Developmental trajectories of gyrification and sulcal morphometrics in children and adolescents at high familial risk for bipolar disorder or schizophrenia
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
40031140
PubMed Central
PMC11919454
DOI
10.1016/j.dcn.2025.101536
PII: S1878-9293(25)00031-3
Knihovny.cz E-resources
- Keywords
- Bipolar disorder, Gyrification, High familial risk, Longitudinal, Offspring, Schizophrenia,
- MeSH
- Bipolar Disorder * pathology MeSH
- Child MeSH
- Adult MeSH
- Genetic Predisposition to Disease MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Adolescent MeSH
- Young Adult MeSH
- Cerebral Cortex growth & development diagnostic imaging pathology anatomy & histology MeSH
- Schizophrenia * pathology diagnostic imaging genetics MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Offspring of parents with severe mental illness are at increased risk of developing psychopathology. Identifying endophenotypic markers in high-familial-risk individuals can aid in early detection and inform development of prevention strategies. Using generalized additive mixed models, we compared age trajectories of gyrification index (GI) and sulcal morphometric measures (i.e., sulcal depth, length and width) between individuals at familial risk for bipolar disorder or schizophrenia and controls. 300 T1-weighted MRI scans were obtained of 187 individuals (53 % female, age range: 8-23 years) at familial risk for bipolar disorder (n = 80, n families=55) or schizophrenia (n = 53, n families=36) and controls (n = 54, n families=33). 113 individuals underwent two scans. Globally, GI, sulcal depth and sulcal length decreased significantly with age, and sulcal width increased significantly with age in a (near-)linear manner. There were no differences between groups in age trajectories or mean values of gyrification or any of the sulcal measures. These findings suggest that, on average, young individuals at familial risk for bipolar disorder or schizophrenia have preserved developmental patterns of gyrification and sulcal morphometrics during childhood and adolescence.
See more in PubMed
Alemán-Gómez Y., Janssen J., Schnack H., Balaban E., Pina-Camacho L., Alfaro-Almagro F., Castro-Fornieles J., Otero S., Baeza I., Moreno D., Bargalló N., Parellada M., Arango C., Desco M. The human cerebral cortex flattens during adolescence. J. Neurosci. 2013;33:15004–15010. PubMed PMC
Alexander-Bloch A., Clasen L., Stockman M., Ronan L., Lalonde F., Giedd J., Raznahan A. Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI. Hum. Brain Mapp. 2016;37:2385–2397. PubMed PMC
Anderson K.K., Norman R., MacDougall A., Edwards J., Palaniyappan L., Lau C., Kurdyak P. Effectiveness of early psychosis intervention: Comparison of service users and nonusers in population-based health administrative data. Am. J. Psychiatry. 2018;175:443–452. PubMed
Barrantes-Vidal N., Racioppi A., Kwapil T.R. in: Risk Factors for Psychosis. Elsevier; 2020. Schizotypy, schizotypal personality, and psychosis risk; pp. 81–99.
Basavaraju R., France J., Sigmon H.C., Girgis R.R., Brucato G., Lieberman J.A., Small S.A., Provenzano F.A. Increased parietal and occipital lobe gyrification predicts conversion to syndromal psychosis in a clinical high-risk cohort. Schizophr. Res. 2023;255:246–255. PubMed
Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995;57:289–300.
