The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., studie na dvojčatech
Grantová podpora
T32 MH073526
NIMH NIH HHS - United States
341717
CIHR - Canada
MR/L010305/1
Medical Research Council - United Kingdom
R01 MH116147
NIMH NIH HHS - United States
064971
Wellcome Trust - United Kingdom
R01 MH084803
NIMH NIH HHS - United States
Wellcome Trust - United Kingdom
P41 EB015922
NIBIB NIH HHS - United States
U01 MH097435
NIMH NIH HHS - United States
106469
CIHR - Canada
PDA/02/06/016
Department of Health - United Kingdom
085475/B/08/Z
Wellcome Trust - United Kingdom
R01 MH111671
NIMH NIH HHS - United States
R01 MH113619
NIMH NIH HHS - United States
103703
CIHR - Canada
T32 AG058507
NIA NIH HHS - United States
U54 EB020403
NIBIB NIH HHS - United States
R01 MH117601
NIMH NIH HHS - United States
R01 EB020062
NIBIB NIH HHS - United States
G0901310
Medical Research Council - United Kingdom
R03 MH105808
NIMH NIH HHS - United States
R01 MH085667
NIMH NIH HHS - United States
R01 MH052857
NIMH NIH HHS - United States
R01 MH080912
NIMH NIH HHS - United States
PubMed
31443932
PubMed Central
PMC7068800
DOI
10.1016/j.biopsych.2019.03.985
PII: S0006-3223(19)31437-4
Knihovny.cz E-zdroje
- Klíčová slova
- Bipolar disorder, Familial risk, Imaging, Meta-analysis, Neurodevelopment, Schizophrenia,
- MeSH
- bipolární porucha * genetika patologie MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek patologie MeSH
- schizofrenie * genetika patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- studie na dvojčatech MeSH
BACKGROUND: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. METHODS: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. RESULTS: FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. CONCLUSIONS: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.
Cardiff University Brain Research Imaging Centre Cardiff University United Kingdom
Department of Experimental and Clinical Medicine Università Politecnica delle Marche Ancona Italy
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York
Department of Psychology Yale University New Haven Connecticut United Kingdom
Division of Psychiatry Royal Edinburgh Hospital University of Edinburgh Edinburgh United Kingdom
Early Psychosis Unit Department of Psychiatry Academic Medical Center Amsterdam Netherlands
Lieber Institute for Brain Development Baltimore Maryland
MRC Centre for Neuropsychiatric Genetics and Genomics Cardiff University United Kingdom
Neuroscience Research Australia Sydney Australia
School of Psychiatry University of New South Wales Sydney Australia
Zobrazit více v PubMed
Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM (2009): Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet 373:234–239. PubMed PMC
Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, et al. (2013): Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45:984–994. PubMed PMC
Brainstorm Consortium, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, et al. (2018): Analysis of shared heritability in common disorders of the brain. Science 360:eaap8757. PubMed PMC
Arnone D, Cavanagh J, Gerber D, Lawrie SM, Ebmeier KP, McIntosh AM (2009): Magnetic resonance imaging studies in bipolar disorder and schizophrenia: Meta-analysis. Br J Psychiatry 195:194–201. PubMed
Ellison-Wright I, Bullmore E (2010): Anatomy of bipolar disorder and schizophrenia: A meta-analysis. Schizophr Res 117:1–12. PubMed
Haijma SV, Van Haren NEM, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS (2013): Brain volumes in schizophrenia: A meta-analysis in over 18 000 subjects. Schizophr Bull 39:1129–1138. PubMed PMC
Hibar DP, Westlye LT, van Erp TG, Rasmussen J, Leonardo CD, Faskowitz J, et al. (2016): Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry 21:1710–1716. PubMed PMC
Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, et al. (2018): Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 23:932–942. PubMed PMC
McDonald C, Bullmore ET, Sham PC, Chitnis X, Wickham H, Bramon E, Murray RM (2004): Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Arch Gen Psychiatry 61:974–984. PubMed
van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. (2016): Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21:547–553. PubMed PMC
van Erp TG, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. (2018): Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 controls via the ENIGMA consortium. Biol Psychiatry 84:644–654. PubMed PMC
Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, et al. (2016): Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry 21:1460–1466. PubMed PMC
