Versatile roles of sorbitol in higher plants: luxury resource, effective defender or something else?

. 2022 Jun 17 ; 256 (1) : 13. [epub] 20220617

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35713726

Grantová podpora
1424217 Grantová Agentura, Univerzita Karlova
1376217 Grantová Agentura, Univerzita Karlova

Odkazy

PubMed 35713726
DOI 10.1007/s00425-022-03925-z
PII: 10.1007/s00425-022-03925-z
Knihovny.cz E-zdroje

Sorbitol metabolism plays multiple roles in many plants, including energy and carbon enrichment, effective defence against various stresses and other emerging specific roles. The underlying mechanisms are, however, incompletely understood. This review provides the current state-of-the-art, highlights missing knowledge and poses several remaining questions. The basic properties of sugar alcohols are summarised and pathways of sorbitol metabolism, including biosynthesis, degradation and key enzymes are described. Sorbitol transport within the plant body is discussed and individual roles of sorbitol in different organs, specific cells or even cellular compartments, are elaborated, clarifying the critical importance of sorbitol allocation and distribution. In addition to plants that accumulate and transport significant quantities of sorbitol (usual producers), there are some that synthesize small amounts of sorbitol or only possess sorbitol metabolising enzymes (non-usual producers). Modern analytical methods have recently enabled large amounts of data to be acquired on this topic, although numerous uncertainties and questions remain. For a long time, it has been clear that enriching carbohydrate metabolism with a sorbitol branch improves plant fitness under stress. Nevertheless, this is probably valid only when appropriate growth and defence trade-offs are ensured. Information on the ectopic expression of sorbitol metabolism genes has contributed substantially to our understanding of the sorbitol roles and raises new questions regarding sorbitol signalling potential. We finally examine strategies in plants producing sorbitol compared with those producing mannitol. Providing an in-depth understanding of sugar alcohol metabolism is essential for the progress in plant physiology as well as in targeted, knowledge-based crop breeding.

Zobrazit více v PubMed

Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755. https://doi.org/10.1104/pp.102.003616 PubMed DOI PMC

Aguayo MF, Ampuero D, Mandujano P, Parada R, Muñoz R, Gallart M, Altabella T, Cabrera R, Stange C, Handford M (2013) Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana. Plant Sci 205–206:63–75. https://doi.org/10.1016/j.plantsci.2013.01.012 PubMed DOI

Aguayo MF, Cáceres JC, Fuentealba M, Muñoz R, Stange C, Cabrera R, Handford M (2015) Polyol specificity of recombinant Arabidopsis thaliana sorbitol dehydrogenase studied by enzyme kinetics and in silico modeling. Front Plant Sci 6:91. https://doi.org/10.3389/fpls.2015.00091 PubMed DOI PMC

Ahmad I, Larher F, Stewart GR (1979) Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol 82:671–678 DOI

Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467. https://doi.org/10.1016/j.copbio.2008.08.002 PubMed DOI

Akšić MF, Tosti T, Nedic N, Markovic M, Lišina V, Milojkovic-Opsenica D, Tešić Ž (2015) Influence of frost damage on the sugars and sugar alcohol composition in quince (Cydonia oblonga Mill) floral nectar. Acta Physiol Plant 37:1–11. https://doi.org/10.1007/s11738-014-1701-y DOI

Al Hassan M, Pacurar A, López-Gresa MP, Donat-Torres MP, Llinares JV, Boscaiu M, Vicente O (2016) Effects of salt stress on three ecologically distinct Plantago species. PLoS ONE 11:e0160236. https://doi.org/10.1371/journal.pone.0160236 PubMed DOI PMC

Almaghamsi A, Nosarzewski M, Kanayama Y, Archbold DD (2021) Effects of abiotic stresses on sorbitol biosynthesis and metabolism in tomato (Solanum lycopersicum). Funct Plant Biol 48:286–297. https://doi.org/10.1071/FP20065 PubMed DOI

Aminah A, Jusoff K, Hadijah S, Nuraeni N, Reta R, Marliana SP, Muchtar AH, Nonci M (2013) Increasing soybean (Glycine max L) drought resistance with osmolit sorbitol. Math Models Methods Appl Sci 7:78. https://doi.org/10.5539/MAS.V7N9P78 DOI

APG Iv (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385 DOI

Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414 PubMed DOI PMC

Bantog NA, Yamada K, Niwa N, Shiratake K, Yamaki S (2000) Gene expression of NAD DOI

Baroja-Fernandez E, Etxeberria E, Muñoz FJ, Morán-Zorzano MT, Alonso-Casajús N, Gonzalez P, Pozueta-Romero J (2006) An important pool of sucrose linked to starch biosynthesis is taken up by endocytosis in heterotrophic cells. Plant Cell Physiol 47:447–456. https://doi.org/10.1093/pcp/pcj011 PubMed DOI

Bellaloui N, Brown PH, Dandekar AM (1999) Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol 119:735–742 PubMed DOI PMC

Berüter J (1983) Effect of abscisic acid on sorbitol uptake in growing apple fruits. J Exp Bot 34:737–743 DOI

Bieleski RL (1982) Sugar alcohols. In: Loewus FA, Tanner W (eds) Plant Carbohydrates I. Encyclopedia of plant physiology (New Series), vol 13/A. Springer, Berlin, Heidelberg, pp 158–192

Bieleski RL, Briggs BG (2005) Taxonomic patterns in the distribution of polyols within the Proteaceae. Aust J Bot 53:205–217 DOI

Bieleski RL, Redgwell RJ (1985) Sorbitol versus sucrose as photosynthesis and translocation products in developing apricot leaves. Aust J Plant Physiol 12:657–668

Blackburn K, Cheng F, Williamson J, Goshe M (2010) Data-independent liquid chromatography/mass spectrometry (LC/MS(E)) detection and quantification of the secreted Apium graveolens pathogen defense protein mannitol dehydrogenase. Rapid Commun Mass Spectrom 24:1009–1016. https://doi.org/10.1002/rcm.4476 PubMed DOI

Bliss CA, Hamon NW, Lukaszewski TP (1972) Biosynthesis of dulcitol in Euonymus japonica. Phytochemistry 11:1705–1711 DOI

Boris KV, Kudryavtsev AM, Kochieva EZ (2017) Sorbitol-6-phosphate dehydrogenase gene (S6PDH) polymorphism in tribe Pyreae (Rosaceae) species. Russ J Genet 53:514–517. https://doi.org/10.1134/S1022795417040032 DOI

Bouché-Pillon S (1994) Immunolocalisation de l'ATPase pompe à proton de la membrane plasmique en relation avec la compartimentation des nutriments dans la plante. [in French] Dissertation, University of Poitiers, France

Briens M, Larher F (1983) Sorbitol accumulation in Plantaginaceae; further evidence for a function in stress tolerance. Z Pflanzenphysiol 110:447–458 DOI

Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. Microbiology 72:589–591

Brown PH, Bellaloui N, Hu H, Dandekar A (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol 119:17–20 PubMed DOI PMC

Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot 77:497–505 DOI

Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85–101 DOI

Bündig C, Blume C, Peterhänsel C, Winkelmann T (2016) Changed composition of metabolites in Solanum tuberosum subjected to osmotic stress in vitro: is sorbitol taken up? Plant Cell Tissue Organ Cult 127:195–206. https://doi.org/10.1007/s11240-016-1042-1 DOI

Calmes B, Guillemette T, Teyssier L, Siegler B, Pigné S, Landreau A, Iacomi B, Lemoine R, Richomme P, Simoneau P (2013) Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Front Plant Sci 4:131. https://doi.org/10.3389/fpls.2013.00131 PubMed DOI PMC

Carey EE, Dickinson DB, Wei LY, Rhodes AM (1982) Occurrence of sorbitol in Zea mays. Phytochemistry 21:1909–1911 DOI

Cataldi TR, Margiotta G, Zambonin CG (1998) Determination of sugars and alditols in food samples by HPAEC with integrated pulsed amperometric detection using alkaline eluents containing barium or strontium ions. Food Chem 62:109–115 DOI

Chanasattru W, Decker EA, McClements DJ (2008) Impact of cosolvents (polyols) on globular protein functionality: ultrasonic velocity, density, surface tension and solubility study. Food Hydrocoll 22:1475–1484. https://doi.org/10.1016/j.foodhyd.2007.09.007 DOI

Cheng Fy, Zamski E, Ww G, Pharr DM, Williamson JD (2009) Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. Planta 230:1093. https://doi.org/10.1007/s00425-009-1006-3 PubMed DOI

Cheng L, Zhou R, Reidel EJ, Sharkey TD, Dandekar AM (2005) Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO PubMed DOI

Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589. https://doi.org/10.1016/j.cell.2006.09.028 PubMed DOI

Conde A, Regalado A, Rodrigues D, Costa JM, Blumwald E, Chaves MM, Gerós H (2015) Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. J Exp Bot 66:889–906. https://doi.org/10.1093/jxb/eru446 PubMed DOI

Cui SM, Chen GL, Nii N (2003) Effects of water stress on sorbitol production and anatomical changes in the nuclei of leaf and root cells of young loquat trees. J Jpn Soc Hortic Sci 72:359–365. https://doi.org/10.2503/JJSHS.72.359 DOI

Cui SM, Sadayoshi K, Ogawa Y, Nii N (2004) Effects of water stress on sorbitol content in leaves and roots, anatomical changes in cell nuclei, and starch accumulation in leaves of young peach trees. J Jpn Soc Hortic Sci 73:25–30. https://doi.org/10.2503/jjshs.73.25 DOI

Davidson A, Keller F, Turgeon R (2011) Phloem loading, plant growth form, and climate. Protoplasma 248:153–163. https://doi.org/10.1007/s00709-010-0240-7 PubMed DOI

Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109. https://doi.org/10.1016/j.bbapap.2004.08.007 PubMed DOI

Davis JM, Fellman JK, Loescher WH (1988) Biosynthesis of sucrose and mannitol as a function of leaf age in celery (Apium graveolens L.). Plant Physiol 86:129–133 PubMed DOI PMC

de Cock P (2020) Sugar alcohols. Kirk-Othmer encyclopedia of chemical technology. Wiley, New York, pp 1–39

de Sousa SM, del Giúdice PM, Arruda P, Yunes JA (2008) Sugar levels modulate sorbitol dehydrogenase expression in maize. Plant Mol Biol 68:203–213. https://doi.org/10.1007/s11103-008-9362-0 PubMed DOI

de Sousa SM, Rosselli LK, Kiyota E, da Silva JC, Souza GH, Peroni LA, Stach-Machado DR, Eberlin MN, Souza AP, Koch KE, Arruda P, Torriani IL, Yunes JA (2009) Structural and kinetic characterization of a maize aldose reductase. Plant Physiol Biochem 47:98–104. https://doi.org/10.1016/j.plaphy.2008.10.009 PubMed DOI

Deguchi M, Bennett AB, Yamaki S, Yamada K, Kanahama K, Kanayama Y (2006) An engineered sorbitol cycle alters sugar composition, not growth, in transformed tobacco. Plant Cell Environ 29:1980–1988. https://doi.org/10.1111/j.1365-3040.2006.01573.x PubMed DOI

Deguchi M, Koshita Y, Gao M, Tao R, Tetsumura T, Yamaki S, Kanayama Y (2004) Engineered sorbitol accumulation induces dwarfism in Japanese persimmon. J Plant Physiol 161:1177–1184. https://doi.org/10.1016/j.jplph.2004.04.009 PubMed DOI

Deguchi M, Saeki H, Ohkawa W, Kanahama K, Kanayama Y (2002) Effects of low temperature on sorbitol biosynthesis in peach leaves. J Jpn Soc Hortic Sci 71:446–448. https://doi.org/10.2503/jjshs.71.446 DOI

Dell B, Huang L (1997) Physiological response of plants to low boron. Plant Soil 193:103–120 DOI

Deslauriers A, Beaulieu M, Balducci L, Giovannelli A, Gagnon MJ, Rossi S (2014) Impact of warming and drought on carbon balance related to wood formation in black spruce. Ann Bot 114:335–345. https://doi.org/10.1093/aob/mcu111 PubMed DOI PMC

Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L (2012) Unconventional protein secretion. Trends Plant Sci 17:606–615. https://doi.org/10.1016/j.tplants.2012.06.004 PubMed DOI

Doehlert DC (1987) Ketose reductase activity in developing maize endosperm. Plant Physiol 84:830–834 PubMed DOI PMC

Du Toit PJ, Kotzé JP (1970) The isolation and characterization of sorbitol-6-phosphate dehydrogenase from Clostridium pasteurianum. Biochim Biophys Acta 206:333–342 PubMed DOI

Duangsrisai S, Yamada K, Bantog NA, Shiratake K, Kanayama Y, Yamaki S (2007) Presence and expression of NAD DOI

Dumschott K, Richter A, Loescher W, Merchant A (2017) Post photosynthetic carbon partitioning to sugar alcohols and consequences for plant growth. Phytochemistry 144:243–252. https://doi.org/10.1016/j.phytochem.2017.09.019 PubMed DOI

Escobar-Gutiérrez A, Gaudillere J (1996) Distribution, metabolism and role of sorbitol in higher plants. A review [in French]. Agronomie 16:281–298 DOI

Escobar-Gutierrez AJ, Zipperlin B, Carbonne F, Moing A, Gaudillere J (1998) Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Aust J Plant Physiol 25:197–205

