. Invest. Dermatol. 132, 742–744 (2012). PubMed

Brown, A., Bernier, G., Mathieu, M., Rossant, J. & Kothary, R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nat. Genet. 10, 301–306 (1995). PubMed

Scott, B. L. et al. Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nat. Commun. 9, 419 (2018). PubMed PMC

Nahorski, M. S. et al. A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain 138, 2147–2160 (2015). PubMed PMC

Nahorski, M. S. et al. Clathrin heavy chain 22 contributes to the control of neuropeptide degradation and secretion during neuronal development. Sci. Rep. 8, 2340 (2018). PubMed PMC

Riviere, J. B. et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am. J. Hum. Genet. 89, 219–230 (2011). PubMed PMC

Lee, J. R. et al. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum. Mutat. https://doi.org/10.1002/humu.22709 (2014). PubMed DOI PMC

Nemani, T. et al. KIF1A-related disorders in children: a wide spectrum of central and peripheral nervous system involvement. J. Peripher. Nerv. Syst. 25, 117–124 (2020). PubMed

Hirokawa, N. & Tanaka, Y. Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 334, 16–25 (2015). PubMed

Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995). PubMed

Sgro, A. E., Bajjalieh, S. M. & Chiu, D. T. Single-axonal organelle analysis method reveals new protein-motor associations. ACS Chem. Neurosci. 4, 277–284 (2013). PubMed

Hummel, J. J. A. & Hoogenraad, C. C. Specific KIF1A-adaptor interactions control selective cargo recognition. J. Cell Biol. https://doi.org/10.1083/jcb.202105011 (2021). PubMed DOI PMC

Verhoeven, K. et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am. J. Hum. Genet. 72, 722–727 (2003). PubMed PMC

Houlden, H. et al. A novel RAB7 mutation associated with ulcero-mutilating neuropathy. Ann. Neurol. 56, 586–590 (2004). PubMed

Zhang, K. et al. Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J. Neurosci. 33, 7451–7462 (2013). PubMed PMC

Ponomareva, O. Y., Eliceiri, K. W. & Halloran, M. C. Charcot-Marie-Tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development. Neural Dev. 11, 2 (2016). PubMed PMC

Lowe, H., Toyang, N., Steele, B., Bryant, J. & Ngwa, W. The endocannabinoid system: a potential target for the treatment of various diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179472 (2021). PubMed DOI PMC

Cravatt, B. F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA 98, 9371–9376 (2001). PubMed PMC

Habib, A. M. et al. Microdeletion in a FAAH pseudogene identified in a patient with high anandamide concentrations and pain insensitivity. Br. J. Anaesth. 123, e249–e253 (2019). PubMed PMC

Chiang, K. P., Gerber, A. L., Sipe, J. C. & Cravatt, B. F. Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. Hum. Mol. Genet. 13, 2113–2119 (2004). PubMed

Mikaeili, H. et al. CRISPR interference at the FAAH-OUT genomic region reduces FAAH expression. Preprint at bioRxiv https://doi.org/10.1101/633396 (2019). DOI

Cravatt, B. F. et al. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc. Natl Acad. Sci. USA 101, 10821–10826 (2004). PubMed PMC

Dincheva, I. et al. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat. Commun. 6, 6395 (2015). PubMed

Lichtman, A. H., Shelton, C. C., Advani, T. & Cravatt, B. F. Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain 109, 319–327 (2004). PubMed

Clapper, J. R. et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat. Neurosci. 13, 1265–1270 (2010). PubMed PMC

Klein, C. J. et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43, 595–600 (2011). PubMed PMC

Winkelmann, J. et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum. Mol. Genet. 21, 2205–2210 (2012). PubMed PMC

Baets, J. et al. Defects of mutant DNMT1 are linked to a spectrum of neurological disorders. Brain 138, 845–861 (2015). PubMed PMC

Chen, Y. C. et al. Transcriptional regulator PRDM12 is essential for human pain perception. Nat. Genet. 47, 803–808 (2015). PubMed PMC

Inamadar, A. C. et al. Extending the phenotype of midface toddler excoriation syndrome (MiTES): five new cases in three families with PR domain containing protein 12 (PRDM12) mutations. J. Am. Acad. Dermatol. 81, 1415–1417 (2019). PubMed

Landy, M. A., Goyal, M., Casey, K. M., Liu, C. & Lai, H. C. Loss of Prdm12 during development, but not in mature nociceptors, causes defects in pain sensation. Cell Rep. 34, 108913 (2021). PubMed PMC

Desiderio, S. et al. Prdm12 directs nociceptive sensory neuron development by regulating the expression of the NGF receptor TrkA. Cell Rep. 26, 3522–3536.e5 (2019). PubMed

Bartesaghi, L. et al. PRDM12 is required for initiation of the nociceptive neuron lineage during neurogenesis. Cell Rep. 26, 3484–3492.e4 (2019). PubMed PMC

Zhang, S. et al. Clinical features for diagnosis and management of patients with PRDM12 congenital insensitivity to pain. J. Med. Genet. 53, 533–535 (2016). PubMed

Habib, A. M. et al. A novel human pain insensitivity disorder caused by a point mutation in ZFHX2. Brain 141, 365–376 (2018). PubMed

Durr, A. et al. Atlastin1 mutations are frequent in young-onset autosomal dominant spastic paraplegia. Arch. Neurol. 61, 1867–1872 (2004). PubMed

Guelly, C. et al. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am. J. Hum. Genet. 88, 99–105 (2011). PubMed PMC

Zhang, H. & Hu, J. Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. 26, 934–943 (2016). PubMed

