Photochemical synthesis of pink silver and its use for monitoring peptide nitration via surface enhanced Raman spectroscopy (SERS)
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
e-INFRA CZ LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
22-04669S
Grantová Agentura České Republiky
PubMed
35731286
DOI
10.1007/s00726-022-03178-w
PII: 10.1007/s00726-022-03178-w
Knihovny.cz E-zdroje
- Klíčová slova
- Nitration, Oxidative stress, Photochemical synthesis, Posttranslational protein modification (PTM), Silver colloids, Surface enhanced Raman spectroscopy (SERS),
- MeSH
- oxid dusičitý MeSH
- peptidy MeSH
- proteiny MeSH
- Ramanova spektroskopie * metody MeSH
- stříbro * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid dusičitý MeSH
- peptidy MeSH
- proteiny MeSH
- stříbro * MeSH
Oxidative stress may cause extended tyrosine posttranslational modifications of peptides and proteins. The 3-nitro-L-tyrosine (Nit), which is typically formed, affects protein behavior during neurodegenerative processes, such as Alzheimer's and Parkinson's diseases. Such metabolic products may be conveniently detected at very low concentrations by surface enhanced Raman spectroscopy (SERS). Previously, we have explored the SERS detection of the Nit NO2 bending vibrational bands in a presence of hydrogen chloride (Niederhafner et al., Amino Acids 53:517-532, 2021, ibid). In this article, we describe performance of a new SERS substrate, "pink silver", synthesized photochemically. It provides SERS even without the HCl induction, and the acid further decreases the detection limit about 9 times. Strong SERS bands were observed in the asymmetric (1550-1475 cm-1) and symmetric (1360-1290 cm-1) NO stretching in the NO2 group. The bending vibration was relatively weak, but appeared stronger when HCl was added. The band assignments were supported by density functional theory modeling.
Zobrazit více v PubMed
Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, dinitration and proteomic methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8(7):3222–3238 PubMed DOI
Abello N, Barroso B, Kerstjens HAM, Postma DS, Bischoff R (2010) Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta 80:1503–1512 PubMed DOI
Alvarez-Puebla RA, Contreras-Caceres R, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM (2009) Au@pNIPAM colloids as a molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem Int Ed 48(1):138–143 DOI
Aslan M, Dogan S (2011) Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease. J Proteomics 74(11):2274–2288 PubMed DOI
Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH Jr (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotropic lateral sclerosis. Ann Neurol 42(4):644–654 PubMed DOI
Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21(2):330–334 PubMed DOI
Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4):1620–1624 PubMed DOI PMC
Beeckmans S, Kanarek L (1983) The modification with tetranitromethane of an essential tyrosine in the active site of pig fumarase. Biochim Biophys Acta 743:370–378 PubMed DOI
Betz JF, Yu WW, Cheng Y, White IM, Rubloff GW (2014) Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16(6):2224–2239 PubMed DOI
Bouř P, Keiderling TA (2002) Partial optimization of molecular geometry in normal coordinates and use as a tool for simulation of vibrational spectra. J Chem Phys 117(9):4126–4132 DOI
Bouř P, Sopková J, Bednarová L, Maloň P, Keiderling TA (1997) Transfer of molecular property tensors in cartesian coordinates: a new algorithm for simulation of vibrational spectra. J Comput Chem 18(5):646–659 DOI
Burai R, Ait-Bouziad N, Chiki A, Lashuel HA (2015) Elucidating the role of site-specific nitration of α-synuclein in the pathogenesis of Parkinson’s disease via protein semisynthesis and mutagenesis. J Am Chem Soc 137(15):5041–5052 PubMed DOI
Campolo N, Issoglio FM, Estrin DA, Bartesaghi S, Radi R (2020) 3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function. Essays Biochem 64(1):111–133 PubMed DOI
Case DA et al (2012) AMBER 12. University of California, San Francisco
Castro L, Demicheli V, Tortora V, Radi R (2011) Mitochondrial protein tyrosine nitration. Free Radic Res 45(1):37–52 PubMed DOI
Chang C-Y, Chen Y-M, Huang Y-B, Lai C-H, Jeng U-S, Lai Y-H (2019) Nanostructured silver dendrites for photon-induced cysteine dimerization. Sci Rep 9:20174 PubMed DOI PMC