Etxeberria E, Gonzalez P, Pozueta-Romero J (2007) Mannitol-enhanced, fluid-phase endocytosis in storage parenchyma cells of celery (Apium graveolens; Apiaceae) petioles. Am J Bot 94:1041–1045. https://doi.org/10.3732/ajb.94.6.1041 PubMed DOI

Fang T, Cai Y, Yang Q, Ogutu CO, Liao L, Han Y (2020) Analysis of sorbitol content variation in wild and cultivated apples. J Sci Food Agric 100:139–144. https://doi.org/10.1002/jsfa.1000 PubMed DOI

Flora LL, Madore MA (1996) Significance of minor-vein anatomy to carbohydrate transport. Planta 198:171–178 DOI

Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Review Plant Physiol 28:89–121 DOI

Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Review Plant Biol 60:455–484. https://doi.org/10.1146/annurev.arplant.043008.091948 DOI

Gahrtz M, Stolz J, Sauer N (1994) A phloem-specific sucrose-H PubMed DOI

Gamalei Y (1989) Structure and function of leaf minor veins in trees and herbs. Trees 3:96–110 DOI

Gao Jj, Yr S, Zhu B, Peng RH, Wang B, Wang LJ, Li ZJ, Chen L, Yao QH (2018) Ectopic expression of sorbitol-6-phosphate 2-dehydrogenase gene from Haloarcula marismortui enhances salt tolerance in transgenic Arabidopsis thaliana. Acta Physiol Plant 40:108. https://doi.org/10.1007/s11738-018-2668-x DOI

Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845. https://doi.org/10.1016/s0168-9452(00)00458-1 PubMed DOI

Gao Z, Jayanty S, Beaudry R, Loescher W (2005) Sorbitol transporter expression in apple sink tissues: implications for fruit sugar accumulation and watercore development. J Am Soc Hortic Sci 130:261–268. https://doi.org/10.21273/JASHS.130.2.261 DOI

Gao Z, Maurousset L, Lemoine R, Yoo SD, van Nocker S, Loescher W (2003) Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol 131:1566–1575. https://doi.org/10.1104/pp.102.016725 PubMed DOI PMC

Gekko K, Timasheff SN (1981) Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20:4667–4676 PubMed DOI

Gil R, Lull C, Boscaiu M, Bautista I, Lidón AL, Vicente Ó (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:9–17 DOI

Goldstein S, Czapski G (1984) Mannitol as an OH· scavenger in aqueous solutions and in biological systems. Int J Radiat Biol Relat Stud Phys Chem Med 46:725–729 PubMed DOI

Grant CR, ap Rees T (1981) Sorbitol metabolism by apple seedlings. Phytochemistry 20:1505–1511 DOI

Grimshaw CE (1992) Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry 31:10139–10145 PubMed DOI

Gu C, Wu RF, Yu CY, Qi KJ, Wu C, Zhang HP, Zhang SL (2021) Spatio-temporally expressed sorbitol transporters cooperatively regulate sorbitol accumulation in pear fruit. Plant Sci 303:110787. https://doi.org/10.1016/j.plantsci.2020.110787 PubMed DOI

Haque I, Singh R, Moosavi-Movahedi AA, Ahmad F (2005) Effect of polyol osmolytes on DeltaG(D), the Gibbs energy of stabilisation of proteins at different pH values. Biophys Chem 117:1–12. https://doi.org/10.1016/j.bpc.2005.04.004 PubMed DOI

Hirai M (1979) Sorbitol-6-phosphate dehydrogenase from loquat fruit. Plant Physiol 63:715–717 PubMed DOI PMC

Hirai M (1980) Sugar accumulation and development of loquat fruit. J Jpn Soc Hortic Sci 49:347–353 DOI

Hirai M (1981) Purification and characteristics of sorbitol-6-phosphate dehydrogenase from loquat leaves. Plant Physiol 67:221–224 PubMed DOI PMC

Ho LC, Baker DA (1982) Regulation of loading and unloading in long distance transport systems. Physiol Plant 56:225–230 DOI

Ho LH, Rode R, Siegel M, Reinhardt F, Neuhaus HE, Yvin JC, Pluchon S, Hosseini SA, Pommerrenig B (2020) Potassium application boosts photosynthesis and sorbitol biosynthesis and accelerates cold acclimation of common plantain (Plantago major L.). Plants 9:1259. https://doi.org/10.3390/plants9101259 DOI PMC

Hu H, Brown PH, Labavitch JM (1996) Species variability in boron requirement is correlated with cell wall pectin. J Exp Bot 47:227–232 DOI

Ito A, Hayama H, Kashimura Y (2003) Sugar metabolism in spur bud during flower bud formation: a comparison between exposed and shaded buds of Japanese pear [Pyrus pyrifolia (Burm.) Nak.] cultivars. J Jpn Soc Hortic Sci 72:253–261. https://doi.org/10.1016/S0304-4238(02)00122-X DOI

Ivanov YV, Kartashov AV, Zlobin IE, Sarvin B, Stavrianidi AN, Kuznetsov VV (2019) Water deficit-dependent changes in non-structural carbohydrate profiles, growth and mortality of pine and spruce seedlings in hydroculture. Environ Exp Bot 157:151–160. https://doi.org/10.1016/j.envexpbot.2018.10.016 DOI

Izadi-Darbandi E, Mehdikhani H (2018) Salinity effect on some of the morphophysiological traits of three plantago species (Plantago spp.). Sci Hortic 236:43–51. https://doi.org/10.1016/j.scienta.2018.01.059 DOI

Jain M, Tiwary S, Gadre R (2010) Sorbitol-induced changes in various growth and biochemical parameters in maize. Plant Soil Environ 56:263–267. https://doi.org/10.17221/233/2009-PSE DOI

Jang JC, León P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19 PubMed PMC

Jefferies RL, Rudmik T, Dillon EM (1979) Responses of halophytes to high salinities and low water potentials. Plant Physiol 64:989–994 PubMed DOI PMC

Jeffery J, Jörnvall H (1983) Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism. Proc Natl Acad Sci USA 80:901–905 PubMed DOI PMC

Jennings DB, Ehrenshaft M, Pharr DM, Williamson JD (1998) Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc Natl Acad Sci USA 95:15129–15133 PubMed DOI PMC

Jennings DB, Daub ME, Pharr DM, Williamson JD (2002) Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant J 32:41–49. https://doi.org/10.1046/j.1365-313X.2001.01399.x PubMed DOI

Jia Y, Wong DC, Sweetman C, Bruning JB, Ford CM (2015) New insights into the evolutionary history of plant sorbitol dehydrogenase. BMC Plant Biol 15:1–23. https://doi.org/10.1186/s12870-015-0478-5 DOI

Jiménez S, Dridi J, Gutiérrez D, Moret D, Irigoyen JJ, Moreno MA, Gogorcena Y (2013) Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol 33:1061–1075. https://doi.org/10.1093/treephys/tpt074 PubMed DOI