Leonardis, L., Auer-Grumbach, M., Papic, L. & Zidar, J. The N355K atlastin 1 mutation is associated with hereditary sensory neuropathy and pyramidal tract features. Eur. J. Neurol. 19, 992–998 (2012). PubMed

Fischer, D. et al. A novel missense mutation confirms ATL3 as a gene for hereditary sensory neuropathy type 1. Brain 137, e286 (2014). PubMed

Kornak, U. et al. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3. Brain 137, 683–692 (2014). PubMed

Xu, H. et al. ATL3 gene mutation in a Chinese family with hereditary sensory neuropathy type 1F. J. Peripher. Nerv. Syst. 24, 150–155 (2019). PubMed

Cintra, V. P. et al. Rare mutations in ATL3, SPTLC2 and SCN9A explaining hereditary sensory neuropathy and congenital insensitivity to pain in a Brazilian cohort. J. Neurol. Sci. 427, 117498 (2021). PubMed

Novarino, G. et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343, 506–511 (2014). PubMed PMC

Nizon, M. et al. ARL6IP1 mutation causes congenital insensitivity to pain, acromutilation and spastic paraplegia. Clin. Genet. 93, 169–172 (2018). PubMed

Maddirevula, S. et al. Autozygome and high throughput confirmation of disease genes candidacy. Genet. Med. 21, 736–742 (2019). PubMed

Chukhrova, A. L. et al. A new case of infantile-onset hereditary spastic paraplegia with complicated phenotype (SPG61) in a consanguineous Russian family. Eur. J. Neurol. 26, e61–e62 (2019). PubMed

Wakil, S. M. et al. Truncating ARL6IP1 variant as the genetic cause of fatal complicated hereditary spastic paraplegia. BMC Med. Genet. 20, 119 (2019). PubMed PMC

Cao, Y. et al. Genotype-phenotype study and expansion of ARL6IP1-related complicated hereditary spastic paraplegia. Clin. Genet. 99, 477–480 (2021). PubMed

Kurth, I. et al. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 41, 1179–1181 (2009). PubMed

Falcao de Campos, C. et al. Hereditary sensory autonomic neuropathy type II: report of two novel mutations in the FAM134B gene. J. Peripher. Nerv. Syst. 24, 354–358 (2019). PubMed

Ilgaz Aydinlar, E., Rolfs, A., Serteser, M. & Parman, Y. Mutation in FAM134B causing hereditary sensory neuropathy with spasticity in a Turkish family. Muscle Nerve 49, 774–775 (2014). PubMed

Luo, Z. Y. et al. Late-onset hereditary sensory and autonomic neuropathy type 2B caused by novel compound heterozygous mutations in FAM134B presenting as chronic recurrent ulcers on the soles. Indian. J. Dermatol. Venereol. Leprol. 87, 455 (2021). PubMed

Murphy, S. M., Davidson, G. L., Brandner, S., Houlden, H. & Reilly, M. M. Mutation in FAM134B causing severe hereditary sensory neuropathy. J. Neurol. Neurosurg. Psychiatry 83, 119–120 (2012). PubMed

Wakil, S. M. et al. Exome sequencing: mutilating sensory neuropathy with spastic paraplegia due to a mutation in FAM134B gene. Case Rep. Genet. 2018, 9468049 (2018). PubMed PMC

Yang, Y. S. & Strittmatter, S. M. The reticulons: a family of proteins with diverse functions. Genome Biol. 8, 234 (2007). PubMed PMC

Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006). PubMed

Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006). PubMed

Baumann, O. & Walz, B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int. Rev. Cytol. 205, 149–214 (2001). PubMed

Hubner, C. A. & Kurth, I. Membrane-shaping disorders: a common pathway in axon degeneration. Brain 137, 3109–3121 (2014). PubMed

Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250 (2008). PubMed

Muriel, M. P. et al. Atlastin-1, the dynamin-like GTPase responsible for spastic paraplegia SPG3A, remodels lipid membranes and may form tubules and vesicles in the endoplasmic reticulum. J. Neurochem. 110, 1607–1616 (2009). PubMed

Orso, G. et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460, 978–983 (2009). PubMed

Behrendt, L., Kurth, I. & Kaether, C. A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol. Life Sci. 76, 1433–1445 (2019). PubMed PMC

Krols, M. et al. Sensory neuropathy-causing mutations in ATL3 affect ER-mitochondria contact sites and impair axonal mitochondrial distribution. Hum. Mol. Genet. 28, 615–627 (2019). PubMed

Krols, M. et al. Sensory-neuropathy-causing mutations in ATL3 cause aberrant ER membrane tethering. Cell Rep. 23, 2026–2038 (2018). PubMed

Yamamoto, Y., Yoshida, A., Miyazaki, N., Iwasaki, K. & Sakisaka, T. Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon-like fashion. Biochem. J. 458, 69–79 (2014). PubMed

Fowler, P. C. & O’Sullivan, N. C. ER-shaping proteins are required for ER and mitochondrial network organization in motor neurons. Hum. Mol. Genet. 25, 2827–2837 (2016). PubMed

Dong, R. et al. The inositol 5-phosphatase INPP5K participates in the fine control of ER organization. J. Cell Biol. 217, 3577–3592 (2018). PubMed PMC

Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science https://doi.org/10.1126/science.aaf3928 (2016). PubMed DOI PMC

Lee, C. A. & Blackstone, C. ER morphology and endo-lysosomal crosstalk: functions and disease implications. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158544 (2020). PubMed

Borgese, N., Francolini, M. & Snapp, E. Endoplasmic reticulum architecture: structures in flux. Curr. Opin. Cell Biol. 18, 358–364 (2006). PubMed PMC

Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015). PubMed

Mochida, K. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359–362 (2015). PubMed

Hubner, C. A. & Dikic, I. ER-phagy and human diseases. Cell Death Differ. 27, 833–842 (2020). PubMed

Chen, Q., Teng, J. & Chen, J. ATL3, a cargo receptor for reticulophagy. Autophagy 15, 1465–1466 (2019). PubMed PMC

Liang, J. R., Lingeman, E., Ahmed, S. & Corn, J. E. Atlastins remodel the endoplasmic reticulum for selective autophagy. J. Cell Biol. 217, 3354–3367 (2018). PubMed PMC

Chen, Q. et al. ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr. Biol. 29, 846–855.e6 (2019). PubMed

Fregno, I. et al. ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J. https://doi.org/10.15252/embj.201899259 (2018). PubMed DOI PMC

Forrester, A. et al. A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex. EMBO J. https://doi.org/10.15252/embj.201899847 (2019). PubMed DOI

Jiang, X. et al. FAM134B oligomerization drives endoplasmic reticulum membrane scission for ER-phagy. EMBO J. 39, e102608 (2020). PubMed PMC

Pleiner, T. et al. WNK1 is an assembly factor for the human ER membrane protein complex. Mol. Cell 81, 2693–2704.e12 (2021). PubMed

Shekarabi, M. et al. Mutations in the nervous system-specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J. Clin. Invest. 118, 2496–2505 (2008). PubMed PMC

Wang, J. J., Yu, B. & Li, Z. The coexistence of a novel WNK1 variant and a copy number variation causes hereditary sensory and autonomic neuropathy type IIA. BMC Med. Genet. 20, 91 (2019). PubMed PMC

Loggia, M. L. et al. Carriers of recessive WNK1/HSN2 mutations for hereditary sensory and autonomic neuropathy type 2 (HSAN2) are more sensitive to thermal stimuli. J. Neurosci. 29, 2162–2166 (2009). PubMed PMC

Izadifar, A. et al. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron https://doi.org/10.1016/j.neuron.2021.07.006 (2021). PubMed DOI

Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001). PubMed PMC

Bradshaw, R. A. Rita Levi-Montalcini (1909-2012). Nature 493, 306 (2013). PubMed

Shaikh, S. S. et al. A comprehensive functional analysis of NTRK1 missense mutations causing hereditary sensory and autonomic neuropathy type IV (HSAN IV). Hum. Mutat. 38, 55–63 (2017). PubMed

Crowley, C. et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76, 1001–1011 (1994). PubMed

Smeyne, R. J. et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368, 246–249 (1994). PubMed

Einarsdottir, E. et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum. Mol. Genet. 13, 799–805 (2004). PubMed

Indo, Y. et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat. Genet. 13, 485–488 (1996). PubMed

Carvalho, O. P. et al. A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. J. Med. Genet. 48, 131–135 (2011). PubMed

Shaikh, S. S., Nahorski, M. S. & Woods, C. G. A third HSAN5 mutation disrupts the nerve growth factor furin cleavage site. Mol. Pain. 14, 1744806918809223 (2018). PubMed PMC

Minde, J. et al. A novel NGFB point mutation: a phenotype study of heterozygous patients. J. Neurol. Neurosurg. Psychiatry 80, 188–195 (2009). PubMed

Cortese, A. et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat. Genet. 51, 649–658 (2019). PubMed PMC

Rafehi, H. et al. Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am. J. Hum. Genet. 105, 151–165 (2019). PubMed PMC

Tagliapietra, M. et al. RFC1 AAGGG repeat expansion masquerading as chronic idiopathic axonal polyneuropathy. J. Neurol. https://doi.org/10.1007/s00415-021-10552-3 (2021). PubMed DOI PMC

Kumar, K. R. et al. RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjogren syndrome. Brain 143, e82 (2020). PubMed PMC

Beijer, D. et al. RFC1 repeat expansions: a recurrent cause of sensory and autonomic neuropathy with cough and ataxia. Eur. J. Neurol. https://doi.org/10.1111/ene.15310 (2022). PubMed DOI

Bennett, D. L., Clark, A. J., Huang, J., Waxman, S. G. & Dib-Hajj, S. D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 99, 1079–1151 (2019). PubMed

Körner, J. & Lampert, A. in The Senses: a Comprehensive Reference 2nd edn Vol. 5 (ed. Fritzsch, B.) 120–141 (Academic, 2020).

Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006). PubMed PMC

Middleton, S. J. et al. Nav1.7 is required for normal C-low threshold mechanoreceptor function in humans and mice. Brain https://doi.org/10.1093/brain/awab482 (2021). PubMed DOI PMC

Goldberg, Y. P. et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet. 71, 311–319 (2007). PubMed

Weiss, J. et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472, 186–190 (2011). PubMed PMC

McDermott, L. A. et al. Defining the functional role of NaV1.7 in human nociception. Neuron 101, 905–919.e8 (2019). PubMed PMC

Nassar, M. A. et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl Acad. Sci. USA 101, 12706–12711 (2004). PubMed PMC

Minett, M. S. et al. Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat. Commun. 3, 791 (2012). PubMed

Minett, M. S. et al. Pain without nociceptors? Nav1.7-independent pain mechanisms. Cell Rep. 6, 301–312 (2014). PubMed PMC

Shields, S. D. et al. Insensitivity to pain upon adult-onset deletion of Nav1.7 or its blockade with selective inhibitors. J. Neurosci. 38, 10180–10201 (2018). PubMed PMC

Eagles, D. A., Chow, C. Y. & King, G. F. Fifteen years of NaV 1.7 channels as an analgesic target: why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br. J. Pharmacol. https://doi.org/10.1111/bph.15327 (2020). PubMed DOI