Das M, Gangopadhyay D, Šebestík J, Habartová L, Michal P, Kapitán J, Bouř P (2021) Chiral detection by induced surface-enhanced Raman optical activity. Chem Comm 57:6388–6391. https://doi.org/10.1039/d1cc01504d PubMed DOI
De Filippis V, Frasson R, Fontana A (2006) 3-Nitrotyrosine as a spectroscopic probe for investigating protein-protein interactions. Protein Sci 15:976–986 PubMed DOI PMC
Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157(5):1439–1445 PubMed DOI PMC
Félix-Domínguez F, Carrillo-Torres RC, Lucero-Acuña A, Sánchez-Zeferino R, Álvarez-Ramos ME (2019) Seedless synthesis of silver nanoparticles using sunlight and study of the effect of different ratios of precursors. Mater Res Express 6:045067 DOI
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R (2018) Biochemistry of peroxynitrite and protein tyrosine nitration. Chem Rev 118(3):1338–1408 PubMed DOI
Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Prot Res 35(3):161–214 DOI
Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Rev Drug Discovery 20:689–709 DOI
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 revision C.01. Gaussian Inc, Wallingford
Furth AJ, Hope DB (1970) Studies on the chemical modification of the tyrosine residue in bovine neurophysin-II. Biochem J 116:545–553 PubMed DOI PMC
Giasson BI, Duda JE, Murray IVJ, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM-Y (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989 PubMed DOI
Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3(9):548–551 PubMed DOI
Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev 41:7085–7107 PubMed DOI
Gupta M, Paliwal VK, Babu GN (2021) Serum fractalkine and 3-nitrotyrosine levels correlate with disease severity in Parkinson’s disease: a pilot study. Metab Brain Dis. https://doi.org/10.1007/s11011-021-00801-9 PubMed DOI
Hamissa MF, Niederhafner P, Šestáková H, Šafařík M, Hadravová R, Šebestík J (2022) Neutral and charged forms of inubosin B in aqueous solutions at different pH and on the surface of Ag nanoparticles. J Mol Struct 1250(2):131828 DOI
Heinz H, Farmer BL, Naik RR (2008) Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J Phys Chem C 112:17281–17290 DOI
Heinz H, Farmer BL, Pandey RB, Slocik JM, Patnaik SS, Pachter R, Naik RR (2009) Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution. J Am Chem Soc 131:9704–9714 PubMed DOI
Huang GG, Han XX, Hossain MK, Kitahama Y, Ozaki Y (2010) A study of glutathione molecules adsorbed on silver surfaces under different chemical environments by surface-enhanced Raman scattering in combination with the heat-induced sensing method. Appl Spectrosc 64(10):1100–1108 PubMed DOI
Huang CL, Chen SH, Wu CY, Sie YS, Kao PC (2019) Influence of the silver nanocrystal shape on the luminous efficiency of blue-emitting polymer light-emitting diodes. Langmuir 35(47):15114–15120 PubMed DOI
Jalili R, Dastborhan M, Chenaghlou S, Khataee A (2020) Incorporating of gold nanoclusters into metal-organic frameworks for highly sensitive detection of 3-nitrotyrosine as an oxidative stress biomarker. J Photochem Photobiol A 391:112370 DOI
Ježek J, Hlaváček J, Šebestík J (2017) Applications for treatment of neurodegenerative diseases. Prog Drug Res 72:99–134 DOI
Jing H, Zhang Q, Large N, Yu C, Blom DA, Nordlander P, Wang H (2014) Tunable plasmonic nanoparticles with catalytically active high-index facets. Nano Lett 14(6):3674–3682 PubMed DOI
Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans A 2(5):799–805 DOI
Kleinman SL, Frontiera RR, Henry AI, Dieringer JA, Van Duyne RP (2013) Creating, characterizing and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15(1):21–36 PubMed DOI
Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape H-C, König S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT (2011) Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 71(5):833–844 PubMed DOI
Kurouski D, Van Duyne RP (2015) In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal Chem 87(5):2901–2906 PubMed DOI
Kurouski D, Lee H, Roschangar F, Senanayake Ch (2017) Surface-enhanced Raman spectroscopy: from concept to practical application. Spectroscopy 32(11):36–44
Larsen MR, Trelle MB, Thingholm TE, Jensen ON (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40(6):790–798 PubMed DOI