Joosten MHAJ, Hendrickx LJM, De Witt PGJM (1990) Carbohydrate composition of apoplastic fluid isolated from tomato leaves inoculated with virulent vs avirulent races of Cladosporium fulvum (syn. Fulvia fulva). Neth J Plant Pathol 96:103–112 DOI

Jörnvall H, Persson M, Jeffery J (1981) Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type. Proc Natl Acad Sci USA 78:4226–4230 PubMed DOI PMC

Kanayama Y, Moriguchi R, Deguchi M, Kanahama K, Yamaki S (2007) Effects of environmental stresses and abscisic acid on sorbitol-6-phosphate dehydrogenase expression in Rosaceae fruit trees. Acta Hortic 738:375–381 DOI

Kanayama Y, Watanabe M, Moriguchi R, Deguchi M, Kanahama K, Yamaki S (2006) Effects of low temperature and abscisic acid on the expression of the sorbitol 6-phosphate dehydrogenase gene in apple leaves. J Jpn Soc Hortic Sci 75:20–25. https://doi.org/10.2503/jjshs.75.20 DOI

Kanayama Y, Yamaki S (1993) Purification and properties of NADP-dependent sorbitol-6-phosphate dehydrogenase from apple seedlings. Plant Cell Physiol 34:819–823

Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ 20:609–616 DOI

Kelker NE, Anderson RL (1971) Sorbitol metabolism in Aerobacter aerogenes. J Bacteriol 105:160–164 PubMed DOI PMC

Keller F (1991) Carbohydrate transport in discs of storage parenchyma of celery petioles: 2. Uptake of mannitol. New Phytol 117:423–429 PubMed DOI

Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255. https://doi.org/10.1111/pce.12061 PubMed DOI

Kiedrowski S, Kawalleck P, Hahlbrock K, Somssich IE, Dangl JL (1992) Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus. EMBO J 11:4677–4684 PubMed DOI PMC

Kim HY, Farcuh M, Cohen Y, Crisosto C, Sadka A (2015) Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Sci 231:30–39. https://doi.org/10.1016/j.plantsci.2014.11.002 PubMed DOI

Kobashi K, Sugaya S, Gemma H, Iwahori S (2001) Effect of abscisic acid (ABA) on sugar accumulation in the flesh tissue of peach fruit at the start of the maturation stage. Plant Growth Regul 35:215–223. https://doi.org/10.1023/A:1014421712254 DOI

Koivistoinen OM, Richard P, Penttilä M, Ruohonen L, Mojzita D (2012) Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism. FEBS Lett 586:378–383 PubMed DOI

Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146. https://doi.org/10.1016/j.envexpbot.2005.02.001 DOI

Kuo TM, Doehlert DC, Crawford CG (1990) Sugar metabolism in germinating soybean seeds: evidence for the sorbitol pathway in soybean axes. Plant Physiol 93:1514–1520 PubMed DOI PMC

Kurkdjian A, Guern J (1989) Intracellular pH: Measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40:271–303 DOI

Lalonde S, Tegeder M, Throne-Holst M, Frommer WB, Patrick JW (2003) Phloem loading and unloading of sugars and amino acids. Plant Cell Environ 26:37–56. https://doi.org/10.1046/J.1365-3040.2003.00847.X DOI

Lambers H, Blacquière T, Stuiver B (1981) Interactions between osmoregulation and the alternative respiratory pathway in Plantago coronopus as affected by salinity. Physiol Plant 51:63–68 DOI

Landi M, Margaritopoulou T, Papadakis IE, Araniti F (2019) Boron toxicity in higher plants: an update. Planta 250:1011–1032. https://doi.org/10.1007/s00425-019-03220-4 PubMed DOI

Lauter FR (1996) Root-specific expression of the LeRse-1 gene in tomato is induced by exposure of the shoot to light. Mol Gen Genet 252:751–754 PubMed

Lewis DH (1984) Physiology and metabolism of alditols. In: Lewis DH (ed) Storage carbohydrates in vascular plants. Cambridge University Press, Cambridge, pp 157–179

Lewis DH, Smith DC (1967a) Sugar Alcohols (Polyols) in Fungi and Green Plants. I. Distribution, physiology and metabolism. New Phytol 66:143–184 DOI

Lewis DH, Smith DC (1967b) Sugar Alcohols (Polyols) in Fungi and Green Plants. II. Methods of detection and quantitative estimation in plant extracts. New Phytol 66:185–204 DOI

Li M, Feng F, Cheng L (2012) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 7:e33055. https://doi.org/10.1371/journal.pone.0033055 PubMed DOI PMC

Li M, Li P, Ma F, Dandekar AM, Cheng L (2018) Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Hortic Res 5:1–11. https://doi.org/10.1038/s41438-018-0064-8 DOI

Li TH, Li SH (2005) Leaf responses of micropropagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes. Tree Physiol 25:495–504. https://doi.org/10.1093/treephys/25.4.495 PubMed DOI

Liang D, Cui M, Wu S, Ma F-w (2012) Genomic structure, sub-cellular localization, and promoter analysis of the gene encoding sorbitol-6-phosphate dehydrogenase from apple. Plant Mol Biol Rep 30:904–914. https://doi.org/10.1007/s11105-011-0409-z DOI

Liesche J, Gao C, Binczycki P, Andersen SR, Rademaker H, Schulz A, Martens HJ (2019) Direct comparison of leaf plasmodesma structure and function in relation to phloem-loading type. Plant Physiol 179:1768–1778. https://doi.org/10.1104/pp.18.01353 PubMed DOI PMC

Lipavská H, Vreugdenhil D (1996) Uptake of mannitol from the media by in vitro grown plants. Plant Cell Tissue Organ Cult 45:103–107 DOI

Liss M, Horwitz SB, Kaplan NO (1962) D-Mannitol 1-phosphate dehydrogenase and D-sorbitol 6-phosphate dehydrogenase in Aerobacter aerogenes. J Biol Chem 237:1342–1350 PubMed DOI

Lloret A, Martínez-Fuentes A, Agustí M, Badenes ML, Ríos G (2017) Chromatin-associated regulation of sorbitol synthesis in flower buds of peach. Plant Mol Biol 95:507–517. https://doi.org/10.1007/s11103-017-0669-6 PubMed DOI

Lo Bianco R, Losciale P, Manfrini L, Corelli Grappadelli L (2011) Possible role of mannitol as an oxygen radical scavenger in olive. Acta Hortic 924:83–88. https://doi.org/10.17660/ActaHortic.2011.924.9 DOI

Lo Bianco R, Rieger M, Sung SJS (2000) Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol Plant 108:71–78 DOI

Lo Bianco R, Rieger M, Sung SS (1999) Activities of sucrose and sorbitol metabolizing enzymes in vegetative sinks of peach and correlation with sink growth rate. J Am Soc Hortic Sci 124:381–388 DOI

Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Plant 70:553–557 DOI

Loescher WH, Everard JD (1996) Metabolism of carbohydrates in sinks and sources: Sugar alcohols. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source-sink relationships. Marcel Dekker, New York, pp 185–207

Loescher WH, Marlow GC, Kennedy RA (1982) Sorbitol metabolism and sink-source interconversions in developing apple leaves. Plant Physiol 70:335–339 PubMed DOI PMC

Loescher WH, Tyson RH, Everard JD, Redgwell RJ, Bieleski RL (1992) Mannitol synthesis in higher plants: evidence for the role and characterization of a NADPH-dependent mannose 6-phosphate reductase. Plant Physiol 98:1396–1402 PubMed DOI PMC

Ltaeif HB, Sakhraoui A, González-Orenga S, Landa Faz A, Boscaiu M, Vicente O, Rouz S (2021) Responses to salinity in four Plantago species from Tunisia. Plants 10:1392. https://doi.org/10.3390/plants10071392 PubMed DOI PMC

Ma S, Li YM, Li X, Sui X, Zhang Z (2019) Phloem unloading strategies and mechanisms in crop fruits. J Plant Growth Regul 38:494–500. https://doi.org/10.1007/s00344-018-9864-1 DOI

Macaluso L, Lo Bianco R, Rieger M (2007) Mannitol-producing tobacco exposed to varying levels of water, light, temperature and paraquat. J Hortic Sci Biotechnol 82:979–985. https://doi.org/10.1080/14620316.2007.11512336 DOI

Marquat C, Pétel G, Gendraud M (1997) Saccharose and sorbitol transporters from plasmalemma membrane vesicles of peach tree leaves. Biol Plant 39:369–378 DOI

Meena M, Prasad V, Zehra A, Gupta VK, Upadhyay RS (2015) Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Front Microbiol 6:1019. https://doi.org/10.3389/fmicb.2015.01019 PubMed DOI PMC

Mechria B, Tekaya M, Attia F, Hammami M, Chehab H (2020) Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots. Plant Physiol Biochem 156:178–191. https://doi.org/10.1016/j.plaphy.2020.09.011 DOI

Meng D, He M, Bai Y, Xu H, Dandekar AM, Fei Z, Cheng L (2018a) Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica). New Phytol 217:641–656. https://doi.org/10.1111/nph.14824 PubMed DOI

Meng D, Li C, Park H-J, González J, Wang J, Dandekar AM, Turgeon BG, Cheng L (2018b) Sorbitol mdulates resistance to Alternaria alternata by regulating the expression of an NLR resistance gene in apple. Plant Cell 30:1562–1581. https://doi.org/10.1105/tpc.18.00231 PubMed DOI PMC

Merchant A, Ladiges PY, Adams MA (2007) Quercitol links the physiology, taxonomy and evolution of 279 eucalypt species. Glob Ecol Biogeogr 16:810–819. https://doi.org/10.1111/J.1466-8238.2007.00338.X DOI

Merchant A, Richter AA (2011) Polyols as biomarkers and bioindicators for 21st century plant breeding. Funct Plant Biol 38:934–940. https://doi.org/10.1071/FP11105 PubMed DOI

Milne RJ, Grof CP, Patrick JW (2018) Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. Curr Opin Plant Biol 43:8–15. https://doi.org/10.1016/j.pbi.2017.11.003 PubMed DOI

Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. https://doi.org/10.1016/j.tplants.2005.11.002 PubMed DOI

Mohanta TK, Bashir T, Hashem A, Abd Allah EF (2017) Systems biology approach in plant abiotic stresses. Plant Physiol Biochem 121:58–73. https://doi.org/10.1016/j.plaphy.2017.10.019 PubMed DOI

Moing A, Carbonne F, Rashad MH, Gaudillère JP (1992) Carbon fluxes in mature peach leaves. Plant Physiol 100:1878–1884 PubMed DOI PMC

Moing A, Langlois N, Svanella L, Zanetto A, Gaudillère J (1997) Variability in sorbitol: sucrose ratio in mature leaves of different prunus species. J Am Soc Hortic Sci 122:83–90 DOI

Mollo L, Hayashi A, Pereira P, Jorge A, Nievola C (2019) Drought survival strategies of juvenile bromeliads of Alcantarea imperialis (Carrière) Harms. Plant Cell Tissue Organ Cult 139:295–304. https://doi.org/10.1007/s11240-019-01682-8 DOI

Monson RK, Rosenstiel TN, Forbis TA, Lipson DA, Jaeger CH (2006) Nitrogen and carbon storage in alpine plants. Integr Comp Biol 46:35–48. https://doi.org/10.1093/icb/icj006 PubMed DOI

Moore BD, Palmquist DE, Seemann JR (1997) Influence of plant growth at high CO PubMed DOI PMC

Morandi B, Corelli Grappadelli L, Rieger M, Lo Bianco R (2008) Carbohydrate availability affects growth and metabolism in peach fruit. Physiol Plant 133:229–241. https://doi.org/10.1111/j.1399-3054.2008.01068.x PubMed DOI

Moriguchi T, Abe K, Sanada T, Yamaki S (1992) Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of asian pear. J Am Soc Hortic Sci 117:274–278 DOI

Moriguchi T, Sanada T, Yamaki S (1990) Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. J Am Soc Hortic Sci 115:278–281 DOI

Muir JG, Rose R, Rosella O, Liels K, Barrett JS, Shepherd SJ, Gibson PR (2009) Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC). J Agric Food Chem 57:554–565. https://doi.org/10.1021/jf802700e PubMed DOI

Nadwodnik J, Lohaus G (2008) Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens. Planta 227:1079–1089. https://doi.org/10.1007/s00425-007-0682-0 PubMed DOI PMC

Narawongsanont R, Kabinpong S, Auiyawong B, Tantitadapitak C (2012) Cloning and characterization of AKR4C14, a rice aldo-keto reductase, from Thai Jasmine rice. Protein J 31:35–42. https://doi.org/10.1007/s10930-011-9371-8 PubMed DOI

Negm FB, Loescher WH (1979) Detection and characterization of sorbitol dehydrogenase from apple callus tissue. Plant Physiol 64:69–73 PubMed DOI PMC

Negm FB, Loescher WH (1981) Characterization and partial purification of aldose-6-phosphate reductase (alditol-6-phosphate: NADP 1-oxidoreductase) from apple leaves. Plant Physiol 67:139–142 PubMed DOI PMC

Noiraud N, Maurousset L, Lemoine R (2001) Identification of a mannitol transporter, AgMaT1, in celery phloem. Plant Cell 13:695–705. https://doi.org/10.1105/tpc.13.3.695 PubMed DOI PMC

Noiraud-Romy N, Maurousset L, Lemoine R (2001) Transport of polyols in higher plants. Plant Physiol Biochem 39:717–728. https://doi.org/10.1016/S0981-9428(01)01292-X DOI