Bethlehem R.A.I., Seidlitz J., White S.R., Vogel J.W., Anderson K.M., Adamson C., Adler S., Alexopoulos G.S., Anagnostou E., Areces-Gonzalez A., Astle D.E., Auyeung B., Ayub M., Bae J., Ball G., Baron-Cohen S., Beare R., Bedford S.A., Benegal V., Beyer F., Blangero J., Blesa Cábez M., Boardman J.P., Borzage M., Bosch-Bayard J.F., Bourke N., Calhoun V.D., Chakravarty M.M., Chen C., Chertavian C., Chetelat G., Chong Y.S., Cole J.H., Corvin A., Costantino M., Courchesne E., Crivello F., Cropley V.L., Crosbie J., Crossley N., Delarue M., Delorme R., Desrivieres S., Devenyi G.A., Di Biase M.A., Dolan R., Donald K.A., Donohoe G., Dunlop K., Edwards A.D., Elison J.T., Ellis C.T., Elman J.A., Eyler L., Fair D.A., Feczko E., Fletcher P.C., Fonagy P., Franz C.E., Galan-Garcia L., Gholipour A., Giedd J., Gilmore J.H., Glahn D.C., Goodyer I.M., Grant P.E., Groenewold N.A., Gunning F.M., Gur R.E., Gur R.C., Hammill C.F., Hansson O., Hedden T., Heinz A., Henson R.N., Heuer K., Hoare J., Holla B., Holmes A.J., Holt R., Huang H., Im K., Ipser J., Jack C.R., Jr, Jackowski A.P., Jia T., Johnson K.A., Jones P.B., Jones D.T., Kahn R.S., Karlsson H., Karlsson L., Kawashima R., Kelley E.A., Kern S., Kim K.W., Kitzbichler M.G., Kremen W.S., Lalonde F., Landeau B., Lee S., Lerch J., Lewis J.D., Li J., Liao W., Liston C., Lombardo M.V., Lv J., Lynch C., Mallard T.T., Marcelis M., Markello R.D., Mathias S.R., Mazoyer B., McGuire P., Meaney M.J., Mechelli A., Medic N., Misic B., Morgan S.E., Mothersill D., Nigg J., Ong M.Q.W., Ortinau C., Ossenkoppele R., Ouyang M., Palaniyappan L., Paly L., Pan P.M., Pantelis C., Park M.M., Paus T., Pausova Z., Paz-Linares D., Pichet Binette A., Pierce K., Qian X., Qiu J., Qiu A., Raznahan A., Rittman T., Rodrigue A., Rollins C.K., Romero-Garcia R., Ronan L., Rosenberg M.D., Rowitch D.H., Salum G.A., Satterthwaite T.D., Schaare H.L., Schachar R.J., Schultz A.P., Schumann G., Schöll M., Sharp D., Shinohara R.T., Skoog I., Smyser C.D., Sperling R.A., Stein D.J., Stolicyn A., Suckling J., Sullivan G., Taki Y., Thyreau B., Toro R., Traut N., Tsvetanov K.A., Turk-Browne N.B., Tuulari J.J., Tzourio C., Vachon-Presseau É ., Valdes-Sosa M.J., Valdes-Sosa P.A., Valk S.L., van Amelsvoort T., Vandekar S.N., Vasung L., Victoria L.W., Villeneuve S., Villringer A., Vértes P.E., Wagstyl K., Wang Y.S., Warfield S.K., Warrier V., Westman E., Westwater M.L., Whalley H.C., Witte A.V., Yang N., Yeo B., Yun H., Zalesky A., Zar H.J., Zettergren A., Zhou J.H., Ziauddeen H., Zugman A., Zuo X.N., 3R-BRAIN, AIBL, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s Disease Repository Without Borders Investigators, CALM Team, Cam-CAN, CCNP, COBRE, cVEDA, ENIGMA Developmental Brain Age Working Group, Developing Human Connectome Project, FinnBrain, Harvard Aging Brain Study, IMAGEN, KNE96, Mayo Clinic Study of Aging, NSPN, POND, PREVENT-AD Research Group, VETSA, Bullmore E.T., Alexander-Bloch A.F. Brain charts for the human lifespan. Nature. 2022;604:525–533. PubMed PMC
Birnbaum R., Weinberger D.R. The genesis of schizophrenia: An origin story. Am. J. Psychiatry. 2024;181:482–492. PubMed
Blanton R.E., Levitt J.G., Thompson P.M., Narr K.L., Capetillo-Cunliffe L., Nobel A., Singerman J.D., McCracken J.T., Toga A.W. Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Res. Neuroimaging. 2001;107:29–43. PubMed
Bois C., Whalley H.C., McIntosh A.M., Lawrie S.M. Structural magnetic resonance imaging markers of susceptibility and transition to schizophrenia: a review of familial and clinical high risk population studies. J. Psychopharmacol. 2015;29:144–154. PubMed