Hulshoff Pol HE, van Baal GC, Schnack HG, Brans RG, van der Schot AC, Brouwer RM, et al. (2012): Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder. Arch Gen Psychiatry 69:349–359. PubMed
Boos HB, Aleman A, Cahn W, Hulshoff Pol H, Kahn RS (2007): Brain volumes in relatives of patients with schizophrenia: A meta-analysis. Arch Gen Psychiatry 64:297–304. PubMed
de Zwarte SMC, Brouwer RM, Tsouli A, Cahn W, Hillegers MHJ, Hulshoff Pol HE, et al. (2018): Running in the family? Structural brain abnormalities and IQ in offspring, siblings, parents and co-twins of patients with schizophrenia [published online ahead of print]. Schizophr Bull. PubMed PMC
Nery FG, Monkul ES, Lafer B (2013): Gray matter abnormalities as brain structural vulnerability factors for bipolar disorder: A review of neuroimaging studies of individuals at high genetic risk for bipolar disorder. Aust N Z J Psychiatry 47:1124–1135. PubMed
Kempton MJ, Haldane M, Jogia J, Grasby PM, Collier D, Frangou S (2009): Dissociable brain structural changes associated with predisposition, resilience, and disease expression in bipolar disorder. J Neurosci 29:10863–10868. PubMed PMC
Frangou S (2011): Brain structural and functional correlates of resilience to bipolar disorder. Front Hum Neurosci 5:184. PubMed PMC
Bauer IE, Sanches M, Suchting R, Green CE, El Fangary NM, Zunta-Soares GB, Soares JC (2014): Amygdala enlargement in unaffected offspring of bipolar parents. J Psychiatr Res 59:200–205. PubMed PMC
Lin K, Xu G, Wong NML, Wu H, Li T, Lu W, et al. (2015): A multidimensional and integrative approach to examining the high-risk and ultra-high-risk stages of bipolar disorder. EBioMedicine 2:919–928. PubMed PMC
Hajek T, Cullis J, Novak T, Kopecek M, Blagdon R, Propper L, et al. (2013): Brain structural signature of familial predisposition for bipolar disorder: Replicable evidence for involvement of the right inferior frontal gyrus. Biol Psychiatry 73:144–152. PubMed PMC
Sariçiçek A, Yalın N, Hıdıroğlu C, Çavuşoğlu B, Taş C, Ceylan D, et al. (2015): Neuroanatomical correlates of genetic risk for bipolar disorder: A voxel-based morphometry study in bipolar type I patients and healthy first degree relatives. J Affect Disord 186:110–118. PubMed
Roberts G, Lenroot R, Frankland A, Yeung PK, Gale N, Wright A, et al. (2016): Abnormalities in left inferior frontal gyral thickness and parahippocampal gyral volume in young people at high genetic risk for bipolar disorder. Psychol Med 46:2083–2096. PubMed
Macoveanu J, Baaré W, Madsen KH, Kessing LV, Siebner HR, Vinberg M (2017): Risk for affective disorders is associated with greater prefrontal gray matter volumes: A prospective longitudinal study. Neuroimage Clin 17:786–793. PubMed PMC
Ladouceur CD, Almeida JRC, Birmaher B, Axelson DA, Nau S, Kalas C, et al. (2008): Subcortical gray matter volume abnormalities in healthy bipolar offspring: Potential neuroanatomical risk marker for bipolar disorder? J Am Acad Child Adolesc Psychiatry 47:532–539. PubMed PMC
Drobinin V, Slaney C, Garnham J, Propper L, Uher R, Alda M, Hajek T (2019): Larger right inferior frontal gyrus volume and surface area in participants at genetic risk for bipolar disorders. Psychol Med 49:1308–1315. PubMed
Sugranyes G, de la Serna E, Romero S, Sanchez-Gistau V, Calvo A, Moreno D, et al. (2015): Grey matter volume decrease distinguishes schizophrenia from bipolar offspring during childhood and adolescence. J Am Acad Child Adolesc Psychiatry 54:677–684. PubMed
Collin G, Scholtens LH, Kahn RS, Hillegers MHJ, van den Heuvel MP (2017): Affected anatomical rich club and structural-functional coupling in young offspring of schizophrenia and bipolar disorder patients. Biol Psychiatry 82:746–755. PubMed
McDonald C, Marshall N, Sham PC, Bullmore ET, Schulze K, Chapple B, et al. (2006): Regional brain morphometry in patients with schizophrenia or bipolar disorder and their unaffected relatives. Am J Psychiatry 163:478–487. PubMed
McIntosh AM, Job DE, Moorhead TWJ, Harrison LK, Forrester K, Lawrie SM, Johnstone EC (2004): Voxel-based morphometry of patients with schizophrenia or bipolar disorder and their unaffected relatives. Biol Psychiatry 56:544–552. PubMed
Fischl B (2012): FreeSurfer. Neuroimage 62:774–781. PubMed PMC
Fischl B, Sereno MI, Dale AM (1999): Cortical surface-based analysis: II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207. PubMed
Fischl B, Dale AM (2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055. PubMed PMC
Pinheiro JC, Bates DM (2000): Mixed-Effects Models in S and S-PLUS. New York: Springer.