Nosarzewski M (2007) Sorbitol dehydrogenase expression in apple fruit. Dissertation, University of Kentucky. https://uknowledge.uky.edu/gradschool_diss/485

Nosarzewski M, Clements AM, Downie AB, Archbold DD (2004) Sorbitol dehydrogenase expression and activity during apple fruit set and early development. Physiol Plant 121:391–398. https://doi.org/10.1111/j.1399-3054.2004.00344.x DOI

Nosarzewski M, Downie AB, Wu B, Archbold DD (2012) The role of sorbitol dehydrogenase in Arabidopsis thaliana. Funct Plant Biol 39:462–470. https://doi.org/10.1071/FP12008 PubMed DOI

Oberschall A, Deák M, Török K, Sass L, Vass I, Kovács I, Fehér A, Dudits D, Horváth GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24:437–446. https://doi.org/10.1111/j.1365-313X.2000.00885.x PubMed DOI

Ogiwara I, Miyamoto R, Habutsu S, Suzuki M, Hakoda N, Shimura I (1998) Variation in sugar content in fruit of four strawberry cultivars grown in the field and under forced culture, harvest years, and maturation stages. J Jpn Soc Hortic Sci 67:400–405 DOI

Ohkawa W, Moriya S, Kanahama K, Kanayama Y (2008) Re-evaluation of sorbitol metabolism in fruit from rosaceae trees. Acta Hortic 772:159–166. https://doi.org/10.17660/ActaHortic.2008.772.19 DOI

Ohta K, Moriguchi R, Kanahama K, Yamaki S, Kanayama Y (2005) Molecular evidence of sorbitol dehydrogenase in tomato, a non-Rosaceae plant. Phytochemistry 66:2822–2828. https://doi.org/10.1016/j.phytochem.2005.09.033 PubMed DOI

Orians CM, Schweiger R, Dukes JS, Scott ER, Müller C (2019) Combined impacts of prolonged drought and warming on plant size and foliar chemistry. Ann Bot 124:41–52. https://doi.org/10.1093/aob/mcz004 PubMed DOI PMC

Orthen B, Popp M, Smirnoff N (1994) Hydroxyl radical scavenging properties of cyclitols. Proc Roy Soc Edinbourgh B 102:269–272

Pampurova S, Van Dijck P (2014) The desiccation tolerant secrets of Selaginella lepidophylla: what we have learned so far? Plant Physiol Biochem 80:285–290. https://doi.org/10.1016/j.plaphy.2014.04.015 PubMed DOI

Patel TK, Krasnyanski SF, Allen GC, Louws FJ, Panthee DR, Williamson JD (2015a) Tomato plants overexpressing a celery mannitol dehydrogenase (MTD) have decreased susceptibility to Botrytis cinerea. Am J Plant Sci 6:1116. https://doi.org/10.4236/ajps.2015.68116 DOI

Patel TK, Krasnyanski SF, Allen GC, Louws FJ, Panthee DR, Williamson JD (2015b) Progeny of selfed plants from tomato breeding line ‘NC1 grape’ overexpressing mannitol dehydrogenase (MTD) have increased resistance to the early blight fungus, Alternaria solani. Plant Health Progress 16:115–117. https://doi.org/10.1094/PHP-RS-15-0022 DOI

Patel TK, Williamson JD (2016) Mannitol in plants, fungi, and plant-fungal interactions. Trends Plant Sci 21:486–497. https://doi.org/10.1016/j.tplants.2016.01.006 PubMed DOI

Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Biol 48:191–222 DOI

Peshev D, Vergauwen R, Moglia A, Hideg É, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038. https://doi.org/10.1093/jxb/ers377 PubMed DOI PMC

Pharr DM, Stoop J, Williamson JD, Feusi MS, Massel MO, Conkling MA (1995) The dual role of mannitol as osmoprotectant and photoassimilate in celery. HortScience 30:1182–1188 DOI

Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiol 144:1029–1038. https://doi.org/10.1104/pp.106.089151 PubMed DOI PMC

Ramsperger-Gleixner M, Geiger D, Hedrich R, Sauer N (2004) Differential expression of sucrose transporter and polyol transporter genes during maturation of common plantain companion cells. Plant Physiol 134:147–160. https://doi.org/10.1104/pp.103.027136 PubMed DOI PMC

Ranney TG, Bassuk NL, Whitlow TH (1991) Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry (Prunus) trees. J Am Soc Hortic Sci 116:684–688 DOI

Rathor P, Borza T, Liu Y, Qin Y, Stone S, Zhang J, Hui JPM, Berrue F, Groisillier A, Tonon T, Yurgel S, Potin P, Prithiviraj B (2020) Low mannitol concentrations in Arabidopsis thaliana expressing Ectocarpus genes improve salt tolerance. Plants 9:1508. https://doi.org/10.3390/plants9111508 DOI PMC

Redgwell R, Bieleski R (1978) Sorbitol-1-phosphate and sorbitol-6-phosphate in apricot leaves. Phytochemistry 17:407–409 DOI

Reidel EJ, Rennie EA, Amiard V, Cheng L, Turgeon R (2009) Phloem loading strategies in three plant species that transport sugar alcohols. Plant Physiol 149:1601–1608. https://doi.org/10.1104/pp.108.134791 PubMed DOI PMC

Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci USA 106:14162–14167. https://doi.org/10.1073/pnas.0902279106 PubMed DOI PMC

Richter A, Popp M (1992) The physiological importance of accumulation of cyclitols in Viscum album L. New Phytol 121:431–438 PubMed DOI

Rojas B, Wurman J, Zamudio MS, Donoso A, Cabedo P, Díaz F, Stange C, Handford MG (2019) AtA6PR1 and AtA6PR2 encode putative aldose 6-phosphate reductases that are cytosolically localized and respond differentially to cold and salt stress in Arabidopsis thaliana. J Plant Biochem Biotechnol 28:114–119. https://doi.org/10.1007/s13562-018-0459-5 DOI

Sakai A (1961) Effect of polyhydric alcohols to frost hardiness in plants. Nature 189:416–417 DOI

Sakanishi K, Kanayama Y, Mori H, Yamada K, Yamaki S (1998) Expression of the gene for NADP-dependent sorbitol-6-phosphate dehydrogenase in peach leaves of various developmental stages. Plant Cell Physiol 39:1372–1374 DOI

Salmon S, Lemoine R, Jamai A, Bouché-Pillon S, Fromont JC (1995) Study of sucrose and mannitol transport in plasma-membrane vesicles from phloem and nonphloem tissues of celery (Apium graveolens L.) petioles. Planta 197:76–83 DOI

Shaw JR, Dickinson DB (1984) Studies of sugars and sorbitol in developing corn kernels. Plant Physiol 75:207–211 PubMed DOI PMC

Shelp BJ, Marentes E, Kitheka AM, Vivekanandan P (1995) Boron mobility in plants. Physiol Plant 94:356–361 DOI