Borne L., Rivière D., Mancip M., Mangin J.F. Automatic labeling of cortical sulci using patch-or CNN-based segmentation techniques combined with bottom-up geometric constraints. Med. Image Anal. 2020;62 PubMed
Cachia A., Borst G., Tissier C., Fisher C., Plaze M., Gay O., Rivière D., Gogtay N., Giedd J., Mangin J.-F., Houdé O., Raznahan A. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Dev. Cogn. Neurosci. 2016;19:122–127. PubMed PMC
Choi K.W., Han K.-M., Kim A., Kang W., Kang Y., Tae W.-S., Ham B.-J. Decreased cortical gyrification in patients with bipolar disorder. Psychol. Med. 2022;52:2232–2244. PubMed
Collin G., Scholtens L.H., Kahn R.S., Hillegers M.H.J., van den Heuvel M.P. Affected Anatomical Rich Club and Structural–Functional Coupling in Young Offspring of Schizophrenia and Bipolar Disorder Patients. Biol. Psychiatry. 2017;82:746–755. PubMed
Correll C.U., Galling B., Pawar A., Krivko A., Bonetto C., Ruggeri M., Craig T.J., Nordentoft M., Srihari V.H., Guloksuz S., Hui C.L.M., Chen E.Y.H., Valencia M., Juarez F., Robinson D.G., Schooler N.R., Brunette M.F., Mueser K.T., Rosenheck R.A., Marcy P., Addington J., Estroff S.E., Robinson J., Penn D., Severe J.B., Kane J.M. Comparison of early intervention services vs treatment as usual for early-phase psychosis. JAMA Psychiatry. 2018;75:555. PubMed PMC
Dalsgaard S., Thorsteinsson E., Trabjerg B.B., Schullehner J., Plana-Ripoll O., Brikell I., Wimberley T., Thygesen M., Madsen K.B., Timmerman A., Schendel D., McGrath J.J., Mortensen P.B., Pedersen C.B. Incidence Rates and Cumulative Incidences of the Full Spectrum of Diagnosed Mental Disorders in Childhood and Adolescence. JAMA Psychiatry. 2020;77:155–164. PubMed PMC
Dean K., Stevens H., Mortensen P.B., Murray R.M., Walsh E., Pedersen C.B. Full spectrum of psychiatric outcomes among offspring with parental history of mental disorder. Arch. Gen. Psychiatry. 2010;67:822–829. PubMed
Desikan R.S., Ségonne F., Fischl B., Quinn B.T., Dickerson B.C., Blacker D., Buckner R.L., Dale A.M., Maguire R.P., Hyman B.T., Albert M.S., Killiany R.J. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–980. PubMed
Díaz-Caneja C.M., Alloza C., Gordaliza P.M., Fernández-Pena A., de Hoyos L., Santonja J., Buimer E.E.L., van Haren N.E.M., Cahn W., Arango C., Kahn R.S., Hulshoff Pol H.E., Schnack H.G., Janssen J. Sex differences in lifespan trajectories and variability of human sulcal and gyral morphology. Cereb. Cortex. 2021;31:5107–5120. PubMed
Dojat M., Pizzagalli F., Hupé J.-M. Magnetic resonance imaging does not reveal structural alterations in the brain of grapheme-color synesthetes. PLoS One. 2018;13 PubMed PMC
Drobinin V., Slaney C., Garnham J., Propper L., Uher R., Alda M., Hajek T. Larger right inferior frontal gyrus volume and surface area in participants at genetic risk for bipolar disorders. Psychol. Med. 2019;49:1308–1315. PubMed
Drobinin V., Van Gestel H., Zwicker A., MacKenzie L., Cumby J., Patterson V.C., Vallis E.H., Campbell N., Hajek T., Helmick C.A., Schmidt M.H., Alda M., Bowen C.V., Uher R. Psychotic symptoms are associated with lower cortical folding in youth at risk for mental illness. J. Psychiatry Neurosci. 2020;45:125–133. PubMed PMC
Falkai P., Honer W.G., Kamer T., Dustert S., Vogeley K., Schneider-Axmann T., Dani I., Wagner M., Rietschel M., Müller D.J., Schulze T.G., Gaebel W., Cordes J., Schönell H., Schild H.H., Block W., Träber F., Steinmetz H., Maier W., Tepest R. Disturbed frontal gyrification within families affected with schizophrenia. J. Psychiatr. Res. 2007;41:805–813. PubMed
First, M.B., Gibbon, M., 2004. The structured clinical interview for DSM-IV axis I disorders (SCID-I) and the structured clinical interview for DSM-IV axis II disorders (SCID-II).