Moreno, A. M. et al. Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay9056 (2021). PubMed DOI PMC

Kingwell, K. Nav1.7 withholds its pain potential. Nat. Rev. Drug Discov. https://doi.org/10.1038/d41573-41019-00065-41570 (2019). PubMed DOI

Pereira, V. et al. Analgesia linked to Nav1.7 loss of function requires micro- and delta-opioid receptors. Wellcome Open Res. 3, 101 (2018). PubMed PMC

Minett, M. S. et al. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat. Commun. 6, 8967 (2015). PubMed

Isensee, J. et al. Synergistic regulation of serotonin and opioid signaling contributes to pain insensitivity in Nav1.7 knockout mice. Sci. Signal. https://doi.org/10.1126/scisignal.aah4874 (2017). PubMed DOI PMC

MacDonald, D. I. et al. A central mechanism of analgesia in mice and humans lacking the sodium channel NaV1.7. Neuron 109, 1497–1512.e6 (2021). PubMed PMC

Bennett, D. L. & Woods, C. G. Painful and painless channelopathies. Lancet Neurol. 13, 587–599 (2014). PubMed

Faber, C. G. et al. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71, 26–39 (2012). PubMed

Fertleman, C. R. et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006). PubMed

Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171–174 (2004). PubMed PMC

King, M. K., Leipold, E., Goehringer, J. M., Kurth, I. & Challman, T. D. Pain insensitivity: distal S6-segment mutations in NaV1.9 emerge as critical hotspot. Neurogenetics 18, 179–181 (2017). PubMed

Phatarakijnirund, V. et al. Congenital insensitivity to pain: fracturing without apparent skeletal pathobiology caused by an autosomal dominant, second mutation in SCN11A encoding voltage-gated sodium channel 1.9. Bone 84, 289–298 (2016). PubMed

Leipold, E. et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 45, 1399–1404 (2013). PubMed

Cox, J. J. & Wood, J. N. No pain, more gain. Nat. Genet. 45, 1271–1272 (2013). PubMed

Woods, C. G., Babiker, M. O., Horrocks, I., Tolmie, J. & Kurth, I. The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur. J. Hum. Genet. 23, 561–563 (2015). PubMed

Huang, J. et al. Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain 137, 1627–1642 (2014). PubMed

Leipold, E. et al. Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant. Nat. Commun. 6, 10049 (2015). PubMed

Zhang, X. Y. et al. Gain-of-function mutations in SCN11A cause familial episodic pain. Am. J. Hum. Genet. 93, 957–966 (2013). PubMed PMC

Huang, J. et al. Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. J. Clin. Invest. 127, 2805–2814 (2017). PubMed PMC

Faber, C. G. et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc. Natl Acad. Sci. USA 109, 19444–19449 (2012). PubMed PMC

Kaluza, L. et al. Loss-of-function of Nav1.8/D1639N linked to human pain can be rescued by lidocaine. Pflug. Arch. 470, 1787–1801 (2018).

Kist, A. M. et al. SCN10A mutation in a patient with erythromelalgia enhances C-fiber activity dependent slowing. PLoS ONE 11, e0161789 (2016). PubMed PMC

Weiss, B. & Stoffel, W. Human and murine serine-palmitoyl-CoA transferase–cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur. J. Biochem. 249, 239–247 (1997). PubMed

Bejaoui, K. et al. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat. Genet. 27, 261–262 (2001). PubMed

Rotthier, A. et al. Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am. J. Hum. Genet. 87, 513–522 (2010). PubMed PMC

Auer-Grumbach, M. Hereditary sensory neuropathy type I. Orphanet J. Rare Dis. 3, 7 (2008). PubMed PMC

Auer-Grumbach, M. et al. Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. Eur. J. Med. Genet. 56, 266–269 (2013). PubMed PMC

Rotthier, A. et al. Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I. Hum. Mutat. 32, E2211–E2225 (2011). PubMed

Penno, A. et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 285, 11178–11187 (2010). PubMed PMC

Gantner, M. L. et al. Serine and lipid metabolism in macular disease and peripheral neuropathy. N. Engl. J. Med. 381, 1422–1433 (2019). PubMed PMC

Mwinyi, J. et al. Plasma 1-deoxysphingolipids are early predictors of incident type 2 diabetes mellitus. PLoS ONE 12, e0175776 (2017). PubMed PMC

Dohrn, M. F. et al. Elevation of plasma 1-deoxy-sphingolipids in type 2 diabetes mellitus: a susceptibility to neuropathy? Eur. J. Neurol. 22, 806–e55 (2015). PubMed

Othman, A. et al. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 3, e000073 (2015). PubMed PMC

Othman, A. et al. Lowering plasma 1-deoxysphingolipids improves neuropathy in diabetic rats. Diabetes 64, 1035–1045 (2015). PubMed

Alecu, I. et al. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J. Lipid Res. 58, 42–59 (2017). PubMed

Wilson, E. R. et al. Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiol. Dis. 117, 1–14 (2018). PubMed PMC

Clark, A. J. et al. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep. Med. 2, 100345 (2021). PubMed PMC

Scherer, S. S. The debut of a rational treatment for an inherited neuropathy? J. Clin. Invest. 121, 4624–4627 (2011). PubMed PMC

Mohassel, P. et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat. Med. 27, 1197–1204 (2021). PubMed

Johnson, J. O. et al. Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2021.2598 (2021). PubMed DOI PMC

Anderson, S. L. et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet. 68, 753–758 (2001). PubMed PMC

Slaugenhaupt, S. A. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68, 598–605 (2001). PubMed PMC