Shen BO, Jensen RG, Bohnert HJ (1997a) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183 PubMed DOI PMC

Shen B, Jensen RG, Bohnert HJ (1997b) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532 PubMed DOI PMC

Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco: high amounts of sorbitol lead to necrotic lesions. Plant Physiol 117:831–839 PubMed DOI PMC

Shi XP, Ren JJ, Yu Q, Zhou SM, Ren QP, Kong LJ, Wang XL (2018) Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis. Plant Biol 20:327–337. https://doi.org/10.1111/plb.12664 PubMed DOI

Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148 DOI

Schweiger R, Baier M, Persicke M, Müller C (2014) High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nat Commun 5:3886. https://doi.org/10.1038/ncomms4886 PubMed DOI

Singh Y, Nair AM, Verma PK (2021) Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. Plant Commun 2:100142. https://doi.org/10.1016/j.xplc.2021.100142 PubMed DOI PMC

Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060 DOI

Srivastava SK, Ansari NH, Brown JH, Petrash JM (1982) Formation of sorbitol 6-phosphate by bovine and human lens aldose reductase, sorbitol dehydrogenase and sorbitol kinase. Biochim Biophys Acta 717:210–214 PubMed DOI

Stoop JMH, Pharr DM (1993) Effect of different carbon sources on relative growth rate, internal carbohydrates, and mannitol 1-oxidoreductase activity in celery suspension cultures. Plant Physiol 103:1001–1008 PubMed DOI PMC

Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144 DOI

Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci USA 103:13997–14002. https://doi.org/10.1073/pnas.0606236103 PubMed DOI PMC

Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ 24:429–438. https://doi.org/10.1046/j.1365-3040.2001.00690.x DOI

Tao R, Uratsu SL, Dandekar AM (1995) Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Cell Physiol 36:525–532 PubMed DOI

Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci USA 89:2600–2604 PubMed DOI PMC

Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510 PubMed DOI

Tari I, Kiss G, Deér AK, Csiszár J, Erdei L, Gallé Á, Gémes K, Horváth F, Poór P, Szepesi Á, Simon LM (2010) Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol Plant 54:677–683. https://doi.org/10.1007/s10535-010-0120-1 DOI

Tekaya M, Mechri B, Mbarki N, Cheheb H, Hammami M, Attia F (2017) Arbuscular mycorrhizal fungus Rhizophagus irregularis influences key physiological parameters of olive trees (Olea europaea L.) and mineral nutrient profile. Photosynthetica 55:308–316. https://doi.org/10.1007/s11099-016-0243-5 DOI

Theerakulpisut P, Gunnula W (2012) Exogenous sorbitol and trehalose mitigated salt stress damage in salt-sensitive but not salt-tolerant rice seedlings. Asian J Crop Sci 4:165–170. https://doi.org/10.3923/ajcs.2012.165.170 DOI

Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801–806 DOI

Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct 22:67–97 PubMed DOI

Timasheff SN (2002) Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41:13473–13482. https://doi.org/10.1021/bi020316e PubMed DOI

Turgeon R (2010) The role of phloem loading reconsidered. Plant Physiol 152:1817–1823. https://doi.org/10.1104/pp.110.153023 PubMed DOI PMC

van Bel AJ (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149. https://doi.org/10.1046/j.1365-3040.2003.00963.x DOI

Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus× domestica Borkh.). Nat Genet 42:833–839. https://doi.org/10.1038/ng.654 PubMed DOI

Vélëz H, Glassbrook NJ, Daub ME (2008) Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata. FEMS Microbiol Lett 285:122–129. https://doi.org/10.1111/j.1574-6968.2008.01224.x PubMed DOI

Walker RP, Battistelli A, Bonghi C, Drincovich MF, Falchi R, Lara MV, Moscatello S, Vizzotto G, Famiani F (2020) Non-structural carbohydrate metabolism in the flesh of stone fruits of the genus Prunus (Rosaceae) - a review. Front Plant Sci 11:549921. https://doi.org/10.3389/fpls.2020.549921 PubMed DOI PMC

Wallaart RAM (1980) Distribution of sorbitol in Rosaceae. Phytochemistry 19:2603–2610 DOI

Wang R, Lin K, Chen H, Qi Z, Liu B, Cao F, Chen H, Wu F (2021) Metabolome analysis revealed the mechanism of exogenous glutathione to alleviate cadmium stress in maize (Zea mays L.) seedlings. Plants 10:105. https://doi.org/10.3390/plants10010105 PubMed DOI PMC

Wang XL, Xu YH, Peng CC, Fan RC, Gao XQ (2009) Ubiquitous distribution and different subcellular localization of sorbitol dehydrogenase in fruit and leaf of apple. J Exp Bot 60:1025–1034. https://doi.org/10.1093/jxb/ern347 PubMed DOI PMC

Wang Z, Stutte GW (1992) The role of carbohydrates in active osmotic adjustment in apple under water stress. J Am Soc Hortic Sci 117:816–823 DOI

Watari J, Kobae Y, Yamaki S, Yamada K, Toyofuku K, Tabuchi T, Shiratake T (2004) Identification of sorbitol transporters expressed in the phloem of apple source leaves. Plant Cell Physiol 45:1032–1041. https://doi.org/10.1093/pcp/pch121 PubMed DOI

Wei X, Liu F, Chen C, Ma F, Li M (2014) The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front Plant Sci 5:569. https://doi.org/10.3389/fpls.2014.00569 PubMed DOI PMC

Wei X, Nguyen ST, Collings DA, McCurdy DW (2020) Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity. J Exp Bot 71:4690–4702. https://doi.org/10.1093/jxb/eraa246 PubMed DOI

Williams MW, Raese JT (1974) Sorbitol in tracheal sap of apple as related to temperature. Physiol Plant 30:49–52 DOI

Williamson JD, Desai A, Krasnyanski SF, Ding F, Guo WW, Nguyen TT, Olson HA, Dole JM, Allen GC (2013) Overexpression of mannitol dehydrogenase in zonal geranium confers increased resistance to the mannitol secreting fungal pathogen Botrytis cinerea. Plant Cell Tissue Organ Cult 115:367–375. https://doi.org/10.1007/s11240-013-0368-1 DOI

Williamson JD, Stoop JMH, Massel MO, Conkling MA, Pharr DM (1995) Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis related protein ELI3. Proc Natl Acad Sci USA 92:7148–7152 PubMed DOI PMC

Wood JM (1999) Osmosensing by Bacteria: Signals and Membrane-Based Sensors. Microbiol Mol Biol Rev 63:230–262 PubMed DOI PMC

Wu B, Li S, Nosarzewski M, Archbold DD (2010) Sorbitol dehydrogenase gene expression and enzyme activity in apple: tissue specificity during bud development and response to rootstock vigor and growth manipulation. J Am Soc Hortic Sci 135:379–387. https://doi.org/10.21273/JASHS.135.4.379 DOI