Fischl B. FreeSurfer. Neuroimage. 2012;62:774–781. PubMed PMC
Fusar-Poli P., Correll C.U., Arango C., Berk M., Patel V., Ioannidis J.P.A. Preventive psychiatry: a blueprint for improving the mental health of young people. World Psychiatry. 2021;20:200–221. PubMed PMC
Gottesman I.I., Laursen T.M., Bertelsen A., Mortensen P.B. Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch. Gen. Psychiatry. 2010;67:252–257. PubMed
Han Y., Gao Y., Wang S., Lin X., Li P., Liu W., Lu L., Wang C. Cortical folding in distinguishing first-episode bipolar and unipolar depression. J. Affect. Disord. 2025;369:897–905. PubMed
van Haren N.E.M., Setiaman N., Koevoets M.G.J.C., Baalbergen H., Kahn R.S., Hillegers M.H.J. Brain structure, IQ, and psychopathology in young offspring of patients with schizophrenia or bipolar disorder. Eur. Psychiatry. 2020;63 PubMed PMC
Harris J.M., Whalley H., Yates S., Miller P., Johnstone E.C., Lawrie S.M. Abnormal cortical folding in high-risk individuals: a predictor of the development of schizophrenia? Biol. Psychiatry. 2004;56:182–189. PubMed
Harris J.M., Moorhead T.W.J., Miller P., McIntosh A.M., Bonnici H.M., Owens D.G.C., Johnstone E.C., Lawrie S.M. Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biol. Psychiatry. 2007;62:722–729. PubMed
Hilker R., Helenius D., Fagerlund B., Skytthe A., Christensen K., Werge T.M., Nordentoft M., Glenthøj B. Heritability of Schizophrenia and Schizophrenia Spectrum Based on the Nationwide Danish Twin Register. Biol. Psychiatry. 2018;83:492–498. PubMed
Im K., Lee J.-M., Yoon U., Shin Y.-W., Hong S.B., Kim I.Y., Kwon J.S., Kim S.I. Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Hum. Brain Mapp. 2006;27:994–1003. PubMed PMC
Im K., Choi Y.Y., Yang J.-J., Lee K.H., Kim S.I., Grant P.E., Lee J.-M. The relationship between the presence of sulcal pits and intelligence in human brains. Neuroimage. 2011;55:1490–1496. PubMed
Janssen J., Alemán-Gómez Y., Schnack H., Balaban E., Pina-Camacho L., Alfaro-Almagro F., Castro-Fornieles J., Otero S., Baeza I., Moreno D., Bargalló N., Parellada M., Arango C., Desco M. Cortical morphology of adolescents with bipolar disorder and with schizophrenia. Schizophr. Res. 2014;158:91–99. PubMed
Janssen J., Alloza C., Díaz-Caneja C.M., Santonja J., Pina-Camacho L., Gordaliza P.M., Fernández-Pena A., Lois N.G., Buimer E.E.L., van Haren N.E.M., Cahn W., Vieta E., Castro-Fornieles J., Bernardo M., Arango C., Kahn R.S., Hulshoff Pol H.E., Schnack H.G. Longitudinal allometry of sulcal morphology in health and schizophrenia. J. Neurosci. 2022;42:3704–3715. PubMed PMC
Jou R.J., Hardan A.Y., Keshavan M.S. Reduced cortical folding in individuals at high risk for schizophrenia: a pilot study. Schizophr. Res. 2005;75:309–313. PubMed
Kang Y., Kang W., Kim A., Tae W.-S., Ham B.-J., Han K.-M. Decreased cortical gyrification in major depressive disorder. Psychol. Med. 2023;53:7512–7524. PubMed
Kaufman J., Birmaher B., Brent D.A., Ryan N.D., Rao U. K-sads-pl. J. Am. Acad. Child Adolesc. Psychiatry. 2000 PubMed
Kelly P.A., Viding E., Puetz V.B., Palmer A.L., Samuel S., McCrory E.J. The sexually dimorphic impact of maltreatment on cortical thickness, surface area and gyrification. J. Neural Transm. (Vienna) 2016;123:1069–1083. PubMed PMC
Kendler, K.S., Chatzinakos, C., Bacanu, S.-A., 2019. The impact on estimations of genetic correlations of the use, in genome wide case-control studies, of super-normal, unscreened and family-history screened controls. bioRxiv. 10.1101/693614. PubMed DOI
Kessler R.C., Berglund P., Demler O., Jin R., Merikangas K.R., Walters E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry. 2005;62:593–602. PubMed
Kia S.M., Huijsdens H., Rutherford S., de Boer A., Dinga R., Wolfers T., Berthet P., Mennes M., Andreassen O.A., Westlye L.T., Beckmann C.F., Marquand A.F. Closing the life-cycle of normative modeling using federated hierarchical Bayesian regression. PLoS One. 2022;17 PubMed PMC