Waszak, S. M. et al. Germline elongator mutations in sonic hedgehog medulloblastoma. Nature 580, 396–401 (2020). PubMed PMC

Goffena, J. et al. Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat. Commun. 9, 889 (2018). PubMed PMC

Lefcort, F., Mergy, M., Ohlen, S. B., Ueki, Y. & George, L. Animal and cellular models of familial dysautonomia. Clin. Auton. Res. 27, 235–243 (2017). PubMed PMC

Dietrich, P. & Dragatsis, I. Familial dysautonomia: mechanisms and models. Genet. Mol. Biol. 39, 497–514 (2016). PubMed PMC

Quigley, J. G. et al. Identification of a human heme exporter that is essential for erythropoiesis. Cell 118, 757–766 (2004). PubMed

Chiabrando, D., Fiorito, V., Petrillo, S., Bertino, F. & Tolosano, E. HEME: a neglected player in nociception? Neurosci. Biobehav. Rev. 124, 124–136 (2021). PubMed

Rajadhyaksha, A. M. et al. Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am. J. Hum. Genet. 87, 643–654 (2010). PubMed PMC

Chiabrando, D. et al. Mutations in the heme exporter FLVCR1 cause sensory neurodegeneration with loss of pain perception. PLoS Genet. 12, e1006461 (2016). PubMed PMC

Bertino, F. et al. Heme and sensory neuropathy: insights from novel mutations in the heme exporter feline leukemia virus subgroup C receptor 1. Pain 160, 2766–2775 (2019). PubMed

Grudzinska Pechhacker, M. K. et al. FLVCR1-related disease as a rare cause of retinitis pigmentosa and hereditary sensory autonomic neuropathy. Eur. J. Med. Genet. 63, 104037 (2020). PubMed

Koehler, K. et al. Mutations in GMPPA cause a glycosylation disorder characterized by intellectual disability and autonomic dysfunction. Am. J. Hum. Genet. 93, 727–734 (2013). PubMed PMC

Gold, W. A. et al. A novel mutation in GMPPA in siblings with apparent intellectual disability, epilepsy, dysmorphism, and autonomic dysfunction. Am. J. Med. Genet. A 173, 2246–2250 (2017). PubMed

Benitez, E. O., Morales, J. J., Munoz, L. A., Hubner, C. A. & Mutchinick, O. M. A novel GMPPA mutation in two adult sisters with achalasia, alacrima, short stature, dysmorphism, and intellectual disability. Mol. Syndromol. 9, 110–114 (2018). PubMed PMC

Diaz, J., Kane, T. D. & Leon, E. Evidence of GMPPA founder mutation in indigenous Guatemalan population associated with alacrima, achalasia, and mental retardation syndrome. Am. J. Med. Genet. A 182, 425–430 (2020). PubMed

Franzka, P. et al. GMPPA defects cause a neuromuscular disorder with α-dystroglycan hyperglycosylation. J. Clin. Invest. https://doi.org/10.1172/JCI139076 (2021). PubMed DOI PMC

Zheng, L. et al. Cryo-EM structures of human GMPPA-GMPPB complex reveal how cells maintain GDP-mannose homeostasis. Nat. Struct. Mol. Biol. 28, 1–12 (2021). PubMed

Schneeberger, P. E. et al. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 143, 2437–2453 (2020). PubMed PMC

Baumann, M. et al. MPV17 mutations in juvenile- and adult-onset axonal sensorimotor polyneuropathy. Clin. Genet. 95, 182–186 (2019). PubMed

Appenzeller, O., Kornfeld, M. & Snyder, R. Acromutilating, paralyzing neuropathy with corneal ulceration in Navajo children. Arch. Neurol. 33, 733–738 (1976). PubMed

Johnsen, S. D., Johnson, P. C. & Stein, S. R. Familial sensory autonomic neuropathy with arthropathy in Navajo children. Neurology 43, 1120–1125 (1993). PubMed

Karadimas, C. L. et al. Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am. J. Hum. Genet. 79, 544–548 (2006). PubMed PMC

Spinazzola, A. et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet. 38, 570–575 (2006). PubMed

Heimer, G. et al. TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability. Eur. J. Paediatr. Neurol. 20, 69–79 (2016). PubMed

Palma, J. A. et al. Expanding the genotypic spectrum of congenital sensory and autonomic neuropathies using whole-exome sequencing. Neurol. Genet. 7, e568 (2021). PubMed PMC

Neuser, S. et al. Clinical, neuroimaging, and molecular spectrum of TECPR2-associated hereditary sensory and autonomic neuropathy with intellectual disability. Hum. Mutat. 42, 762–776 (2021). PubMed

Covone, A. E. et al. WES in a family trio suggests involvement of TECPR2 in a complex form of progressive motor neuron disease. Clin. Genet. 90, 182–185 (2016). PubMed

Oz-Levi, D. et al. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am. J. Hum. Genet. 91, 1065–1072 (2012). PubMed PMC

Fraiberg, M. et al. Lysosomal targeting of autophagosomes by the TECPR domain of TECPR2. Autophagy 17, 3096–3108 (2021). PubMed

Tamim-Yecheskel, B. C. et al. A tecpr2 knockout mouse exhibits age-dependent neuroaxonal dystrophy associated with autophagosome accumulation. Autophagy 17, 3082–3095 (2021). PubMed

Stadel, D. et al. TECPR2 cooperates with LC3C to regulate COPII-dependent ER export. Mol. Cell 60, 89–104 (2015). PubMed

Patwari, P. P., Wolfe, L. F., Sharma, G. D. & Berry-Kravis, E. TECPR2 mutation-associated respiratory dysregulation: more than central apnea. J. Clin. Sleep. Med. 16, 977–982 (2020). PubMed PMC