Wu T, Wang Y, Zheng Y, Fei Z, Dandekar AM, Xu K, Han Z, Cheng L (2015) Suppressing sorbitol synthesis substantially alters the global expression profile of stress response genes in apple (Malus domestica) leaves. Plant Cell Physiol 56:1748–1761. https://doi.org/10.1093/pcp/pcv092 PubMed DOI

Yamada K, Niwa N, Shiratake K, Yamaki S (2001) cDNA cloning of NAD-dependent sorbitol dehydrogenase from peach fruit and its expression during fruit development. J Hortic Sci Biotechnol 76:581–587. https://doi.org/10.1080/14620316.2001.11511414 DOI

Yamaguchi H, Kanayama Y, Yamaki S (1994) Purification and properties of NAD-dependent sorbitol dehydrogenase from apple fruit. Plant Cell Physiol 35:887–892

Yamaki S (1980a) A sorbitol oxidase that converts sorbitol to glucose in apple leaf. Plant Cell Physiol 21:591–599 DOI

Yamaki S (1980b) Properties and functions of sorbitol-6-phosphate dehydrogenase, sorbitol dehydrogenase and sorbitol oxidase in fruit and cotyledon of apple (Malus pumila Mill. var. domestica Schneid.). J Jpn Soc Hortic Sci 49:429–434 DOI

Yamaki S (1981) Subcellular localization of sorbitol-6-phosphate dehydrogenase in protoplast from apple cotyledons. Plant Cell Physiol 22:359–367

Yamaki S (1982) Localization of sorbitol oxidase in vacuoles and other subcellular organelles in apple cotyledons. Plant Cell Physiol 23:891–899

Yamaki S (1984) NADP

Yamaki S, Asakura T (1991) Stimulation of the uptake of sorbitol into vacuoles from apple fruit flesh by abscisic add and into protoplasts by indoleacetic acid. Plant Cell Physiol 32:315–318 DOI

Yamaki S, Ishikawa K (1986) Roles of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J Am Soc Hortic Sci 111:134–137

Yamaki S, Moriguchi T (1989) Seasonal fluctuation of sorbitol-related enzymes and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. J Jpn Soc Hortic Sci 57:602–607 DOI

Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830. https://doi.org/10.1242/jeb.01730 PubMed DOI

Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222 PubMed DOI

Yancey PH, Siebenaller JF (2015) Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J Exp Biol 218:1880–1896. https://doi.org/10.1242/jeb.114355 PubMed DOI

Yang J, Zhang J, Li C, Zhang Z, Ma F, Li M (2019) Response of sugar metabolism in apple leaves subjected to short-term drought stress. Plant Physiol Biochem 141:164–171. https://doi.org/10.1016/j.plaphy.2019.05.025 PubMed DOI

Yang X, Zhu K, Guo X, Pei Y, Zhao M, Song X, Li Y, Liu S, Li J (2020) Constitutive expression of aldose reductase 1 from Zea mays exacerbates salt and drought sensitivity of transgenic Escherichia coli and Arabidopsis. Plant Physiol Biochem 156:436–444. https://doi.org/10.1016/j.plaphy.2020.09.029 PubMed DOI

Yasuda S, Kazama K, Akiyama T, Kinoshita M, Murata T (2020) Elucidation of cosolvent effects thermostabilizing water-soluble and membrane proteins. J Mol Liq 301:112403. https://doi.org/10.1016/j.molliq.2019.112403 DOI

Yobi A, Wone BW, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC (2012) Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant J 72:983–999. https://doi.org/10.1111/tpj.12008 PubMed DOI

Yu X, Shi P, Hui C, Miao L, Liu C, Zhang Q, Feng C (2019) Effects of salt stress on the leaf shape and scaling of Pyrus betulifolia Bunge. Symmetry 11:991. https://doi.org/10.3390/sym11080991 DOI

Yue H, Zhao Y, Ma X, Gong J (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41:4218–4244. https://doi.org/10.1039/C2CS15359A PubMed DOI

Zhang H, Wu J, Tao S, Wu T, Qi K, Zhang S, Wang J, Huang W, Wu J, Zhang S (2014) Evidence for apoplasmic phloem unloading in pear fruit. Plant Mol Biol Rep 32:931–939. https://doi.org/10.1007/s11105-013-0696-7 DOI

Zhang J, Tian RR, Dong JL, Zhao K, Li TH, Wang T (2011) Response and regulation of the S6PDH gene in apple leaves under osmotic stress. J Hortic Sci Biotechnol 86:563–568. https://doi.org/10.1080/14620316.2011.11512804 DOI

Zhang L, Sun S, Liang Y, Li B, Ma S, Wang Z, Ma B, Li M (2021) Nitrogen levels regulate sugar metabolism and transport in the shoot tips of crabapple plants. Front Plant Sci 12:372. https://doi.org/10.3389/fpls.2021.626149 DOI

Zhang LY, Peng YB, Pelleschi-Travier S, Fan Y, Lu YF, Lu YM, Gao XP, Shen YY, Delrot S, Zhang DP (2004) Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol 135:574–586. https://doi.org/10.1104/pp.103.036632 PubMed DOI PMC

Zhang W, Lunn JE, Feil R, Wang Y, Zhao J, Tao H, Guo Y, Zhao Z (2017) Trehalose 6-phosphate signal is closely related to sorbitol in apple (Malus domestica Borkh. cv. Gala). Biol Open 6:260–268. https://doi.org/10.1242/bio.022301 PubMed DOI PMC

Zhao H, Sun S, Zhang L, Yang J, Wang Z, Ma F, Li M (2020) Carbohydrate metabolism and transport in apple roots under nitrogen deficiency. Plant Physiol Biochem 155:455–463. https://doi.org/10.1016/j.plaphy.2020.07.037 PubMed DOI

Zhifang G, Loescher WH (2003) Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and aglucosyl-mannitol dimer. Plant Cell Environ 26:275–283. https://doi.org/10.1046/j.1365-3040.2003.00958.x DOI

Zhou R, Sicher R, Cheng L, Quebedeaux B (2003a) Regulation of apple leaf aldose-6-phosphate reductase activity by inorganic phosphate and divalent cations. Funct Plant Biol 30:1037–1043. https://doi.org/10.1071/FP02225 PubMed DOI

Zhou R, Cheng L, Wayne R (2003b) Purification and characterization of sorbitol-6-phosphate phosphatase from apple leaves. Plant Sci 165:227–232. https://doi.org/10.1016/S0168-9452(03)00166-3 DOI

Zhou R, Sicher R, Quebedeaux B (2001) Diurnal changes in carbohydrate metabolism in mature apple leaves. Aust J Plant Physiol 28:1143–1150. https://doi.org/10.1071/pp00163 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Comparison of the Main Constituents in Two Varieties of Proso Millet Using GC-MS

. 2023 Jun 07 ; 12 (12) : . [epub] 20230607

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...