King K.M., Littlefield A.K., McCabe C.J., Mills K.L., Flournoy J., Chassin L. Longitudinal modeling in developmental neuroimaging research: Common challenges, and solutions from developmental psychology. Dev. Cogn. Neurosci. 2018;33:54–72. PubMed PMC
Klein D., Rotarska-Jagiela A., Genc E., Sritharan S., Mohr H., Roux F., Han C.E., Kaiser M., Singer W., Uhlhaas P.J. Adolescent brain maturation and cortical folding: evidence for reductions in gyrification. PLoS One. 2014;9 PubMed PMC
Lau P., Hawes D.J., Hunt C., Frankland A., Roberts G., Mitchell P.B. Prevalence of psychopathology in bipolar high-risk offspring and siblings: a meta-analysis. Eur. Child Adolesc. Psychiatry. 2018;27:823–837. PubMed
de Leeuw M., Bohlken M.M., Mandl R.C.W., Hillegers M.H.J., Kahn R.S., Vink M. Changes in white matter organization in adolescent offspring of schizophrenia patients. Neuropsychopharmacology. 2017;42:495–501. PubMed PMC
Li G., Wang L., Shi F., Lyall A.E., Lin W., Gilmore J.H., Shen D. Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J. Neurosci. 2014;34:4228–4238. PubMed PMC
Madeira N., Duarte J.V., Martins R., Costa G.N., Macedo A., Castelo-Branco M. Morphometry and gyrification in bipolar disorder and schizophrenia: A comparative MRI study. Neuroimage Clin. 2020;26 PubMed PMC
Madre M., Canales-Rodríguez E.J., Fuentes-Claramonte P., Alonso-Lana S., Salgado-Pineda P., Guerrero-Pedraza A., Moro N., Bosque C., Gomar J.J., Ortíz-Gil J., Goikolea J.M., Bonnin C.M., Vieta E., Sarró S., Maristany T., McKenna P.J., Salvador R., Pomarol-Clotet E. Structural abnormality in schizophrenia versus bipolar disorder: A whole brain cortical thickness, surface area, volume and gyrification analyses. Neuroimage Clin. 2020;25 PubMed PMC
McGorry P., Nelson B. Why we need a transdiagnostic staging approach to emerging psychopathology, early diagnosis, and treatment. JAMA Psychiatry. 2016 PubMed
Medawar E., Thieleking R., Manuilova I., Paerisch M., Villringer A., Witte A.V., Beyer F. Estimating the effect of a scanner upgrade on measures of grey matter structure for longitudinal designs. PLoS One. 2021;16 PubMed PMC
Merikangas K.R., He J.-P., Burstein M., Swanson S.A., Avenevoli S., Cui L., Benjet C., Georgiades K., Swendsen J. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication--Adolescent Supplement (NCS-A) J. Am. Acad. Child Adolesc. Psychiatry. 2010;49:980–989. PubMed PMC
Mesman E., Nolen W.A., Reichart C.G., Wals M., Hillegers M.H.J. The Dutch bipolar offspring study: 12-year follow-up. Am. J. Psychiatry. 2013;170:542–549. PubMed
Mills K.L., Goddings A.-L., Herting M.M., Meuwese R., Blakemore S.-J., Crone E.A., Dahl R.E., Güroğlu B., Raznahan A., Sowell E.R., Tamnes C.K. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage. 2016;141:273–281. PubMed PMC
Miola A., Cattarinussi G., Loré M.L., Ghiotto N., Collantoni E., Sambataro F. Brain gyrification in bipolar disorder: a systematic review of neuroimaging studies. Brain Imaging Behav. 2022;16:2768–2784. PubMed PMC
Mutlu A.K., Schneider M., Debbané M., Badoud D., Eliez S., Schaer M. Sex differences in thickness, and folding developments throughout the cortex. Neuroimage. 2013;82:200–207. PubMed
Nanda P., Tandon N., Mathew I.T., Giakoumatos C.I., Abhishekh H.A., Clementz B.A., Pearlson G.D., Sweeney J., Tamminga C.A., Keshavan M.S. Local gyrification index in probands with psychotic disorders and their first-degree relatives. Biol. Psychiatry. 2014;76:447–455. PubMed PMC
Natsuyama T., Okamoto N., Watanabe K., Chibaatar E., Tesen H., Hayasaki G., Ikenouchi A., Kakeda S., Yoshimura R. Gyrification patterns in first-episode, drug-naïve major depression: Associations with plasma levels of brain-derived neurotrophic factor and psychiatric symptoms. Front. Psychiatry. 2022;13 PubMed PMC