Bouhouche, A., Benomar, A., Bouslam, N., Chkili, T. & Yahyaoui, M. Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J. Med. Genet. 43, 441–443 (2006). PubMed PMC

Bouhouche, A. et al. Autosomal recessive mutilating sensory neuropathy with spastic paraplegia maps to chromosome 5p15.31-14.1. Eur. J. Hum. Genet. 14, 249–252 (2006). PubMed

Antona, V. et al. A novel CCT5 missense variant associated with early onset motor neuropathy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21207631 (2020). PubMed DOI PMC

Makari, G. S., Carroll, J. E. & Burton, E. M. Hereditary sensory neuropathy manifesting as possible child abuse. Pediatrics 93, 842–844 (1994). PubMed

van den Bosch, G. E. et al. Pain insensitivity syndrome misinterpreted as inflicted burns. Pediatrics 133, e1381–e1387 (2014). PubMed

Marbach, F. et al. Variants in PRKAR1B cause a neurodevelopmental disorder with autism spectrum disorder, apraxia, and insensitivity to pain. Genet. Med. 23, 1465–1473 (2021). PubMed PMC

Jinnah, H. A. HPRT1 Disorders. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1149/ (updated 6 Aug 2020).

Hepburn, L. et al. Innate immunity. A Spaetzle-like role for nerve growth factor β in vertebrate immunity to Staphylococcus aureus. Science 346, 641–646 (2014). PubMed PMC

Li, N. et al. Heterogeneity of clinical features and mutation analysis of NTRK1 in Han Chinese patients with congenital insensitivity to pain with anhidrosis. J. Pain. Res. 12, 453–465 (2019). PubMed PMC

Carroll, A. et al. Novel approaches to diagnosis and management of hereditary transthyretin amyloidosis. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2021-327909 (2022). PubMed DOI

Obici, L. & Mussinelli, R. Current and emerging therapies for hereditary transthyretin amyloidosis: strides towards a brighter future. Neurotherapeutics 18, 2286–2302 (2021). PubMed

Schwartzlow, C. & Kazamel, M. Hereditary sensory and autonomic neuropathies: adding more to the classification. Curr. Neurol. Neurosci. Rep. 19, 52 (2019). PubMed

De Jonghe, P. K. in Hereditary Peripheral Neuropathies (eds Kuhlenbäumer G., Stögbauer F., Ringelstein E. B., & Young P.) 41–63 (Springer, 2005).

Lauria, G. et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur. J. Neurol. 17, 903–e49 (2010). PubMed

Dyck, P. J. in Peripheral Neuropathy 3rd edn (eds Dyck P. J. et al.) 1065–1093 (Saunders, 1993).

Rolke, R. et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur. J. Pain. 10, 77–88 (2006). PubMed

Roberts, R. C. Removing the idiopathic from the chronic sensory neuropathies. Brain 144, 1291–1292 (2021). PubMed PMC

Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). PubMed PMC

Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016). PubMed PMC

Boomsma, D. I. et al. The genome of the Netherlands: design, and project goals. Eur. J. Hum. Genet. 22, 221–227 (2014). PubMed

Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018). PubMed

Pinero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839 (2017). PubMed

Wei, C. H., Allot, A., Leaman, R. & Lu, Z. PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Res. 47, W587–W593 (2019). PubMed PMC

Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019). PubMed

Consortium, G. T. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

Schwarz, J. M., Rodelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010). PubMed

Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010). PubMed PMC

Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016). PubMed

Jagadeesh, K. A. et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat. Genet. 48, 1581–1586 (2016). PubMed

Heyne, H. O. et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay6848 (2020). PubMed DOI

Kopanos, C. et al. VarSome: the human genomic variant search engine. Bioinformatics 35, 1978–1980 (2019). PubMed

Holtgrewe, M. et al. VarFish: comprehensive DNA variant analysis for diagnostics and research. Nucleic Acids Res. 48, W162–W169 (2020). PubMed PMC

Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). PubMed PMC

Matthijs, G. et al. Guidelines for diagnostic next-generation sequencing. Eur. J. Hum. Genet. 24, 2–5 (2016). PubMed

Kobren, S. N. et al. Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases. Genet. Med. https://doi.org/10.1038/s41436-020-01084-8 (2021). PubMed DOI PMC

Bis-Brewer, D. M. et al. Assessing non-Mendelian inheritance in inherited axonopathies. Genet. Med. 22, 2114–2119 (2020). PubMed PMC

Kurth, I. et al. Whole exome sequencing in congenital pain insensitivity identifies a novel causative intronic NTRK1-mutation due to uniparental disomy. Am. J. Med. Genet. B Neuropsychiatr. Genet. 171, 875–878 (2016). PubMed

Li, L. et al. Novel gross deletion mutations in NTRK1 gene associated with congenital insensitivity to pain with anhidrosis. Front. Pediatr. 9, 638190 (2021). PubMed PMC

Marchi, M. et al. Congenital insensitivity to pain: a novel mutation affecting a U12-type intron causes multiple aberrant splicing of SCN9A. Pain https://doi.org/10.1097/j.pain.0000000000002535 (2021). PubMed DOI

Geng, X. et al. Novel NTRK1 mutations in Chinese patients with congenital insensitivity to pain with anhidrosis. Mol. Pain. 14, 1744806918781140 (2018). PubMed PMC

GATK Team. (How to) Call common and rare germline copy number variants. GATK https://gatk.broadinstitute.org/hc/en-us/articles/360035531152–How-to-Call-common-and-rare-germline-copy-number-variants (2022).