Lee J, Choe IR, Kim N-K, Kim W-J, Jang H-S, Lee Y-S, Nam KT (2016) Water-floating giant nanosheets from helical peptide pentamers. ACS Nano 10(9):8263–8270 PubMed DOI
Lee J, Ju M, Cho OH, Kim Y, Nam KT (2019) Tyrosine-rich peptides as a platform for assembly and material synthesis. Adv Sci 6:1801255 DOI
Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727 DOI
Li Y-T, Li D-W, Cao Y, Long Y-T (2015) Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy. Biosens Bioelectron 69:1–7 PubMed DOI
Liu Y, Zhou P, Da H, Jia H, Bai F, Hu G, Zhang B, Fang J (2019) An Azo coupling strategy for protein 3-nitrotyrosine derivatization. Chem Eur J 25:11228–11232 PubMed
Madkour LH (2019) Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants. J Glob Pharma Technol 2(2):1–23
Martins GV, Marques AC, Fortunato E, Sales MGF (2018) Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochim Acta 284:60–68 DOI
Martins GV, Marques AC, Fortunato E, Sales MGF (2020) Paper-based (bio)sensor for label-free detection of 3-nitrotyrosine in human urine samples using molecular imprinted polymer. Sens Bio-Sens Res 28:100333 DOI
Martinsson E, Shahjamali MM, Large N, Zaraee N, Schatz GC, Aili D, Mirkin CA (2015) Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles. Small 12(3):330–342 PubMed DOI
Meade RM, Fairlie DP, Mason JM (2019) Alpha-synuclein structure and Parkinson’s disease—lessons and emerging principles. Mol Neurodegener 14:29 PubMed DOI PMC
Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and Study of Silver Nanoparticles. J Chem Educ 84(2):322–325. https://doi.org/10.1021/ed084p322 DOI
Mulvihill MJ, Ling XY, Henzie J, Yang P (2010) Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 132(1):268–274 PubMed DOI
Niederhafner P, Šafařík M, Brichtová E, Šebestík J (2016) Rapid acidolysis of benzyl group as a suitable approach for synthesis of peptides naturally produced by oxidative stress and containing 3-nitrotyrosine. Amino Acids 48(4):1087–1098 PubMed DOI
Niederhafner P, Šafařík M, Neburková J, Keiderling TA, Bouř P, Šebestík J (2021) Monitoring peptide tyrosine nitration by spectroscopic methods. Amino Acids 53:517–532 PubMed DOI
Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating of structure, function and toxicity of alpha-synuclein. Implications for Parkinson’s disease pathogenesis and therapies. Progress Brain Res 183(C):115–145 DOI
Özmetin C, Çopur M, Kocakerim MM, Yapici S (2001) Crystallization of silver nitrate from saturated silver nitrate solution in nitric acid. Indian J Chem Technol 8:112–119
Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54(23):16533–16539 DOI
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612 PubMed DOI
Pezzotti G, Boschetto F, Ohgitani E, Fujita Y, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Nishimura I, Mazda O (2021) Mechanisms of instantaneous inactivation of SARS-CoV-2 by silicon nitride bioceramic. Mater Today Bio 12:100144 PubMed DOI PMC
Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101(12):4003–4008 PubMed DOI PMC
Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559 PubMed DOI
Reynolds MR, Berry RW, Binder LI (2005) Site specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: Implications for Alzheimer’s disease. Biochemistry 44(5):1690–1700 PubMed DOI
Ruud K, Thorvaldsen AJ (2009) Theoretical approaches to the calculation of Raman optical activity spectra. Chirality 21:E54–E67 PubMed DOI
Rycenga M, Langille MR, Personick ML, Ozel T, Mirkin CA (2012) Chemically isolating hot spots on concave nanocubes. Nano Lett 12(12):6218–6222 PubMed DOI
Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44(8):1061–1076 DOI
Sangsuwan R, Obermeyer AC, Tachachartvanich P, Palaniappan KK, Francis MB (2016) Direct detection of nitrotyrosine-containing proteins using an aniline-based oxidative coupling strategy. Chem Commun 52:10036–10039 DOI
Seballos L, Richards N, Stevens DJ, Patel M, Kapitzky L, Lokey S, Millhauser G, Zhang JZ (2007) Competitive binding effects on surface-enhanced Raman scattering of peptide molecules. Chem Phys Lett 447(4–6):335–339 PubMed DOI PMC
Šebestík J, Bouř P (2011) Raman optical activity of methyloxirane gas and liquid. J Phys Chem Lett 2(5):498–502 DOI
Šebestík J, Šafařík M, Bouř P (2012) Ferric complexes of 3-hydroxy-4-pyridinones characterized by density functional theory and Raman and UV-vis spectroscopies. Inorg Chem 51(8):4473–4481 PubMed DOI