Palaniyappan L., Liddle P.F. Diagnostic discontinuity in psychosis: a combined study of cortical gyrification and functional connectivity. Schizophr. Bull. 2014;40:675–684. PubMed PMC
Pardoe H.R., Kucharsky Hiess R., Kuzniecky R. Motion and morphometry in clinical and nonclinical populations. Neuroimage. 2016;135:177–185. PubMed
Parsons S., McCormick E.M. Two time points poorly capture trajectories of change: A warning for longitudinal neuroscience. PsyArXiv. 2022 doi: 10.31234/osf.io/96ph3. DOI
Perrot M., Rivière D., Mangin J.-F. Cortical sulci recognition and spatial normalization. Med. Image Anal. 2011;15:529–550. PubMed
Pham T.V., Sasabayashi D., Takahashi T., Takayanagi Y., Kubota M., Furuichi A., Kido M., Noguchi K., Suzuki M. Longitudinal changes in brain gyrification in schizophrenia spectrum disorders. Front. Aging Neurosci. 2021;13 PubMed PMC
Pizzagalli F., Auzias G., Yang Q., Mathias S.R., Faskowitz J., Boyd J.D., Amini A., Rivière D., McMahon K.L., de Zubicaray G.I., Martin N.G., Mangin J.-F., Glahn D.C., Blangero J., Wright M.J., Thompson P.M., Kochunov P., Jahanshad N. The reliability and heritability of cortical folds and their genetic correlations across hemispheres. Commun. Biol. 2020;3:510. PubMed PMC
Poortman S.R., Setiaman N., Barendse M.E.A., Schnack H.G., Hillegers M.H.J., van Haren N.E.M. Non-linear development of brain morphometry in child and adolescent offspring of individuals with bipolar disorder or schizophrenia. Eur. Neuropsychopharmacol. 2024;87:56–66. PubMed
Poortman S.R., Barendse M.E.A., Setiaman N., van den Heuvel M.P., de Lange S.C., Hillegers M.H.J., van Haren N.E.M. Age trajectories of the structural connectome in child and adolescent offspring of individuals with bipolar disorder or schizophrenia. Biol. Psychiatry Glob. Open Sci. 2024 PubMed PMC
Quezada S., Castillo-Melendez M., Walker D.W., Tolcos M. Development of the cerebral cortex and the effect of the intrauterine environment. J. Physiol. 2018;596:5665–5674. PubMed PMC
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rasic D., Hajek T., Alda M., Uher R. Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: a meta-analysis of family high-risk studies. Schizophr. Bull. 2014;40:28–38. PubMed PMC
Raznahan A., Shaw P., Lalonde F., Stockman M., Wallace G.L., Greenstein D., Clasen L., Gogtay N., Giedd J.N. How does your cortex grow? J. Neurosci. 2011;31:7174–7177. PubMed PMC
Rehman F. Schedules for clinical assessment in neuropsychiatry. BMJ. 2011:c7160.
Rosen A.F.G., Roalf D.R., Ruparel K., Blake J., Seelaus K., Villa L.P., Ciric R., Cook P.A., Davatzikos C., Elliott M.A., Garcia de La Garza A., Gennatas E.D., Quarmley M., Schmitt J.E., Shinohara R.T., Tisdall M.D., Craddock R.C., Gur R.E., Gur R.C., Satterthwaite T.D. Quantitative assessment of structural image quality. Neuroimage. 2018;169:407–418. PubMed PMC
Ruderfer D.M., Ripke S., McQuillin A., Boocock J., Stahl E.A., Pavlides J.M.W., Freedman R. Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell. 2018;173:1705–1715.e16. PubMed PMC
Rutherford S., Kia S.M., Wolfers T., Fraza C., Zabihi M., Dinga R., Berthet P., Worker A., Verdi S., Ruhe H.G., Beckmann C.F., Marquand A.F. The normative modeling framework for computational psychiatry. Nat. Protoc. 2022;17:1711–1734. PubMed PMC
Salminen L.E., Tubi M.A., Bright J., Thomopoulos S.I., Wieand A., Thompson P.M. Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Hum. Brain Mapp. 2022;43:500–542. PubMed PMC
Sasabayashi D., Takayanagi Y., Takahashi T., Koike S., Yamasue H., Katagiri N., Sakuma A., Obara C., Nakamura M., Furuichi A., Kido M., Nishikawa Y., Noguchi K., Matsumoto K., Mizuno M., Kasai K., Suzuki M. Increased occipital gyrification and development of psychotic disorders in individuals with an at-risk mental state: A multicenter study. Biol. Psychiatry. 2017;82:737–745. PubMed