Kraft, F. & Kurth, I. Long-read sequencing to understand genome biology and cell function. Int. J. Biochem. Cell Biol. 126, 105799 (2020). PubMed

Axelrod, F. B. Familial dysautonomia: a review of the current pharmacological treatments. Expert. Opin. Pharmacother. 6, 561–567 (2005). PubMed

Bar-On, E. et al. Orthopaedic manifestations of familial dysautonomia. A review of one hundred and thirty-six patients. J. Bone Jt. Surg. Am. 82, 1563–1570 (2000).

Kayani, B. et al. Orthopaedic manifestations of congenital indifference to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV). Eur. J. Paediatr. Neurol. 21, 318–326 (2017). PubMed

Bar-On, E. et al. Congenital insensitivity to pain. Orthopaedic manifestations. J. Bone Jt. Surg. Br. 84, 252–257 (2002).

Loh, J., Cyr, K. & Martin, R. Ankle fracture in hereditary sensory neuropathy type 1. J. Foot Ankle Surg. 60, 621–625 (2021). PubMed

Auer-Grumbach, M. Hereditary sensory and autonomic neuropathies. Handb. Clin. Neurol. 115, 893–906 (2013). PubMed

Fruchtman, Y., Perry, Z. H. & Levy, J. Morbidity characteristics of patients with congenital insensitivity to pain with anhidrosis (CIPA). J. Pediatr. Endocrinol. Metab. 26, 325–332 (2013). PubMed

Weingarten, T. N. et al. Anesthesia and patients with congenital hyposensitivity to pain. Anesthesiology 105, 338–345 (2006). PubMed

Ngai, J., Kreynin, I., Kim, J. T. & Axelrod, F. B. Anesthesia management of familial dysautonomia. Paediatr. Anaesth. 16, 611–620 (2006). PubMed

Zlotnik, A. et al. Anesthetic management of patients with congenital insensitivity to pain with anhidrosis: a retrospective analysis of 358 procedures performed under general anesthesia. Anesth. Analg. 121, 1316–1320 (2015). PubMed PMC

Ozmete, O., Sener, M., Bali, C., Caliskan, E. & Aribogan, A. Congenital insensitivity to pain: how should anesthesia be managed? Turk. J. Pediatr. 59, 87–89 (2017). PubMed

Weingarten, T. N., Sprung, J. & Burgher, A. H. Perioperative management of familial dysautonomia: a systematic review. Eur. J. Anaesthesiol. 24, 309–316 (2007). PubMed

Elhennawy, K. et al. Oral manifestations, dental management, and a rare homozygous mutation of the PRDM12 gene in a boy with hereditary sensory and autonomic neuropathy type VIII: a case report and review of the literature. J. Med. Case Rep. 11, 233 (2017). PubMed PMC

Axelrod, F. B. & Berlin, D. Pregabalin: a new approach to treatment of the dysautonomic crisis. Pediatrics 124, 743–746 (2009). PubMed

Norcliffe-Kaufmann, L., Martinez, J., Axelrod, F. & Kaufmann, H. Hyperdopaminergic crises in familial dysautonomia: a randomized trial of carbidopa. Neurology 80, 1611–1617 (2013). PubMed PMC

Norcliffe-Kaufmann, L., Palma, J. A., Martinez, J. & Kaufmann, H. Carbidopa for afferent baroreflex failure in familial dysautonomia: a double-blind randomized crossover clinical trial. Hypertension 76, 724–731 (2020). PubMed

Spalink, C. L., Barnes, E., Palma, J. A., Norcliffe-Kaufmann, L. & Kaufmann, H. Intranasal dexmedetomidine for adrenergic crisis in familial dysautonomia. Clin. Auton. Res. 27, 279–282 (2017). PubMed PMC

Shirazi, E., Sayyahfar, S., Motamed, M. & Alaghband-Rad, J. A case of congenital insensitivity to pain with anhidrosis comorbid with attention deficit hyperactivity disorder: clinical implications for pathophysiology and treatment. J. Nerv. Ment. Dis. 206, 296–299 (2018). PubMed

de Greef, B. T. A. et al. Lacosamide in patients with Nav1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain 142, 263–275 (2019). PubMed

Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Prim. 3, 17002 (2017). PubMed

Di Stefano, G., Di Lionardo, A., Di Pietro, G., Cruccu, G. & Truini, A. Pharmacotherapeutic options for managing neuropathic pain: a systematic review and meta-analysis. Pain. Res. Manag. 2021, 6656863 (2021). PubMed PMC

Yozu, A. et al. Hereditary sensory and autonomic neuropathy types 4 and 5: review and proposal of a new rehabilitation method. Neurosci. Res. 104, 105–111 (2016). PubMed

Missaoui, B. & Thoumie, P. Balance training in ataxic neuropathies. Effects on balance and gait parameters. Gait Posture 38, 471–476 (2013). PubMed

Garofalo, K. et al. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Invest. 121, 4735–4745 (2011). PubMed PMC

Fridman, V. et al. Randomized trial of L-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 92, e359–e370 (2019). PubMed PMC

Auranen, M. et al. Clinical and metabolic consequences of L-serine supplementation in hereditary sensory and autonomic neuropathy type 1C. Cold Spring Harb. Mol. Case Stud. https://doi.org/10.1101/mcs.a002212 (2017). PubMed DOI PMC

Bode, H. et al. HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship. Hum. Mol. Genet. 25, 853–865 (2016). PubMed

Yang, H., Brown, R. H. Jr, Wang, D., Strauss, K. A. & Gao, G. AAV-mediated gene therapy for glycosphingolipid biosynthesis deficiencies. Trends Mol. Med. 27, 520–523 (2021). PubMed PMC