Benjamini Y, Hochberg Y (1995): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc 57:289–300.
Moran ME, Hulshoff Pol HE, Gogtay N (2013): A family affair: Brain abnormalities in siblings of patients with schizophrenia. Brain 136:3215–3226. PubMed PMC
Ruderfer DM, Ripke S, McQuillin A, Boocock J, Stahl EA, Pavlides JM, et al. (2018): Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173:1705–1715. PubMed PMC
Baaré WF, van Oel CJ, Hulshoff Pol HE, Schnack HG, Durston S, Sitskoorn MM, Kahn RS (2001): Volumes of brain structures in twins discordant for schizophrenia. Arch Gen Psychiatry 58:33–40. PubMed
Cannon TD, Thompson PM, van Erp TGM, Toga AW, Poutanen VP, Huttunen M, et al. (2002): Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc Natl Acad Sci U S A 99:3228–3233. PubMed PMC
Rijsdijk FV, van Haren NEM, Picchioni MM, McDonald C, Toulopoulou T, Hulshoff Pol HE, et al. (2005): Brain MRI abnormalities in schizophrenia: Same genes or same environment? Psychol Med 35:1399–1409. PubMed
van Haren NEM, Rijsdijk F, Schnack HG, Picchioni MM, Toulopoulou T, Weisbrod M, et al. (2012): The genetic and environmental determinants of the association between brain abnormalities and schizophrenia: The Schizophrenia Twins and Relatives Consortium. Biol Psychiatry 71:915–921. PubMed PMC
Kieseppä T, Van Erp TG, Haukka J, Partonen T, Cannon TD, Poutanen VP, et al. (2002): The volumetric findings in MRI brain study of bipolar twins and their healthy co-twins. Bipolar Disord 4(Suppl 1): 29–30. PubMed
van der Schot AC, Vonk R, Brans RG, van Haren NE, Koolschijn PC, Nuboer V, et al. (2009): Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch Gen Psychiatry 66:142–151. PubMed
Franke B, Stein JL, Ripke S, Anttila V, Hibar DP, van Hulzen KJ, et al. (2016): Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept. Nat Neurosci 19:420–431. PubMed PMC
Smeland OB, Wang Y, Frei O, Li W, Hibar DP, Franke B, et al. (2018): Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms. Schizophr Bull 44:854–864. PubMed PMC
Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. (2018): The genetic architecture of the human cerebral cortex [published online ahead of print Sep 9]. bioRxiv.
Sgouros S, Goldin JH, Hockley AD, Wake MJ, Natarajan K (1999): Intracranial volume change in childhood. J Neurosurg 91:610–616. PubMed
Blakemore SJ (2012): Imaging brain development: The adolescent brain. Neuroimage 61:397–406. PubMed
Murray RM, Lewis SW (1987): Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed) 295:681–682. PubMed PMC
Nasrallah HA (1991): Neurodevelopmental aspects of bipolar affective disorder. Biol Psychiatry 29:1–2. PubMed
Weinberger DR (1987): Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669. PubMed
Murray RM, Sham P, Van Os J, Zanelli J, Cannon M, McDonald C (2004): A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr Res 71:405–416. PubMed
Parellada M, Gomez-Vallejo S, Burdeus M, Arango C (2017): Developmental differences between schizophrenia and bipolar disorder. Schizophr Bull 43:1176–1189. PubMed PMC
Walker J, Curtis V, Shaw P, Murray RM (2002): Schizophrenia and bipolar disorder are distinguished mainly by differences in neurodevelopment. Neurotox Res 4:427–436. PubMed
Hajek T, Franke K, Kolenic M, Capkova J, Matejka M, Propper L, et al. (2019): Brain age in early stages of bipolar disorders or schizophrenia. Schizophr Bull 45:190–198. PubMed PMC
Adleman NE, Fromm SJ, Razdan V, Kayser R, Dickstein DP, Brotman MA, et al. (2012): Cross-sectional and longitudinal abnormalities in brain structure in children with severe mood dysregulation or bipolar disorder. J Child Psychol Psychiatry 53:1149–1156. PubMed PMC
Adler CM, Levine AD, DelBello MP, Strakowski SM (2005): Changes in gray matter volume in patients with bipolar disorder. Biol Psychiatry 58:151–157. PubMed
van Erp TG, Thompson PM, Kieseppä T, Bearden CE, Marino AC, Hoftman GD, et al. (2012): Hippocampal morphology in lithium and non-lithium-treated bipolar I disorder patients, non-bipolar co-twins, and control twins. Hum Brain Mapp 33:501–510. PubMed PMC
Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. (2012): Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry 71:286–293. PubMed
Hulshoff Pol HE, Hoek HW, Susser E, Brown AS, Dingemans A, Schnack HG, et al. (2000): Prenatal exposure to famine and brain morphology in schizophrenia. Am J Psychiatry 157:1170–1172. PubMed
Voelcker-Rehage C, Niemann C (2013): Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev 37:2268–2295. PubMed
Rasic D, Hajek T, Alda M, Uher R (2014): Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: A meta-analysis of family high-risk studies. Schizophr Bull 40:28–38. PubMed PMC
Mesman E, Nolen WA, Reichart CG, Wals M, Hillegers MHJ (2013): The Dutch bipolar offspring study: 12-year follow-up. Am J Psychiatry 170:542–549. PubMed
McDaniel MA (2005): Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33:337–346.