Sasabayashi D., Takayanagi Y., Takahashi T., Nemoto K., Furuichi A., Kido M., Nishikawa Y., Nakamura M., Noguchi K., Suzuki M. Increased brain gyrification in the schizophrenia spectrum. Psychiatry Clin. Neurosci. 2020;74:70–76. PubMed
Sasabayashi D., Takahashi T., Takayanagi Y., Suzuki M. Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration. Transl. Psychiatry. 2021;11:176. PubMed PMC
Schaer M., Cuadra M.B., Tamarit L., Lazeyras F., Eliez S., Thiran J.-P. A surface-based approach to quantify local cortical gyrification. IEEE Trans. Med. Imaging. 2008;27:161–170. PubMed
Schaer M., Cuadra M.B., Schmansky N., Fischl B., Thiran J.-P., Eliez S. How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index. J. Vis. Exp. 2012 PubMed PMC
Setiaman N., Mesman E., van Haren N., Hillegers M. Emerging psychopathology and clinical staging in adolescent offspring of parents with bipolar disorder or schizophrenia-A longitudinal study. Bipolar Disord. 2023 doi: 10.1111/bdi.13351. PubMed DOI
Shah J.L., Jones N., van Os J., McGorry P.D., Gülöksüz S. Early intervention service systems for youth mental health: integrating pluripotentiality, clinical staging, and transdiagnostic lessons from early psychosis. Lancet Psychiatry. 2022;9:413–422. PubMed
Shen A., Shi K., Xia Q., Gong W., Huang Y., Wang Y., Zhai Q., Yan R., Yao Z., Lu Q. Surface-based analysis of early cortical gyrification and thickness alterations in treatment-Naïve, first-episode depressive patients during emerging adulthood. J. Affect. Disord. 2024;372:402–408. PubMed
Sighinolfi G., Mitolo M., Pizzagalli F., Stanzani-Maserati M., Remondini D., Rochat M.J., Cantoni E., Venturi G., Vornetti G., Bartiromo F., Capellari S., Liguori R., Tonon C., Testa C., Lodi R. Sulcal morphometry predicts mild cognitive impairment conversion to Alzheimer’s disease. J. Alzheimers Dis. 2024;99:177–190. PubMed PMC
Solmi M., Radua J., Olivola M., Croce E., Soardo L., Salazar de Pablo G., Il Shin J., Kirkbride J.B., Jones P., Kim J.H., Kim J.Y., Carvalho A.F., Seeman M.V., Correll C.U., Fusar-Poli P. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry. 2022;27:281–295. PubMed PMC
Sørensen Ø., Walhovd K.B., Fjell A.M. A recipe for accurate estimation of lifespan brain trajectories, distinguishing longitudinal and cohort effects. Neuroimage. 2021;226 PubMed
Stanfield A.C., Moorhead T.W.J., Harris J.M., Owens D.G.C., Lawrie S.M., Johnstone E.C. Increased right prefrontal cortical folding in adolescents at risk of schizophrenia for cognitive reasons. Biol. Psychiatry. 2008;63:80–85. PubMed
Sun B.B., Loomis S.J., Pizzagalli F., Shatokhina N., Painter J.N., Foley C.N., Biogen Biobank Team, Jensen M.E., McLaren D.G., Chintapalli S.S., Zhu A.H., Dixon D., Islam T., Ba Gari I., Runz H., Medland S.E., Thompson P.M., Jahanshad N., Whelan C.D. Genetic map of regional sulcal morphology in the human brain from UK biobank data. Nat. Commun. 2022;13:6071. PubMed PMC
Tepest R., Schwarzbach C.J., Krug B., Klosterkötter J., Ruhrmann S., Vogeley K. Morphometry of structural disconnectivity indicators in subjects at risk and in age-matched patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2013;263:15–24. PubMed
Torgerson C., Ahmadi H., Choupan J., Fan C.C., Blosnich J.R., Herting M.M. Sex, gender diversity, and brain structure in early adolescence. Hum. Brain Mapp. 2024;45 PubMed PMC
Uher R., Pavlova B., Radua J., Provenzani U., Najafi S., Fortea L., Ortuño M., Nazarova A., Perroud N., Palaniyappan L., Domschke K., Cortese S., Arnold P.D., Austin J.C., Vanyukov M.M., Weissman M.M., Young A.H., Hillegers M.H.J., Danese A., Nordentoft M., Murray R.M., Fusar-Poli P. Transdiagnostic risk of mental disorders in offspring of affected parents: a meta-analysis of family high-risk and registry studies. World Psychiatry. 2023;22:433–448. PubMed PMC