Morini, E. et al. ELP1 splicing correction reverses proprioceptive sensory loss in familial dysautonomia. Am. J. Hum. Genet. 104, 638–650 (2019). PubMed PMC

Palma, J. A. et al. Current treatments in familial dysautonomia. Expert. Opin. Pharmacother. 15, 2653–2671 (2014). PubMed PMC

Yannai, S., Zonszain, J., Donyo, M. & Ast, G. Combinatorial treatment increases IKAP levels in human cells generated from familial dysautonomia patients. PLoS ONE 14, e0211602 (2019). PubMed PMC

Sinha, R. et al. Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res. 46, 4833–4844 (2018). PubMed PMC

Bonne, G. The Treatabolome, an emerging concept. J. Neuromuscul. Dis. 8, 337–339 (2021). PubMed PMC

Aarestrup, F. M. et al. Towards a European health research and innovation cloud (HRIC). Genome Med. 12, 18 (2020). PubMed PMC

Jennings, M. J., Lochmuller, A., Atalaia, A. & Horvath, R. Targeted therapies for hereditary peripheral neuropathies: systematic review and steps towards a ‘treatabolome’. J. Neuromuscul. Dis. 8, 383–400 (2021). PubMed PMC

Kugathasan, U. et al. Development of MRC centre MRI calf muscle fat fraction protocol as a sensitive outcome measure in hereditary sensory neuropathy type 1. J. Neurol. Neurosurg. Psychiatry 90, 895–906 (2019). PubMed

Schrenk-Siemens, K. et al. PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors. Nat. Neurosci. 18, 10–16 (2015). PubMed

Middleton, S. J. et al. Studying human nociceptors: from fundamentals to clinic. Brain 144, 1312–1335 (2021). PubMed PMC

Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012). PubMed PMC

Nickolls, A. R. et al. Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells. Cell Rep. 30, 932–946.e7 (2020). PubMed PMC

Namer, B. et al. Pain relief in a neuropathy patient by lacosamide: proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine 39, 401–408 (2019). PubMed

Lampert, A. et al. Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. Neurobiol. Pain. 8, 100055 (2020). PubMed PMC

Zeidler, M. et al. NOCICEPTRA: gene and microRNA signatures and their trajectories characterizing human iPSC-derived nociceptor maturation. Adv. Sci. 8, e2102354 (2021).

Eberhardt, E. et al. Pattern of functional TTX-resistant sodium channels reveals a developmental stage of human iPSC- and ESC-derived nociceptors. Stem Cell Rep. 5, 305–313 (2015).

Clark, A. J. et al. Co-cultures with stem cell-derived human sensory neurons reveal regulators of peripheral myelination. Brain 140, 898–913 (2017). PubMed PMC

Pereira, J. D. et al. Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nat. Commun. 12, 4744 (2021). PubMed PMC

Sharma, A., Sances, S., Workman, M. J. & Svendsen, C. N. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell 26, 309–329 (2020). PubMed PMC

Tavares-Ferreira, D. et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 14, eabj8186 (2022). PubMed

Haring, M. et al. Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat. Neurosci. 21, 869–880 (2018). PubMed

Kupari, J. et al. Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. Nat. Commun. 12, 1510 (2021). PubMed PMC

Nguyen, M. Q., von Buchholtz, L. J., Reker, A. N., Ryba, N. J. & Davidson, S. Single-nucleus transcriptomic analysis of human dorsal root ganglion neurons. eLife https://doi.org/10.7554/eLife.71752 (2021). PubMed DOI PMC

Sathyamurthy, A. et al. Massively parallel single nucleus transcriptional profiling defines spinal cord neurons and their activity during behavior. Cell Rep. 22, 2216–2225 (2018). PubMed PMC

Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015). PubMed

Vega-Loza, A., Van, C., Moreno, A. M. & Aleman, F. Gene therapies to reduce chronic pain: are we there yet? Pain. Manag. 10, 209–212 (2020). PubMed

Mullard, A. Gene therapy community grapples with toxicity issues, as pipeline matures. Nat. Rev. Drug Discov. 20, 804–805 (2021). PubMed

Just, S. & Buning, H. Key to delivery: the (epi-)genome editing vector toolbox. Methods Mol. Biol. 1767, 147–166 (2018). PubMed

Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007). PubMed

Ossipov, M. H., Morimura, K. & Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care 8, 143–151 (2014). PubMed PMC

Schrenk-Siemens, K. et al. HESC-derived sensory neurons reveal an unexpected role for PIEZO2 in nociceptor mechanotransduction. Preprint at bioRxiv https://doi.org/10.1101/741660 (2019). DOI

Richter, T. et al. Rare disease terminology and definitions–a systematic global review: report of the ISPOR Rare Disease Special Interest Group. Value Health 18, 906–914 (2015). PubMed

Nahin, R. L. Estimates of pain prevalence and severity in adults: United States, 2012. J. Pain. 16, 769–780 (2015). PubMed PMC

Stoicea, N. et al. Current perspectives on the opioid crisis in the US healthcare system: a comprehensive literature review. Medicine 98, e15425 (2019). PubMed PMC

Sexton, J. E., Cox, J. J., Zhao, J. & Wood, J. N. The genetics of pain: implications for therapeutics. Annu. Rev. Pharmacol. Toxicol. 58, 123–142 (2018). PubMed

Miller, R. E., Block, J. A. & Malfait, A. M. What is new in pain modification in osteoarthritis? Rheumatology 57, iv99–iv107 (2018). PubMed PMC

Brown, M. T. et al. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial. J. Pain. 13, 790–798 (2012). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...