Staff RT, Murray AD, Ahearn TS, Mustafa N, Fox HC, Whalley LF (2012): Childhood socioeconomic status and adult brain size: Childhood socioeconomic status influences adult hippocampal size. Ann Neurol 71:653–660. PubMed
Lawson GM, Duda JT, Avants BB, Wu J, Farah MJ (2013): Associations between children’s socioeconomic status and prefrontal cortical thickness. Dev Sci 16:641–652. PubMed PMC
Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, et al. (2015): Family income, parental education and brain structure in children and adolescents. Nat Neurosci 18:773–778. PubMed PMC
Van Haren NEM, Van Dam DS, Stellato RK; Genetic Risk and Outcome of Psychosis (GROUP) investigators (2019): Change in IQ in schizophrenia patients and their siblings: A controlled longitudinal study [published online ahead of print Jan 24]. Psychol Med. PubMed
Arts B, Jabben N, Krabbendam L, van Os J (2008): Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol Med 38:771–785. PubMed
Glahn DC, Almasy L, Barguil M, Hare E, Perlalta JM, Kent JW Jr, et al. (2010): Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. Arch Gen Psychiatry 67:168–177. PubMed PMC
Vreeker A, Boks MP, Abramovic L, Verkooijen S, van Bergen AH, Hillegers MH, et al. (2016): High educational performance is a distinctive feature of bipolar disorder: A study on cognition in bipolar disorder, schizophrenia patients, relatives and controls. Psychol Med 46:807–818. PubMed PMC
Vonk R, van der Schot AC, van Baal GC, van Oel CJ, Nolen WA, Kahn RS (2012): Premorbid school performance in twins concordant and discordant for bipolar disorder. J Affect Disord 136:294–303. PubMed
Zammit S, Allebeck P, David AS, Dalman C, Hemmingsson T, Lundberg I, Lewis G (2004): A longitudinal study of premorbid IQ score and risk of developing schizophrenia, bipolar disorder, severe depression, and other nonaffective psychoses. Arch Gen Psychiatry 61:354–360. PubMed
Tiihonen J, Haukka J, Henriksson M, Cannon M, Kieseppä T, Laaksonen I, et al. (2005): Premorbid intellectual functioning in bipolar disorder and schizophrenia: Results from a cohort study of male conscripts. Am J Psychiatry 162:1904–1910. PubMed
MacCabe JH, Lambe MP, Cnattingius S, Sham PC, David AS, Reichenberg A, et al. (2010): Excellent school performance at age 16 and risk of adult bipolar disorder: National cohort study. Br J Psychiatry 196:109–115. PubMed
Smith DJ, Anderson J, Zammit S, Meyer TD, Pell JP, Mackay D (2015): Childhood IQ and risk of bipolar disorder in adulthood: Prospective birth cohort study. BJPsych Open 1:74–80. PubMed PMC
Woodberry KA, Giuliano AJ, Seidman LJ (2008): Premorbid IQ in schizophrenia: A meta-analytic review. Am J Psychiatry 165:579–587. PubMed
Khandaker GM, Barnett JH, White IR, Jones PB (2011): A quantitative meta-analysis of population-based studies of premorbid intelligence and schizophrenia. Schizophr Res 132:220–227. PubMed PMC
Dickson H, Laurens KR, Cullen AE, Hodgins S (2012): Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychol Med 42:743–755. PubMed
Agnew-Blais J, Seidman LJ (2013): Neurocognition in youth and young adults under age 30 at familial risk for schizophrenia: A quantitative and qualitative review. Cogn Neuropsychiatry 18:44–82. PubMed PMC
Kendler KS, Ohlsson H, Sundquist J, Sundquist K (2015): IQ and schizophrenia in a Swedish national sample: Their causal relationship and the interaction of IQ with genetic risk. Am J Psychiatry 172:1–7. PubMed PMC
Hochberger WC, Combs T, Reilly JL, Bishop JR, Keefe RSE, Clementz BA, et al. (2018): Deviation from expected cognitive ability across psychotic disorders. Schizophr Res 192:300–307. PubMed PMC