Uhlhaas P.J., Davey C.G., Mehta U.M., Shah J., Torous J., Allen N.B., Avenevoli S., Bella-Awusah T., Chanen A., Chen E.Y.H., Correll C.U., Do K.Q., Fisher H.L., Frangou S., Hickie I.B., Keshavan M.S., Konrad K., Lee F.S., Liu C.H., Luna B., McGorry P.D., Meyer-Lindenberg A., Nordentoft M., Öngür D., Patton G.C., Paus T., Reininghaus U., Sawa A., Schoenbaum M., Schumann G., Srihari V.H., Susser E., Verma S.K., Woo T.W., Yang L.H., Yung A.R., Wood S.J. Towards a youth mental health paradigm: a perspective and roadmap. Mol. Psychiatry. 2023;28:3171–3181. PubMed PMC
Ursini G., Punzi G., Langworthy B.W., Chen Q., Xia K., Cornea E.A., Goldman B.D., Styner M.A., Knickmeyer R.C., Gilmore J.H., Weinberger D.R. Placental genomic risk scores and early neurodevelopmental outcomes. Proc. Natl. Acad. Sci. U. S. A. 2021;118 e2019789118. PubMed PMC
Vandekar S., Tao R., Blume J. A robust effect size index. Psychometrika. 2020;85:232–246. PubMed PMC
de Vareilles H., Rivière D., Mangin J.F., Dubois J. Development of cortical folds in the human brain: An attempt to review biological hypotheses, early neuroimaging investigations and functional correlates. Dev. Cogn. Neurosci. 2023;61 PubMed PMC
Wechsler D. Psychological Corporation; San Antonio, TX: 1991. Manual for the Wechsler Intelligence Scale for Children-third edition (WISC-III.
Wechsler Adult Intelligence Scale-Third Edition: Administration and scoring manual, n.d. The Psychological Corporation, San Antonio, TX.
White T., Su S., Schmidt M., Kao C.-Y., Sapiro G. The development of gyrification in childhood and adolescence. Brain Cogn. 2010;72:36–45. PubMed PMC
Wood S.N. CRC Press; 2006. Generalized Additive Models: An Introduction with R.
Zhang Y., Yu C., Zhou Y., Li K., Li C., Jiang T. Decreased gyrification in major depressive disorder. Neuroreport. 2009;20:378–380. PubMed
Zilles K., Armstrong E., Schleicher A., Kretschmann H.J. The human pattern of gyrification in the cerebral cortex. Anat. Embryol. 1988;179:173–179. PubMed
Zuliani R., Delvecchio G., Bonivento C., Cattarinussi G., Perlini C., Bellani M., Marinelli V., Rossetti M.G., Lasalvia A., McIntosh A., Lawrie S.M., Balestrieri M., Ruggeri M., Brambilla P. Increased gyrification in schizophrenia and non affective first episode of psychosis. Schizophr. Res. 2018;193:269–275. PubMed
de Zwarte S.M.C., Brouwer R.M., Agartz I., Alda M., Aleman A., Alpert K.I., Bearden C.E., Bertolino A., Bois C., Bonvino A., Bramon E., Buimer E.E.L., Cahn W., Cannon D.M., Cannon T.D., Caseras X., Castro-Fornieles J., Chen Q., Chung Y., De la Serna E., Di Giorgio A., Doucet G.E., Eker M.C., Erk S., Fears S.C., Foley S.F., Frangou S., Frankland A., Fullerton J.M., Glahn D.C., Goghari V.M., Goldman A.L., Gonul A.S., Gruber O., de Haan L., Hajek T., Hawkins E.L., Heinz A., Hillegers M.H.J., Hulshoff Pol H.E., Hultman C.M., Ingvar M., Johansson V., Jönsson E.G., Kane F., Kempton M.J., Koenis M.M.G., Kopecek M., Krabbendam L., Krämer B., Lawrie S.M., Lenroot R.K., Marcelis M., Marsman J.-B.C., Mattay V.S., McDonald C., Meyer-Lindenberg A., Michielse S., Mitchell P.B., Moreno D., Murray R.M., Mwangi B., Najt P., Neilson E., Newport J., van Os J., Overs B., Ozerdem A., Picchioni M.M., Richter A., Roberts G., Aydogan A.S., Schofield P.R., Simsek F., Soares J.C., Sugranyes G., Toulopoulou T., Tronchin G., Walter H., Wang L., Weinberger D.R., Whalley H.C., Yalin N., Andreassen O.A., Ching C.R.K., van Erp T.G.M., Turner J.A., Jahanshad N., Thompson P.M., Kahn R.S., van Haren N.E.M. The association between familial risk and brain abnormalities is disease specific: An ENIGMA-relatives study of schizophrenia and bipolar disorder. Biol. Psychiatry. 2019;86:545–556. PubMed PMC