Seeley KW, Fertig AR, Dufresne CP, Pinho JPC, Stevens SM Jr (2014) Evaluation of a method for nitrotyrosine site identification and relative quantitation using a stable isotope-labeled nitrated spike-in standard and high resolution Fourier transform MS and MS/MS analysis. Int J Mol Sci 15:6265–6285 PubMed DOI PMC
Sevcsik E, Trexler AJ, Dunn JM, Rhoades E (2011) Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J Am Chem Soc 133(18):7152–7158 PubMed DOI PMC
Shao Z, Zhu W, Wang H, Yang Q, Yang S, Liu X, Wang G (2013) Controllable synthesis of concave nanocubes, right bipyramids, and 5-fold twinned nanorods of palladium and their enhanced electrocatalytic performance. J Phys Chem C 117(27):14289–14294 DOI
Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP (2012) SERS: material, applications and the future. Mater Today 15(1–2):16–25 DOI
Sharov VS, Dremina ES, Galeva NA, Stobaugh JF, Schoneich C (2010) Reduction of protein/peptide 3-nitrotyrosine to 3-aminotyrosine by sodium dithionite: optimization of reaction conditions for proteomic analysis of 3-nitrotyrosine via fluorogenic and affinity tagging. Free Radical Biol Med 49:S88–S89 DOI
Sies H (2020) Oxidative stress: concept and some practical aspects. Antioxidants 9(9):852 DOI PMC
Smith E, Dent G (2019) Surface enhanced Raman scattering and surface enhanced resonance Raman scattering. In: Smith E, Dent G (eds) Modern Raman spectroscopy. Wiley, pp 119–149 DOI
Soderling A-S, Hultman L, Delbro D, Hojrup P, Caidahl K (2007) Reduction of the nitro group during sample preparation may cause underestimation of the nitration level in 3-nitrotyrosine immunoblotting. J Chromatogr B 851:277–286 DOI
Spears RJ, McMahon C, Chudasama V (2021) Cysteine protecting groups: applications in peptide and protein science. Chem Soc Rev 50:11098–11155 PubMed DOI
Sue Legge F, Nyberg GL, Barrie Peel J (2001) DFT Calculations for Cu-, Ag-, and Au-containing molecules. J Phys Chem A 105(33):7905–7916 DOI
Taylor RW, Lee TC, Scherman OA, Esteban R, Aizpurua J, Huang FM, Baumberg JJ, Mahajan S (2011) Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit [n]uril “glue.” ACS Nano 5(5):3878–3887 PubMed DOI
Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093 PubMed DOI
Tsikas D, Duncan MW (2014) Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. Mass Spectrom Rev 33(4):237–276 PubMed DOI
Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36(4):307–319 DOI
van Haandel L, Killmer J, Li X, Schoneich C, Stobaugh JF (2008) Phenylisothiocyanate as a multiple chemical dimension reagent for the relative quantitation of protein nitrotyrosine. Chromatographia 68:507–516 DOI
Vana L, Kanaan NM, Hakala K, Weintraub ST, Binder LI (2011) Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation. Biochemistry 50(7):1203–1212 PubMed DOI
Xue C, Métraux GS, Millstone JE, Mirkin CA (2008) Mechanistic study of photomediated triangular silver nanoprism growth. J Am Chem Soc 130:8337–8344 PubMed DOI PMC
Yamamoto S, Bouř P (2013) Transition polarizability model of induced resonance Raman optical activity. J Comput Chem 34(25):2152–2158 PubMed DOI
Yang H, Zhang Y, Pöschl U (2010) Quantification of nitrotyrosine in nitrated proteins. Anal Bioanal Chem 397:879–886 PubMed DOI PMC
Yang L-C, Lai Y-S, Tsai C-M, Kong Y-T, Lee C-I, Huang C-L (2012) One-pot synthesis of monodispersed silver nanodecahedra with optimal SERS activities using seedless photo-assisted citrate reduction method. J Phys Chem C 116:24292–24300 DOI
Yttenberg AJ, Jensen ON (2010) Modification-specific proteomics in plant biology. J Proteomics 73(11):2249–2266 DOI
Zhai H, Wang S, Zhou J, Pan J, Tong Y, Mei Q, Zhou Q (2019) A simple and sensitive electrochemical sensor for 3-nitrotyrosine based on electrochemically anodic pretreated glassy carbon electrode in anionic surfactant medium. J Electrochem Soc 166:B1426–B1433 DOI
Zhang Q, Large N, Nordlander P, Wang H (2014a) Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS. J Phys Chem Lett 5(2):370–374 PubMed DOI
Zhang Q, Large N, Wang H (2014b) Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. ACS Appl Mater Interf 6(19):17255–17267 DOI
Zhao Y, Zhang Y, Sun H, Maroto R, Brasier AR (2017) Selective affinity enrichment of nitrotyrosine-containing peptides for quantitative analysis in complex samples. J Proteome Res 16(8):2983–2992 PubMed DOI PMC